用户名: 密码: 验证码:
不同海洋生境中超微型浮游生物的分布特点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了不同海洋生境(东海陆架、地中海马赛湾以及黄海胶州湾)中超微型浮游生物群落结构(包括聚球藻、原绿球藻、微微型和微型光合真核生物以及异养细菌)与丰度的时空变化,并分析研究了不同海区中影响超微型生物分布的可能因素。
     2006年11月(秋季航次)和2007年2月(冬季航次)东海不同水团中微微型浮游生物群落结构及丰度分布的研究。调查区域主要受到三类水团的影响:沿岸水团,陆架混合水团和黑潮水团。流式细胞仪分析发现东海微微型浮游生物由四个类群组成,即聚球藻、原绿球藻、微微型光合真核生物以及异养细菌。聚球藻、微微型光合真核生物和异养细菌在秋季航次的平均丰度分别为(10.63±10.88)×10~3、(1.61±1.16)×10~3、(3.39±1.27)×10~5cells/mL,冬季航次的平均丰度分别为(6.45±8.60)×10~3、(3.23±2.63)×10~3、(3.76±1.37)×10~5cells/mL。微微型浮游生物群落结构受水团的影响明显,主要表现为原绿球藻很少在表层和沿岸水区域出现,主要存在于陆架混合水及黑潮水区域;秋季聚球藻在陆架混合区域发生明显的亚群分化。微微型浮游生物的丰度分布与水团也有明显的关系,不同类群受水团的影响不完全一致。聚球藻最高丰度值出现在黑潮水区域,最低丰度值出现在沿岸水区域,其在黑潮水区域的丰度明显高于沿岸水区域,这种现象可能是受温度影响的。与聚球藻相比,微微型光合真核生物受水团的影响相对较小,异养细菌受水团的影响最不明显。相关性分析也显示不同水团中微微型浮游生物与环境因子(温度、营养盐和叶绿素a)之间的相关性存在明显差异,可见不同水团对微微型浮游生物分布的影响是有显著差异的。
     东海陆架区域远离近岸,受人类活动的影响较小,微微型浮游生物主要是受到水团,即自然环境因素的影响。为了更好的了解人类活动对海洋微生物的影响,我们调查研究了地中海西北部马赛湾自2010年5月至2012年4月超微型浮游生物的组成及季节变化。马赛湾属于开放性的海湾,受人类活动的影响较为明显。马赛湾超微型浮游生物由四个主要类群组成,包括聚球藻、微微型和微型光合真核生物以及异养细菌。已有马赛湾原绿球藻广泛存在的报道,本研究中很少发现原绿球藻。从丰度上看,马赛湾聚球藻是自养型超微型浮游生物的优势类群。聚球藻丰度呈现显著的季节性变化,其高丰度值出现在春季4、5月,高达90×10~3cells/mL,低丰度值出现在秋冬季节,小于15×10~3cells/mL。聚球藻的春季最高值(2010年5月,129.59×10~3cells/mL)和冬季最低值(2012年3月,2.29×10~3cells/mL)之间相差超过40倍。微微型光合真核生物的季节变化与聚球藻相似,高丰度值出现在冬季2、3月,丰度高达10.72×10~3cells/mL。细胞粒径大于2μm的微型光合真核生物丰度比聚球藻和微微型光合真核生物丰度要低的多,其季节变化趋势与聚球藻类似。异养细菌的季节变化波动性非常明显,最大值出现在2012年3月(9.74×10~5cells/mL)。此外,在调查过程中我们发现了一个非常特殊的现象:2010年7月12日的样品中,除了广泛存在的聚球藻、微微型和微型光合真核生物和异养细菌外,原绿球藻也大量存在,此外我们还观察到了一种与聚球藻类似的含有橙色荧光(藻红蛋白)和红色荧光(叶绿素a)、细胞粒径大于2μm的未知类群,该类群丰度高达7104events/mL。通过流式细胞仪分选后在荧光显微镜观察发现,与某些含异形胞的固氮蓝细菌藻丝体类似,它们似乎是一种呈链状、含异形胞的藻丝体,但异形胞并没有位于末端。此外,荧光显微镜照片显示该链状藻丝体是折叠状的。通常情况下,藻丝体都是与硅藻共生的,自由藻丝体很少报道。据我们所知,这种自由藻丝体的大量爆发现象从来没有被报道过。然而,由于样品量少(只有1.5mL)、分析时间晚于采样时间以及荧光显微镜照片分辨率较低等因素限制,我们难以进行物种鉴定。夏季高温引起的水体层化现象、硝酸盐的耗尽等可能与这一现象有关。马赛湾自由藻丝体短暂爆发现象的发生原因有待于进一步研究。马赛湾超微型浮游生物的监测持续进行中,有必要引进高频率原位流式细胞仪,从而避免错过类似的、短暂发生的特殊现象,能够进行进一步的物种鉴定。
     与马赛湾开放性海湾不同,胶州湾属于半封闭的浅海海湾,十多条河流入湾,受人类活动的影响更为显著。我们通过2007年1月至2010年12月胶州湾月调查航次,研究了胶州湾微微型浮游生物长期的季节变化。调查航次显示,聚球藻、微微型光合真核生物以及异养细菌普遍存在于胶州湾,而原绿球藻至今尚未被观察到。在季节分布上,无论是在湾内、还是湾口和湾外,微微型浮游生物都呈现出明显的季节变化。聚球藻最高值发生在8月水温最高(>24°C)的时期,自12月到5月(水温<15°C),其丰度维持在低水平。微微型光合真核生物高丰度值出现在4-7月,除8月的其他时期,微微型光合真核生物丰度值都高于聚球藻。异养细菌每年会在8月(最高值)和4月(次高值)出现两个高丰度值,这两个高值恰恰与叶绿素高值出现的时间一致,由此可以推测二者之间存在明显关联。主成分分析结果显示胶州湾微微型浮游生物的季节变化主要受温度和营养盐(硝酸盐、亚硝酸盐、铵盐及硅酸盐等)影响。温度、营养盐与微微型浮游生物丰度之间的正相关关系,也表明了温度和营养盐对胶州湾微微型浮游生物丰度分布的重要性。
     马赛湾与胶州湾的自然及人类环境既存在相似点,又有所不同。首先二者都是海湾系统,并受到人类活动的影响。马赛湾属于地中海的一部分,临近法国第二大城市马赛;而胶州湾入海口与黄海相连,受到青岛市人类活动的影响。不同点方面:马赛湾没有淡水河流的影响,胶州湾则受到十多条淡水河流的影响;此外,由于胶州湾夏季降雨量丰富,而马赛湾受到地中海气候的影响,夏季降雨量少,这些特征对于海洋超微型浮游生物的分布都会产生一定的影响。比较马赛湾和胶州湾超微型浮游生物的类群发现,聚球藻、微微型和微型光合真核生物是普遍存在的,而原绿球藻在两个海湾都很少发现。在季节分布上,马赛湾聚球藻和微型光合真核生物高丰度值出现在春季,低丰度值出现在秋季和冬季。微微型光合真核生物高丰度值出现在冬季,比聚球藻稍早;胶州湾聚球藻高丰度值出现在8月,其他月份丰度值较低,微微型和微型光合真核生物高丰度值出现在7月,比聚球藻早一个月。两个海湾超微型浮游生物细胞丰度与细胞荧光含量呈现相反的趋势,即细胞丰度高的季节,细胞较小,细胞荧光含量较低。主成分分析发现马赛湾超微型浮游生物丰度的季节变化主要受到营养盐的影响;胶州湾超微型浮游生物丰度的季节变化则是受到温度和营养盐的双重影响。
     通过本论文的实验,我们研究了不同海洋生境中超微型浮游生物的群落结构和丰度变化,发现环境因子和人类活动会在不同程度上对超微型浮游生物产生影响,且不同生境中对海洋超微型浮游生物丰度的影响因子有明显的区别。
In this dissertation, temporal and spatial variations of ultraplankton (Synechococcus,Prochlorococcus, picoeukaryotes, nanoeukaryotes and heterotrophic bacteria) abundanceswere studied in different marine environments (in the East China Sea, Bay of Marseille inthe NW Mediterranean Sea and Jiaozhou Bay in the Yellow Sea) based on flow cytometryanalysis. The relationships between environmental conditions and ultraplankton abundancewere also studied in order to search for the possible controlling factors on ultraplanktondistribution in different marine environments.
     Picoplankton distribution in different water masses of the East China Sea (ECS) wasinvestigated in November2006and February2007. The cruises tracked crossed three majorwater masses: Coastal Water Mass (CWM), Shelf Mixing Water Mass (MWM) andKuroshio Water Mass (KWM). Picoplankton composition was resolved in four main groupsby flow cytometry, namely Synechococcus, Prochlorococcus, picoeukaryotes, andheterotrophic bacteria. The average Synechococcus, picoeukaryotes and heterotrophicbacteria abundances were (10.63±10.88)×10~3,(1.61±1.16)×10~3,(3.39±1.27)×10~5cells/mLin autumn and (6.45±8.60)×10~3,(3.23±2.63)×10~3,(3.76±1.37)×10~5cells/mL in winter,respectively. Prochlorococcus was seldom observed in surface samples and not found inCWM, neither in autumn nor in winter. In contrast, Prochlorococcus was present in MWMand KWM with abundance at around10~3cells/mL in autumn and winter. Synechococcusdistribution showed marked variations with respect to water masses with the maximumabundance in KWM and minimum abundance in CWM. The depth-averaged integratedabundance of Synechococcus was about5-fold higher in KWM than in CWM, which mightbe mainly influenced by temperature. In autumn particularly, at several stations in MWM,Synechococcus was resolved as two subgroups. Picoeukaryotes were less affected bywater-mass differences than Synechococcus. Heterotrophic bacteria depth-averaged integrated abundance exhibited the smallest seasonal variations with respect to watermasses. Correlation analysis showed obvious differences between picoplankton abundancesand environmental parameters (temperature, nutrients and chlorophyll a) in three watermasses, indicated the three water masses are likely to have different influences onpicoplankton (particularly Synechococcus) distribution.
     In the Bay of Marseille (NW Mediterranean), the composition of ultraplankton (<10μm) sampled in surface (1m depth) was investigated from May2010to April2012.Ultraplankton (<10μm) composition was resolved in four main groups by flow cytometry,namely Synechococcus, picoeukaryotes, nanoeukaryotes and heterotrophic bacteria.Prochlorococcus was seldom observed in our study, even though in the previous studies,Prochlorococcus has been widely reported. In the Bay of Marseille, Synechococcusdominated the ultraphytoplankton community in terms of cell abundance. Synechococcusshowed a clear seasonal pattern with higher abundance in spring (April and May,>90×10~3cells/mL) and lower abundance in autumn and winter (<15×10~3cells/mL). Synechococcusabundance varied more than40-fold between a spring maximum (May2010,129.59×10~3cells/mL) and winter minimum (March2012,2.29×10~3cells/mL) values. Picoeukaryoteshad a similar distribution pattern as Synechococcus and their high abundance occurred inwinter (January-March,>10.72×10~3cells/mL), slightly earlier than Synechococcus.Nanoeukaryotes exhibited much lower abundance than Synechocccus and picoeukaryotes.The distribution pattern of nanoeukaryotes was similar to that of Synechococcus. FromMay to September in2010, the data of heterotrophic bacteria abundance were missingbecause of technical reasons. Heterotrophic bacteria exhibited pronounced fluctuationsduring the study period and reached their maximum abundance (9.74×10~5cells/mL) inMarch2012. On12July2010, in addition to groups of Synechococcus, Prochlorococcus,picoeukaryotes, and nanoeukaryotes, an unidentified additional cluster was observed.These unknown particles were sorted out by flow cytometry and then observed byepifluorescence microscopy: they appeared to be chain-forming microorganisms, just liketrichomes of some diazotroph cyanobacteria with one heterocyst, but not unambiguouslydistal. The chains observed after cell sorting were not straight, but rather folded. The shortoccurrence of free trichomes in the Bay of Marseille with such a high abundance remains to be explained. High temperature in summer, induced stratification of the water column,and nitrate depletion, may be related to this event. High frequency survey ofultraphytoplankton assemblages at the single cell level appears necessary to observe moreefficiently such phenomenon and document more extensively its full dynamics.
     The seasonal variability of picoplankton abundances in the semi-enclosed Jiaozhou Bay(Yellow Sea) were investigated monthly from January2007to December2010by flowcytometic analysis. Picoplankton community in the studied area was comprised ofSynechococcus, picoeukaryotes and heterotrophic bacteria. Prochlorococcus was notdetected at any station during the whole year. A pronounced seasonality was observed inpicoplankton community structure and abundances inside the bay, in the Bay mouth andoutside the bay. Synechococcus exhibited a clear seasonal pattern, with maximumabundance occurring in August when temperature was highest and minimum abundance inwinter and spring. The maximum abundance of picoeukaryotes occurred slightly earlier(April-July) than Synechococcus. Picoeukaryotes abundance outnumbered Synechococcusin most of the year except in August. Heterotrophic bacteria exhibited two peaks ofabundances in August (major peak) and April (minor peak), which were quite similar asChlorophyll a distribution. Principal Component Analysis (PCA) suggested that seasonalvariations of picoplankton were mainly driven by temperature and nutrient concentrations(NO3-, NO2-, NH4-and SiO32-). The significantly positive correlations betweentemperature/nutrients and picoplankton abundances also implied the importance oftemperature and nutrients in picoplankton distribution in Jiaozhou Bay.
     The ultraphytoplankton composition, abundance and fluorescence in the Bay ofMarseille and Jiaozhou were compared in2011and2012. In the Bay of Marseille andJiaozhou, Synechococcus, picoeukaryotes and nanoeukaryotes were observed in all thesamples. Prochlorococcus was seldom observed in the Bay of Marseille and neverobserved in the Jiaozhou Bay. Besides, in the Bay of Marseille, a possible bloom of freetrichomes was observed in a short period during summer2010. While in the Jiaozhou Bay,an unknown and abundant cluster was obsvered in all the samples. With flow cytometryand scanning electron microscopy, it is difficult to identify this species. In the next step,molecular technique should be introduced for further identification. In the seasonal scale, ultraphytoplankton in the Bay of Marseille and Jiaohzou exhibited quite differentdistribution patterns. In the Bay of Marseille, Synechococcus and nanoeukaryotes presentedthe maximum abundance in spring and minimum abundances in autumn and winter.Picoeukaryotes showed the maximum abundance in winter, slightly earlier thanSynechococcus and nanoeukaryotes. While in the Jiaozhou Bay, Synechococcus abundancewas highest in August (T>24°C) and lowest in winter and spring (T<15°C). Picoeukaryotesand nanoeukaryotes exhibited highest abundances in July, one month earlier thanSynechococcus, and lower abundances in winter and spring, similar as Synechococcus. Itseemed in the oligotrophic Bay of Marseille, nutrient supply is more important forultraphytoplantkon distribution, while in the Jiaozhou Bay, temperature is the keycontrolling factor for ultraphytoplantkon distribution. In both bays, cell abundanceexhibited a clear opposite trend compared to cellular fluorescence.
引文
白洁,张昊飞,李岿然,张经,刘东艳,高冬梅,易齐涛。(2004)胶州湾冬季异养细菌与营养盐分布特征及关系研究。海洋科学,28(1):31-34。
    董逸,刘敏,武洪庆,张翠霞,张文燕,于莹,丰美萍,徐剑虹,肖天。(2011)胶州湾大肠菌群丰度变化及对环境污染的指示。海洋与湖沼,42:684-689。
    季倩。(2008)长江口临近海域水体及底栖微微型浮游生物研究。华东师范大学硕士论文,华东师范大学。
    焦念志等。(2006)海洋微型生物生态学。北京:科学出版社。
    李新正,王洪法,张宝琳。(2005)胶州湾大型底栖动物刺激生产力初探。海洋与湖沼,36(6):527-537。
    梁玉波。(2006)海洋生物生态调查技术规程。北京:海洋出版社。
    梁志辉,朱慧芬,陈九武。(2008)流式细胞术基本原理与实用技术。武汉:华中科技大学出版社。
    刘诚刚,宁修仁,蔡昱明,郝锵,乐凤凤。(2007)南海北部及珠江口细菌生产力研究。海洋学报,29(2):112-122。
    刘瑞玉。(1992)胶州湾生态学和自然资源。北京:科学出版社,4-9。
    孙晟,肖天,岳海东。(2003)秋季与春季东、黄海蓝细菌(Synechococcus spp.)生态分布特点。海洋与湖沼,34(2):161-168。
    肖天,岳海东,张武昌,王荣。(2003)东海聚球蓝细菌(Synechococcus)分布特点及在微食物环中的作用。海洋与湖沼,34(1):33-43。
    肖天,李洪波,赵三军,岳海东。(2004)海洋浮游细菌在碳循环中的作用。海洋科学,28(9):46-49。
    叶思源,袁晓军,丁喜贵等。(2009)胶州湾水生系统中Pb、Zn的分布特征及其在生物体中的浓缩。海洋与湖沼,40(4):400-406。
    于莹,张武昌,赵楠,孙晓霞,张翠霞。(2011)胶州湾浮游纤毛虫丰度和生物量的周年变化。海洋与湖沼,42(5):690-701。
    张洪海,杨桂朋。(2010)胶州湾及青岛近海微表层与次表层中二甲基硫(DMS)与二甲基丙酸(DMSP)的浓度分布。海洋与湖沼,41(5):683-691。
    张红岩,于中华,程俊英,游荣。(2008)2007年8月10~12日青岛地区特大暴雨分析过程。海洋湖沼通报,2:1-7。
    赵三军,肖天,岳海东。(2003)秋季东、黄海异养细菌(Heterotrophic Bacteria)的分布特点。海洋与湖沼,34(3):295-305。
    赵三军,肖天,李洪波,徐剑虹。(2005a)胶州湾聚球藻(Synechococcus spp.);蓝细菌的分布及其对初级生产力的贡献。海洋与湖沼,36(6):534-540。
    赵三军,肖天,李洪波,徐剑虹。(2005b)胶州湾异养细菌及大肠菌群的分布及对陆源污染的指示。海洋与湖沼,36(6):541-547。
    赵苑。(2010)黄海和东海微微型浮游生物分布研究。中国海洋大学博士论文,中国海洋大学。
    Agawin, N. S., Duarte, C. M., Agustí, S.(1998) Growth and abundance of Synechococcussp. in a Mediterranean Bay: seasonality and relationship with temperature. MarineEcology Progress Series,170:45-53.
    Agawin, N. S. R., Duarte, C. M., Agustí, S.(2000a) Nutrient and temperature control of thecontribution of picoplankton to phytoplankton biomass and production. Limnology andOceanography,45:591-600.
    Agawin, N. S. R., Duarte, C. M., Agustí, S.(2000b) Response of MediterraneanSynechococcus growth and loss rates to experimental nutrient inputs. Marine EcologyProgress Series,206:97-106.
    Agawin, N. S. R., Agustí, S., Duarte, C. M.(2002) Abundance of Antarcticpicophytoplankton and their response to light and nutrient manipulation. AquaticMicrobial Ecology,29:161-172.
    Agawin, N. S. R., Duarte, C. M., Agustí, S., McManu, L.(2003) Abundance, biomass andgrowth rates of Synechococcus sp. in a tropical coastal system (Philippines, SouthChina Sea). Estuarine, Coastal and Shelf Science,56:493-502.
    Andersson, A., Haecky, P., Hagstr m,.(1994) Effect of temperature and light on thegrowth of micro-nano-and pico-plankton: impact on algal succession. Marine Biology,120:511-520.
    Aristegui, J., Denis, M., Almunia, J., Montero, M. F.(2002) Water-column remineralisationin the Indian sector of the Southern Ocean during early spring. Deep-Sea Research II,49:1707-1720.
    Binder, B. J., Chisholm, S. W., Olson, R. J., Frankel, S. L., Worden, A. Z.(1996) Dynamicsof picophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific.Deep-Sea Research II,43(4-6):907-931.
    Boras, J. A., Sala, M. M., Vázquez-Domínguez, E., Weinbauer, M. G., Vaqué, D.(2008)Annual changes bacterial mortality due to viruses and protists in an oligotrophiccoastal environment (NW Mediterranean). Environmental Microbiology,11(5):1181-1193.
    Brussaard, C. P. D., Riegman, R., Noordeloos, A. A. M., Cadée, G. C., Witte, H., Kop, A. J.,Nieuwland, G., van Duyl, F. C., Bak, R. P. M.(1995) Effect of grazing, sedimentationand phytoplankton cell lysis on the structure of a coastal pelagic food web. MarineEcology Progress Series,123:259-271.
    Buck, K. R., Chavez, F. P., Campbell, L.(1996) Basin-wide distributions of living carboncomponents and the inverted trophic pyramid of the central gyre of the North AtlanticOcean, summer1993. Aquatic Microbial Ecology,10:283-298.
    Burkill, P. H., Leakey, R. J. G., Owens, N. J. P., Mantoura, R. F. C.(1993) Synechococcusand its importance to the microbial foodweb of the northwestern Indian Ocean.Deep-Sea Research II,40(3):773-782.
    Cai, Y., Ning, X-R., Liu, C-G., Hao, Q.(2007) Distribution pattern of photosyntheticpicoplankton and heterotrophic bacteria in the Northern South China Sea. Journal ofIntegrative Plant Biology,49(3):282-298.
    Calvo-Díaz, A., Morán, X. A. G.(2006) Seasonal dynamics of picoplankton in shelf watersof the soutern Bay of Biscay. Aquatic Microbial Ecology,42:159-174.
    Campbell, L., Liu, H. B., Nolla, H. A., Vaulot, D.(1997) Annual variability ofphytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHAduring the1991-1994ENSO event. Deep-Sea Research I,44(2):167-192.
    Campbell, L., Landry, M. R., Constantinou, J., Nolla, H. A., Brown, S. L., Liu, H-B., Caron,D. A.(1998) Response of microbial community structure to environmental forcing inthe Aarabian Sea. Deep-Sea Research,45:2301-2325.
    Campbell, L., Olson, R. J., Sosik, H. M., Abraham, A., Henrichs, D. W., Hyatt, C. J., Buskey,E. J.(2010) First harmful Dinophysis (Dinophyceae, Dinophysiles) bloom in the US isrevealed by automated imaging flow cytometry. Journal of Phycology,46:66–75.
    Casey, J. R., Lomas, M. W., Mandecki, J., Walker, D. E.(2007). Prochlorococcuscontributes to new production in the Sargasso Sea deep chlorophyll maximum.Geophysical Research Letters,34(10):1-5.
    Castelbon, C.(1972) étude de la circulation des masses d’eau dans le golfe de Marseille.Tethys,4:269-312.
    Charles, F., Lantoine, F., Brugel, S., Chrétiennot-Dinet, M-J., Quiroga, I., Riviére, B.(2005)Seasonal survey of the phytoplankton biomass, composition and production in a littoralNW Mediterranean site, with special emphasis on the picoplanktonic contribution.Estuarine, Coastal and Shelf Science,65:199-212.
    Chen, B-Z., Wang, L., Song, S-Q., Huang, B-Q., Sun, J., Liu, H-B.(2011) Comparisons ofpicophytoplankton abundance, size, and fluorescence between summer and winter innorthern South China Sea. Continental Shelf Research,31(14):1527-1540.
    Chen, T.(2009) Chemical and physical fronts in the Bohai, Yellow and East China seas.Journal of Marine Systems,78:394-410.
    Chiang, K. P., Kuo, M. C., Chang, J., Wang, R. H., Gong, G. C.(2002) Spatial and temporalvariation of the Synechococcus population in the East China Sea and its contribution tophytoplankton biomass. Continental Shelf Research,22:3-13.
    Chisholm S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J., Welschmeyer, N.(1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature,334:340-343.
    Cho, B. C., Azam, F.(1990) Biogeochemical significance of bacterial biomass in theocean’s euphotic zone. Marine Ecology Progress Series,63(2-3):253-259.
    Christaki, U., Giannakourou, A., Wambeke, F. V., Grégori, G.(2001) Nanoflagellatepredation on auto-and heterotrophic picoplankton in the oligotrophic MediterraneanSea. Journal of Plankton Research,23(11):1297-1310.
    Christaki, U., Courties, C., Karayanni, H., Giannakourou, A., Maravelias, C., Kormas,K.Ar., Lebaron, P.(2002) Dynamic characteristics of Prochlorococcus andSynechococcus consumption by bacterivorous Nanoflagellates. Microbial Ecology,43:341-352.
    Davey, M., Tarran, G. A., Mills, M. M., Ridame, C., Geider, R. J., LaRoche, J.(2008)Nutrient limitation of picophytoplankton photosynthesis and growth in the tropicalNorth Atlantic. Limnology and Oceanography,53(5):1722-1733.
    Denis, M., Thyssen, M., Martin, V., Manca, B., Vidussi, F.(2010) Ultraphytoplanktonbasin-scale distribution in the eastern Mediterranean Sea in winter: link tohydrodynamism and nutrients. Biogeosciences,7:2227-2244.
    Diez, B., Pedros-Alio, C., Massana, R.(2001) Study of genetic diversity of eukaryoticpicoplankton in different oceanic regions by small-subunit rRNA gene cloning andsequencing. Applied and Environmental Microbiology,67:2932-2941.
    Dubelaar, G. B. J, Gerritzen, P. L., Beeker, A. E. R., Jonker, R. R., Tangen, K.(1999) Designand first results of Cytobuoy: a wireless flow cytometer for in situ analysis of marine andfresh waters. Cytometry,37(4):247–254.
    Dubelaar, G. B. J and Gerritzen, P. L.(2000) CytoBuoy: a step forward towards using flowcytometry in operational oceanography. Scientia Marina,64(2):255–265.
    Dubelaar, G. B. J., Venekamp, R. R. and Gerritzen, P. L.(2003) Handsfree counting andclassification of living cells and colonies.6th Congress on Marine Sciences, Havana.
    Dubreuil, C., Denis, M., Conan, P., Roy S.(2003) Spatial-temporal variability ofultraplankton vertical distribution in the Antarctic frontal zones within60-66°E,43-46°S. Polar Biology,26:734-745.
    Duhamel, S., Grégori, G., Mauriac, R., Van wambeke, F., Nedoma, J.(2008) A method foranalysing phosphates activity in aquatic bacteria at the single cell level using flowcytometry. Journal of Microbiological Methods,75:269-278.
    DuRand, M. D., Olson, R. J., Chisholm, S. W.(2001) Phytoplankton population dynamicsat the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep-Sea Research II,48:1983-2003.
    Estournel, C., Broche, P., Marsaleix, P., Devenon, J.-L., Auclair, F., Vehil, R.(2001) TheRhone River Plume in Unsteady Conditions: Numerical and Experimental Results.Estuarine, Coastal and Shelf Science,53:25-38.
    Falkowski, P. G., Raven, J. A.(2007) Aquatic Photosynthesis (2ed.). Princeton UniversityPress.
    Ferguson, R. L., Rublee, P.(1976) Contribution of bacteria to standing crop of coastalplankton. Limnology and Oceanography,21(1):141-145.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T., Falkowski, P. G.(1998) Primaryproduction of the biosphere: integrating terrestrial and oceanic components. Science,281:237-240.
    Foster, R. A. and Zehr, J. P.(2006) Characterization of diatom-cyanobacteria symbioses onthe basis of nifH, hetR and16S rRNA sequences. Environmental Microbiology,8:1913-1925.
    Foster, R. A., Subramaniam, A., Zehr, J. P.(2008) Distribution and activity of diazotrophsin the Eastern Equatorial Atlantic. Environmental Microbiology,11:741-750.
    Fuhrman, J. A., Azam, F.(1980) Bacterioplankton Secondary Production Estimates forCoastal Waters of British Columbia, Antarctica, and California. Appl. EnvironmentalMicrobiology,39(6):1085-1095.
    Fuhrman, J. A., Azam, F.(1982) Thymidine incorporation as a measure of heterotrophicbacterioplankton production in marine surface waters: Evaluation and field results.Marine Biology,66(2):109-120.
    Georicke, R., Welschmeyer, N. A.(1993) The marine prochlorophyte Prochlorococcuscontributes signigicantly to phytoplankton biomass and primary production in theSargasso Sea, Deep-Sea Research,40:2283.
    Glover, H. E., Campbell, L., Prézelin, B. B.(1986) Contribution of Synechococcus spp. tosize-fractioned primary productivity in three water masses in the Northwest AtlanticOcean. Marine Biology,91:193-203.
    Glover, H. E., Prézelin, B. B., Campbell, L., Wyman, M.(1988) Pico-and ultraplanktonSargasso Sea communities: variability and comparative distributions of Synechococcusspp. and algae. Marine Ecology Progress Series,49:127-139.
    Goericke, R., Repeta, D. J.(1992) The pigments of Prochlorococcus marinus: the presenceof divinyl chlorophyll a and b in a marine procayotes. Limnology and Oceanography,37(2):425-433.
    Gómez, F., Furuya, K., Takeda, S.(2005) Distribution of the cyanobacterium Richeliaintracellularis as an epiphyte of the diatom Chaetoceros compressus in the westernPacific Ocean. Journal of Plankton Research,27:323-330.
    Grégori, G., Colosimo, A., Denis, M.(2001) Phytoplankton group dynamics in the Bay ofMarseille during a2-year survey based on analytical flow cytometry. Cytometry,44:247-256.
    Grégori, G., Patsekin, V., Rajwa, B., Jones, J., Ragheb, K., Holdman, C., Robinson, J. P.(2012) Hyperspectral cytometry at the single-cell level using a32-channelphotodetector. Cytometry,81A(1):35-44.
    Hammer, P. C., Hollingsworth, J. K.(1955) Trapezoidal methods of approximatingsolutions of differential equations. Mathematical Tables and Other Aids toComputation,9(51):92-96.
    Hasle, G.R.(1978) The inverted microscope method. In: Sournia, A.(eds.), Phytoplanktonmanual. UNESCO, Paris, pp.88-96.
    Hobbie, J. E., Daley, R, J., Jasper, S.(1977) Use of nuclepore filters for counting bacteriaby fluorescence microscopy. Applied and Environmental Microbiology,33:1225-1228.
    Iturriaga, R., Mitchell, B. G.(1986) Chroococcoid cyanobacteria: a significant componentin the food web dynamics of the open ocean. Marine Ecology Progress Series,28:291-297.
    Iturriaga, R., Marra, J.(1988) Temporal and spatial variability of chroococcoidcyanobacteria Synechococcus spp. specific growth rates and their contribution toprimary production in the Sargasso Sea. Marine Ecology Progress Series,44(2):175-181.
    Janson, S., Rai, A. N., Bergman, B.(1995) Intracellular cyanobiont Richelia intracellularis:ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco andglutamine synthetase. Marine Biology,124:1-8.
    Jiao, N-Z., Yang, Y-H., Mann, E., Chisholm, S. W., Chen N-H.(1998) Winter presence ofProchlorococcus in the East China Sea. Chinese Science Bulletin,43(10):877-878.
    Jiao, N-Z., Yang, Y-H.(1999) Distribution of Synechococcus, Prochlorococcus, andpicoeukaryotes in the East China Sea. Bulletin de l’Institut Océanographique.
    Jiao, N-Z., Yang, Y-H., Koshikawa, H., Watanabe, M.(2002a) Influence of hydrographicconditions on picoplankton distribution in the East China Sea. Aquatic MicrobialEcology,30:37-48.
    Jiao, N-Z., Yang, Y-H.(2002b) Ecological studies on Prochlorococcus in China Seas.Chinese Science Bulletin,47(5):1243-1250.
    Jiao, N-Z., Yang, Y-H., Hong, N., Ma, Y., Harada, S., Koshikawa, H., Watanabe, M.(2005).Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea.Continental Shelf Research,25:1265-1279.
    Johnson, P. W., Sieburth, J. M.(1979) Chroococcoid cyanobacteria in the sea: A ubiquitousand diverse phototrophic biomass. Limnology and Oceanography,24:928-935.
    Joint, I. R., Pomroy, A. J.(1983) Production of picoplankton and small nankplankton in theCeltic Sea. Marine Biology,77(1):19-27.
    Joint, I. R., Owens, N. J. P., Pomroy, A. J.(1986) Seasonal production of photosyntheticpicoplankton and nanoplankton in the Celtic Sea. Marine Ecology Progress Series,28:251-258.
    Jones, D. R., Karl, D. M., Laws, E. A.(1996) Growth rates and production of heterotrophicbacteria and phytoplankton in the North Pacific subtropical gyre. Deep-Sea Research I,43(10):1567-1580.
    Katano, T., Kaneda, A., Takeoka, H., Nakano, S.(2005) Seasonal changes in the abundanceand composition of picophytoplankton in relation to the occurrence of “Kyucho” andbottom intrusion in Uchiumi Bay, Japan. Marine Ecology Progress Series,298:59-67.
    Krempin, D. W., Sullivan, C. W.(1981) The seasonal abundance, vertical distribution, andrelative microbial biomass of chroococcoid cyanobacteria at a station in souternCalifornia coastal waters. Canadian Journal of Microbiology,27:1341-1344.
    Krichman, D. L., Keil, R, G., Simon, M.(1993) Biomass and production of heterotrophicbacterioplankton in the oceanic subarctic pacific. Deep-Sea Research I,40:967-988.
    Le Moal, M., Biégala I.(2009) Diazotrophic unicellular cyanobacteria in the northernMediterranean Sea: a seasonal Cycle, Limnology and Oceanography,54:845-855.
    Li, H-B., Xiao, T., Lv, R-H. Effect of the Yellow Sea Cold Water Mass (YSCWM) ondistribution of bacterioplankton.(2006) Acta Ecologica Sinica,26(4):1012-1020.
    Li, H-B, Xiao, T., Lv, R-H., Lin, Y.(2007) Impact of tidal front on the distribution ofbacterioplankton in the southern Yellow Sea, China. Journal of Marine Systems,67(3-4):263-271.
    Li, W. K. W., Subba, Rao. D. V., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B., Platt,T.(1983) Autotrophic picoplankton in the tropical ocean. Science,219(4582):292-295.
    Li, W. K. W.(1989) Shipboard analytical flow cytometry of oceanic ultraphytoplankton.Cytometry,10(5):564-579.
    Li, W. K. W.(1994) Primary production of prochlorophytes, cyanobacteria, and eukaryoticultraphytoplankton: Measurements from flow cytometric sorting. Limnology andOceanography,39(1):169-175.
    Li, W. K. W.(1998) Annual average abundance of heterotrophic bacteria andSynechococcus in surface ocean waters. Limnology and Oceanography,43:1746-1753.
    Lin, D., Zhu, A., Xu, Z., Huang, L., Fang, H.(2010) Dynamics of photosyntheticpicoplankton in a subtropical estuary and adjacent shelf waters. Journal of the MarineBiologial Association of the United Kingdom,90:1319-1329.
    Lindell, D., Post, A. F.(1995) Ultraphytoplankton succession is triggered by deep wintermixing in the Gulf of Aqaba (Eilat), Red Sea. Limnology and Oceanography,40:1130-1141.
    Liu, C-C, Xiang, L-Y., Zhang, H-F, Wang, J-H (2009) Distribution and relationshipbetween heterotrophic bacteria and environmental factors in Changjiang Estuary.Marine Environmental Science,28(Suppl.1):1-4.
    Liu, H-B, Campbell, L, Landry, M. R., Nolla, H. A., Brown, S. L., Constantinou, J.(1998)Prochlorococcus and Synechococcus growth rates and contributions to production inthe Arabian Sea during the1995Southwest and Northeast Monsoons. Deep-SeaResearch II,45(10-11):2327-2352.
    Liu, H-B., Imai, K., Suzuki, K., Nojiri, Y., Tsurushima, N., Saino, T.(2002) Seasonalvariability of picophytoplankton and bacteria in the western subarctic Pacific Ocean atstaions KNOT. Deep-Sea Research II,49:5409-5420.
    Liu, H-B., Chang, J., Tseng, C. M., Wen, L-S., Liu, K-K.(2007) Seasonal variability ofpicoplankton in the Northern South China Sea at the SEATS station. Deep SeaResearch II,54(14-15):1602-1616.
    Lü, X., Qiao, F.(2008) Distribution of sunken macroalgae against the background of tidalcirculation in the coastal waters of Qingdao, China, in summer2008. GeophysicalResearch Letters,35:1-5.
    Lund, J.W.G., Kipling, C., Le Cren, E.D.(1958) The inverted microscope method ofestimating algal numbers and the statistical basis of estimations by counting.Hydrobiology,11:143-170.
    Malkassian, A., Nerini, D., Van dijk, M. A., Thyssen, M., Mante, C., Grégori, G.(2011)Functional Analysis and Classification of Phytoplankton Based on Data from anAutomated Flow Cytometer. Cytometry,79A:263-275.
    Mann, E. L., Ahlgren, N., Moffett, J. W., Chisholm, S. W.(2002) Copper toxicity andcyanobacteria ecology in the Sargasso Sea. Limnology and Oceanography,47:976-988.
    Marie, D., Partensky, F., Simon, N. et al.(2000a) Flow cytometry analysis of marinepicoplankton. In: Diamond R A, DeMaggio S (eds), In living colors: protocols in flowcytometry and cell sorting. Springer-Verlag, New York, pp.421-454.
    Marie, D., Simon, N., Guillou, L. et al.(2000b) DNA, RNA analysis of phytoplankton byflow cytometry. In: Robinson, J. P. Darzynkiewicz, Z. Dean, P. N. Orfao, A.Rabinovitch, P. S. Stewart, C. C. Tanke, H. J. Wheeless, L. L.(eds), Current protocolsin cytometry, Suppl11, Unit11.12. John Wiley&Sons, New York, pp.1-16.
    Marie, D., Zhu, F., Balagué, V., Ras, J.&Vaulot, D.(2006) Eukaryotic picoplanktoncommunities of the Mediterranean Sea in summer assessed by molecular approaches(DGGE, TTGE, QPCR). FEMS Microbiology Ecology,55:403-415
    Martínez-García, S., Fernández, E., álvarez-Salgado, X-A., González, J., L nborg, C.,Mara ón, E., Morán, X-A. G.(2010) Differential responses of phytoplankton andheterotrophic bacteria to organic and inorganic nutrient additions in coastal waters offthe NW Iberian Peninsula. Marine Ecology Progress Series,416:17-33.
    Memery, L., Reverdin, G., Paillet, J., Oschlies, A.(2005) Introduction to the POMMEspecial section: thermocline ventilation and biogeochemical tracer distribution in thenortheast Atlantic Ocean and impact of mesoscale dynamics. Journal of GeophysicalResearch,110, C07S01.
    Mitbavkar, S., Saino, T., Horimoto, N., Kanda, J., Ishimaru, T.(2009) Role of environmentand hydrography in determining the picoplankton community structure of Sagami Bay,Japan. Journal of Oceanography,65:195-208.
    Moisan, T. A., Blattner, K. L., Makinen, C. P.(2010) Influences of temperature andnutrients on Synechococcus abundance and biomass in the southern Mid-Atlantic Bight.Continental Shelf Research,30:1275-1282.
    Moore, L. R., Post, A. F., Rocap, G., Chisholm, S. W.(2002) Utilization of differentnitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus.Limnology and Oceanography,47:989-996.
    Morán, X. A. G.(2007) Annual cycle of picophytoplankton photosynthesis and growthrates in a temperate coastal ecosystem: a major contribution to carbon fluxes. AquaticMicrobial Ecology,49:267-279.
    Mura, M. P., Satta, M. P., Agustí, S.(1995) Water-mass influences on summer Antarcticphytoplankton biomas ans community structure. Polar Biology,15:15-20.
    Murphy, L. S., Haugen, E. M.(1985) The distribution and abundance of phototrophicultraplankton in the North Atlantic. Limnology and Oceanography,30(1):47-58.
    Neveux, J. and Panouse, M.(1987) Spectrofluorimetric determination of chlorophylls andpheophytins. Arch. Hydrobiology,109:567-581.
    Olson, R. J., Frankel, S. L., Chisholm, S. W.(1983) An inexpensive flow cytometer for theanalysis of fluorescence signals in phytoplankton: Chlorophyll and DNA distributions.Journal of Experimental Marine Biology and Ecology,68(2):129-144.
    Olson, R. J., Vaulot, D., Chisholm, S. W.(1985) Marine phytoplankton distributionmeasured using shipboard flow cytometry. Deep-Sea Research I,32(10):1273-1280.
    Olson, R. J., Chisholm, S.W., Zettler, E. R., Armbrust, E. V.(1988) Analysis ofSynechococcus pigment types in the sea during single and dual beam flow cytometry.Deep-Sea Research,35:425-440.
    Olson, R. J., Chisholm, S. W., Zettler, E. R., Altabet, M. A., Dusenberry, J. A.(1990a)Spatial and temporal distribution of prochlorophyte picoplankton in the North AtlanticOcean. Deep-Sea Research I,37:1033-1050.
    Olson, R. J., Chisholm, S. W., Zettler, E. R., Armbrust, E. V.(1990b) Pigments, size, anddistribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnology andOceanography,35(1):45-58.
    Olson, R. J., Shalapyonok, A. and Sosik, H. M.(2003) An automated flow cytometer foranalyzing pico-and nanophytoplankton: FlowCytobot. Deep-Sea Research II,50:301–315.
    Olson, R. J. and Sosik, H. M.(2007) A submersible imaging-in-flow instrument to analyzenano and microplankton: Imaging FlowCytobot. Limnology and Oceanography:Methods,5:193–203.
    Packard, T.T.(1971) The measurement of respiratory electron transport activity in marinephytoplankton. Journal of Marine Research,29:235-244.
    Packard, T. T., Denis, M., Rodier, M., Gardfield, P.(1988) Deep oceanic metabolic CO2production: calculations from ETS activity. Deep-Sea Research II,35:371-382.
    Padmakumar, K. B., Menon, N. R., Sanjeevan, V. N.(2010) Occurrence of endosymbiontRichelia intracellularis (Cyanophyta) within the diatom Rhizosolenia hebetata in theNorthern Arabian Sea. International Journal of Biodiversity and Conservation,2:70-74.
    Paerl, R. W., Johnson, K. S., Welsh, R. M., Worden, A. Z., Chavez, F. P., Zehr, J. P (2011)Differential distributions of Synechococcus subgroups across the California currentsystem. Frontiers in Microbilogy,2:1-22.
    Pan, L-A., Zhang, L-H., Zhang, J., Gasol, J. M., Chao, M.(2005) On-board flowcytometric observation of picoplankton community structure in the East China Seaduring the fall of different years. FMES Microbiology Ecology,52:243-253.
    Pan, L-A., Zhang, J., Zhang, L-H.(2007) Picophytoplankton, nanophytoplankton,heterotrophic bacteria and viruses in the Changjiang Estuary and adjacent coastalwaters. Journal of Plankton Research,29(2):187-197.
    Parsons, T. R., Maita, Y., Lalli, C. M.(1984) A Manual of Chemical and BiologicalMethods for Seawater Analysis. Pergmon Press, Oxford.
    Partensky, F., Blanchot, J., Lantoine, F., Neveux, J.(1996) Vertical structure ofpicophytoplankton at different sites of the tropical northeastern Atlantic Ocean.Deep-Sea Research,43(8):1191-1213.
    Partensky, F., Blanchot, J., Vaulot, D.(1999a) Differential distribution and ecology ofProchlorococcus and Synechococcus in oceanic waters: a review. Bulletin de L’Institutocéanographique,19:457-475.
    Partensky, F., Hess, W. R., Vaulot, D.(1999b) Prochlorococcus, a marine photosyntheticprokaryote of global significance. Microbiology and Molecular Biology Reviews,63:106-127.
    Petrenko, A. A.(2003) Variability of circulation features in the Gulf of Lion NWMediterranean Sea. Importance of inertial currents. Oceanologia Acta26:323-338.
    Petrenko, A. A., Leredde, Y., Marsaleix, P.(2005) Circulation in a stratified and windforcedGulf of Lion, NW Mediterranean Sea: in situ and modeling data. Continental ShelfResearch,25:7-27.
    Petrenko, A., Dufau, C., Estournel, C.(2008) Barotropic eastward currents in the westernGulf of Lion, north-western Mediterranean Sea, during stratified conditions. Journal ofMarine Systems,74:406-428.
    Platt, T., Rao, D. V. S., Irwin, B.(1983) Photosyntesis of picoplankton in the oligotrophicocean. Nature301:702-704.
    Pomar, M. L. C. A., Bruni, V., Maugeri, T. L.(1993) Picoplankton biomass in the Ross Sea(Antarctica). Polar Biology,13:1-6.
    Pomeroy, L. R., Deibel, D.(1986) Temperature regulation of bacterial activity during thespring bloom in Newfoundland coastal waters. Science, NY233:359-360.
    Pradal, M.-A., Millet, B.(2006) Hétérogénéité spatiale du for age du vent: fonctionnementdes récifs artificiels et circulation des eaux dans la baie sud de Marseille. ComptesRendus Biologies,329.
    Reynolds, N.(1973) The estimation of the abundance of ultraplankton. BritishPhycological Journal,8(2):135-146.
    Rocap, G., Larimer, F. W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N. A., Arellano, A.,Coleman, M., Hauser, L., Lindell, D., Post, A. F., Regala, W., Shah, M., Shaw, S. L.,Steglich, C., Sullivan, M. B., Ting, C. S., Tolonen, A., Webb, E. A., Zinser, E. R,Chisholm, S. W.(2003) Genome divergence in two Prochlorococcus ecotype reflectsoceanic niche differentiation. Nature,424:1042-1047.
    Shapiro, H.(2003) Practical flow cytometry. Edition4.
    Shen, Z-L.(2001) Historical changes in nutrient structure and its influences onphytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science,52:211-224.
    Sherr, E. B., Sherr, B. F.(2002) Significance of predation by protists in aquatic microbialfood webs. Antonie Van Leeuwenhoek,81:293-308.
    Shiah, F.-K., Ducklow, H. W.(1994) Temperature regulation of heterotrophicbacterioplankton abundance, production, and specific growth rate in Chesapeake Bay.Limnology and Oceanography,39(6):1243-1258.
    Shiah, F-K., Gong, G-C., Chen, T-Y., Chen, C-C.(2000a). Temperature dependence ofbacterial specific growth rates on the continental shelf of the East China Sea and itspotential application in estimating bacterial production. Aquatic Microbial Ecology,22:155-162.
    Shiah, F-K., Liu, K-K., Kao, S-J., Gong, G-C.(2000b) The coupling of bacterial productionand hydrography in the southern East China Sea: Spatial patterns in spring and fall.Continental Shelf Research,20:459-477.
    Shimada, A., Hasegawa, T., Umeda, I., Kadoya, N., Maruyama, T.(1993) Spatial mesoscalepatterns of West Pacific picophytoplankton as analyzed by flow cytometry: theircontribution to subsurface chlorophyll maxima. Marine Biology,115:209-215.
    Sieburth, J. M., Smetacek, V., Lenz, J.(1978) Pelagic ecosystem structure: Heterotrophiccompartments of the plankton and their relationship to plankton size fractions.Limnology and Oceanography,23(6):1256-1263.
    Sosik, H. M., Olson, R. J., Neubert, M. G. et al.(2003) Growth rates of coastalphytoplankton from time-series measurements with a submersible flow cytometer.Limnology and Ocenaography,48:1756-1765.
    Stockner, J. G., Antia, N. J.(1986) Algal picoplankton from marine and freshwater: amultridisciplinary perspective. Canadian Journal of Fisheries Aquatic Sciences,43:2472-2503.
    Stockner, J. G.(1988) Phototrophic picoplankton: An overview from marine and freshwaterecosystems. Limnology and Oceanography,33:765-775.
    Thyssen, M., Lefèvre, D., Caniaux, G., Ras, J., Fernández, C. I., Denis, M.(2005) Spatialdistribution of heterotrophic bacteria in the northeast Atlantic (POMME study area)during spring2001, Journal of Geophysical Research,110:1-16.
    Thyssen, M., Mathieu, D., Garcia, N., Denis, M.(2008) Short-term variation ofphytoplankton assemblages in Mediterranean coastal waters recorded with anautomated submerged flow cytometer. Journal of Plankton Research,30:1027-1040.
    Thyssen, M., Garcia, N., Denis, M.(2009) Sub meso scale phytoplankton distribution in theNorth East Atlantic surface waters determined with an automated flow cytometer.Biogeosciences,6:569-583.
    Thyssen, M., Beker, B., Ediger, D., Yilmaz, D., Garcia, N., Denis, M.(2010)Phytoplankton distribution during two contrasted summers in a Mediterranean harbour:combining automated submersible flow cytometry with conventional techniques.Environmental Monitoring Assessment,173:1-16.
    Travers, A. and Travers, M.(1972) Données sur quelques facteurs de l’écologie duplancton dans la région de Marseille2. La température, les précipitations, la stabilité etla circulation des eaux. Tethys,4:515-534.
    Tréguer, P and LeCorre, P.(1975) Manual d’analyses des sels nutritifs dan l’eau de mer(Utilisation de l’Autoanalyseur II).(2éme edn.) Laboratoire de Chimie Marine.Université de Bretagne Occidentale. Brest, pp.110.
    Tripp, H. J., Bench, S. R., Turk, K. A., Foster, R. A., Desany, B. A., Niazi, F., Affourtit, J. P.,Zehr, J. P.(2010) Mataboloic streamlining in an open-ocean nitrogen-fixingcyanobacterium, Nature,464:90-94.
    Uehlinger, V.(1964) Etude statistique des méthodes de dénombrement planctonique. Arch.Sci.,17:11-223.
    Uysal, Z and K ksalan, I.(2006) The annual cycle of Synechococcus (cyanobacteria) in thenorthern Levantine Basin shelf waters (Eastern Mediterranean). Marine Ecology,27:187-197.
    Valencia, J., Abalde, J., Bode, A., Cid, A., Fernández, E., González, N.(2003) Variations inplanktonic bacteria biomass and production, and phytoplankton blooms off A Coru a(NW Spain). Scientia Marina,67:143-157.
    van Dongen-Vogels, V., Seymour, J. R., Middleton, J. F., Mitchell, J. G., Seuront, L.(2011)Influence of local physical events on picophytoplankton spatial and temporal dynamicsin South Australian continental shelf waters. Journal of Plankton Research,33(12):1825-1841.
    Vanucci, S., Bruni, V.(1998) Presence or absence of picophytoplankton in the western RossSea during spring1994: a matter of size definition? Polar Biology,20(1):9-13.
    Vaulot, D., Ning, X-R.(1988) Abundance and cellular characteristics of marineSynechococcus spp. in the dilution zone of the Changjiang (Yangtze River, China).Continental Shelf Research,8(10):1171-1186.
    Veldhuis, M. J. W., Kraay, G. W.2000. Application of flow cytometry in marinephytoplankton research: current applications and future perspectives. Scientia Marina.64(2):121-134.
    Walker, T. D., Marchant, H. J.(1989) The seasonal occurrence of ChroococcoidCyanobacteria at an Atlantic Coastal Site. Polar Biology,9:193-196.
    Wang, C.(2010) Primary studies on the harmful effect and mechanisms of Ulva proloferaGreen Tide. Institute of Oceanology, Chinese Academy of Sciences.
    Wang, C., Yu, R-C., Zhou, M-J.(2012) Effects of the decomposinggreen macroalga Ulva(Enteromorpha) prolifera on the growth of four red-tide species. Harmful Algae,16:12-19.
    Wang, P-X.(1999) Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features. Marine Geology,156:5-39.
    Waterbury, J. B., Stanier, R. Y.(1978) Patterns of Growth and Development inPleurocapsalean Cyanobacteria. Microbiology Reviews,42:2-44.
    Waterbury, J. B., Watson, S. W., Guillard, R. R. L., Brand, L. E.(1979) Widespreadoccurrence of a unicellular, marine, planktonic, cyanobacterium. Nature,277:293-294.
    Waterbury, J. B., Watson, S. W., Valois, F. W.(1986) Biological and ecologicalcharacterization of the marine unicellular cyanobacterium Synechococcus. CanadianBulletin of Fisheries and Aquatic Sciences,214:71-120.
    Weinbauer, M. G., Bonilia-Findji, O., Chan, A. M., Dolan, J. R., Short, S. M., Simek, K.,Wilhelm, S. W., Suttle., C.(2011) Synechococcus growth in the ocean may depend onthe lysis of heterotrophic bacteria. Journal of Plankton Research,33(10):1465-1476.
    White, P. A., Kalff, J., Rasmussen, J. B., Gasol, J. M.(1991) The effect of temperature andAlgal Biomass on Bacterial Production and Specific Growth Rate in Freshwater andMarine Habitats. Microbial Ecology,21:99-118.
    Wikner, J., Hagstr m,.(1991) Annual study of bacterioplankton community dynamics.Limnology and Oceanography,36:1313-1324.
    Wommack, K. E. and Colwell, R. R.(2000). Virioplankton: viruses in aquatic ecosystems.Microbiol Molecular Biology Review,64:69-114.
    Worden, A. Z. and Binder, B. J.(2003) Application of dilution experiments for measuringgrowth and mortality rates among Prochlorococcus and Synechococcus populations inoligotrophic environments. Aquatic Microbial Ecology,30:159-174.
    Worden, A. Z., Nolan, J. K., Palenik, B.(2004) Assessing the dynamics and ecology ofmarine picophytoplankton: The importance of the eukaryotic component. Limnologyand Oceanography,49(1):168-179.
    Xiao, T., Wang, R., Yue, H-D.(2001) Heterotrophic bacterioplankton production in the EastChina Sea. Chinese Journal of Oceanology and Limnology,19(2):157-163.
    Yentsch, C. M., Horan, P. K., Muirhead, K., Dortch, Q. and9others.(1983) Flowcytometry and sorting: a powerful technique with potential applications in aquaticsciences. Limnology and Oceanography,28:1275-1280.
    Zeev, E. B., Yogev, T, Man-Aharonovich, D., Kress, N., Herut, B., Béjà., Berman-Frank, I.(2008) Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacteriumRichelia intracellularis in the eastern Mediterranean Sea. The ISME Journal,2:911-923.
    Zehr, J. P., Mellon, M. T., Zani, S.(1998) New nitrogen-fixing microorganisms detected inoligotrophic oceans by amplification of nitrogenase (nifH) genes. Applied andEnvironmental Microbiology,64:3444-3450.
    Zehr, J. P., Waterbury, J. B., Turner, P. J., Montoya, J. P., Omoregie, E., Steward, G. F.,Hansen, A., Karl, D. M.(2001) Unicellular cyanobacteria fix N2in the subtropicalnorth Pacific Ocean, Nature,412:635-638.
    Zehr, J. P., Bench, S. R., Carter, J. B., Hewson, I., Niazi, F., Shi, T., Tripp, H. J., Affourtit, J.P.(2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lackoxygenic photosystem II. Science,322:1110-1112.
    Zhao, L., Denis, M., Barani, A., Beker, B., Manté, C., Xiao, T., Grégori, G.(2012) Possiblebloom of free trichomes in the Bay of Marseille, NW Mediterranean Sea: an anomalyevidenced by flow cytometry. Journal of Plankton Research,34:1-8.
    Zhao, S-J., Wei, J-W., Yue, H-D., Xiao, T.(2010) Picophytoplankton abundance andcommunity structure in the Philippine Sea, western Pacific. Chinese Journal ofOceanology and Limnology,28(1):88-95.
    Zhao, Y., Zhao, L., Xiao, T., Zhao, S-J., Xuan, J-L., Li, C-L, Ning, X-R.(2011) Spatial andtemporal variation of picoplankton distribution in the Yellow Sea, Chinese Journal ofOceanology and Limnology,29(1):150-161.
    Zinger, L., Gobet, A., Pommier, T.(2012) Two decades of describing the unseen majorityof aquatic microbial diversity. Molecular Ecology,21:1878-1896.
    Zubkov, M. V., Quartly, G. D.(2003) Ultraplankton distribution in surface waters of theMozambique Channel-flow cytometry and satellite imagery. Aquatic MicrobialEcology,33(2):155-161.
    Zwirhlmaier, K., Spence, E., Zubkov, M. V., Scanlan, D. J., Mann, N. H.(2009)Differential grazing of two heterotrophic nanoflagellates on marine Synechococcusstrains. Environmental Microbiology,11(7):1767-1776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700