用户名: 密码: 验证码:
基于纳微米复合结构的荧光性质调控和催化剂设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能纳米复合材料具有特殊的光、电、声、热、磁等性能,在纳米复合材料中占据了重要地位。纳微米复合材料在降解有机污染物、净化环境、开发新能源等方面具有重要的意义,制备新型功能纳米复合光催化材料是一项具有理论研究价值和广泛应用前景的重要课题。围绕新型功能纳米复合光催化材料的研究,我们主要从以下几个方面开展了研究工作:
     (1)采用溶胶—凝胶法制备不同氧化物核壳结构的纳米复合材料。特别采用稀土金属中荧光性质较好的铕,磁性较好的锰,作为壳,聚苯乙烯?氧化锌?氧化钇等作为核,对其形貌进行表征,测试其荧光性质,结果发现其结构的改变对荧光性质的影响很微弱。
     (2)采用溶胶—凝胶法制备不同金属掺杂的二氧化硅微球,并对其形貌进行表征,测试其荧光性质。所得产物发生了近红外激发近红外发射的现象,但仍保持二氧化硅微球的主要特性。并且体积分数不同的同种金属其荧光性质和强度不发生改变。
     (3)采用典型的方法制备氧化钇,对其形貌进行表征,测试其荧光性质的变化,发现其具有很好的红色和蓝色的荧光,但是光催化效果不是很好。
     (4)设计一种高效的金属与金属盐复合的光催化剂。采用简单的室温固相法合成银盐并与金属银纳米颗粒复合形成光催化剂。对其形貌进行表征,测试其光催化能力,并讨论其光催化强弱的机理。
     利用扫描电子显微镜(SEM)、荧光光谱(PL)、紫外—可见光谱(UV—VIS)、X—射线衍射(XRD)、X射线光电子能谱等测试手段对产物的形态、结构、荧光发光范围,紫外吸收等性质进行一系列的表征。
Functional nanocomposite materials, by the use of a special light, electricity, sound, heat, magnetic properties etc, have been occupy an important position in the whole nanocomposite materials. The fluorescence and catalytic properties of nano/micro-composites structure materials have much practical significance in the degradation of organic pollutants, cleaning up the environment, exploring new energy sources. Therefore, the preparation of new functional nanocomposite photocatalysis material is one with a value of basic research and application prospects of an important issue. For the research fields, we prepared of different core-shell structure of the oxides, metal-doped silica microspheres, rare earth oxides, metal and metal salts complex.
     (1) The sol - gel method was taken to preparation of core-shell structure of the different oxides in nanocomposites. In particular, the rare earth metal europium has been adopted as a shell. The polystyrene, zinc oxide and yttrium oxide were to be used for nuclear. The core-shell morphology was characterized, tested their fluorescence properties through fluorescence spectrometer. The results showed that the changes of structure had not particularly significant impact in the fluorescence properties or intensity.
     (2) The sol - gel method was taken to preparation of different metal-doped silica spheres. The morphology was characterized, testing its fluorescence properties through fluorescence spectrometer. Because of different metals have different fluorescence properties. The fluorescent of silica microspheres will make it obvious change by doping different metals. The silica microspheres we synthesized gave off a near-infrared emission with the near-infrared excitation. But the doping spheres still maintain the characteristics of silica microspheres. Simultaneously, we proved that the same amount of different types of metals will not change its fluorescent properties.
     (3) We prepared yttria was possessed of fluorescent properties through a typical method. The morphology was characterized and the fluorescence property was monitored by fluorescence spectrometer. The results found that yttria had a very good red and blue fluorescence, but photocatalytic effect was not very good.
     (4) Design an efficient photocatalyst with silver salts. Ag@Ag salts were synthesized via solid-phase reaction at room temperature. The morphology was characterized. Their strength of photocatalytic ability was tested through the UV-VIS spectrometer. The mechanism of catalytic effect was discussed.
     We used scanning electron microscopy (SEM), fluorescence spectrometer (PL), UV—visible spectroscopy (UV-VIS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy etc to detect the product in terms of morphology, structure, fluorescent properties, UV absorption properties etc.
引文
[1]何琳,帅长庚,朱石坚,纳米科技与现代国防[J],海军工程大学学报, 2003, 15(3):30-35
    [2] T Braun, A Schubert, S Zsindely, Nanoscience and nanotechnology on the balance[J], Scientometrics, 1997, 38 (2): 321-325
    [3] H Rohrer, The nanoworld: Chances and challenges[J], Microelectron Eng., 1996, 32 (1-4): 5-14
    [4] L Esaki, The evolution of nanoscale quantum effects in semiconductor physics[J], Nanostruct. Mater. 1999, 12 (1-4): 1-8
    [5] RCN Rao, UG Kulkarni, JP Thomas, et al, Size-dependent chemistry: Properties of nanocrystals[J], Chem-Eur. J., 2002, 8 (1): 29-35
    [6] A T Bell, The impact of nanoscience on heterogeneous catalysis[J], Science, 2003, 299 (5613): 1688-1691
    [7]张立德,牟季美,纳米材料和纳米结构[M],北京:科学工业出版社,2001
    [8]黄德欢,纳米技术与应用[M],北京:中国纺织大学出版社,2001
    [9]张庆文纳米材料研究的新进展及在21世纪的战略地位[J],化工之友,
    [10]张立德纳米材料研究的新进展及在21世纪的战略地位[J],中国粉体技术,
    [11] L J Yang, S Komarneni, R Roy, Gel Adsorption processing for waste solidification in 'NZP' ceramics[J]. Materials Research Society Symnosia Proceedings , 1984. 26: 567-574.
    [12]李东升,吕功煊,李树本,有机-无机纳米复合光氧化铋的应用研究进展电材料研究进展[J],感光科学与光化学,1999,17(4): 364
    [13]李卫,周科朝,杨华,氧化铋的应用研究进展[J],材料科学与工程学报,2004,22(1): 63
    [14] I Sopyan, M Watanabe, Muraswan S, Fujishima A. A film-type photocatalyst incorporating highly active tio2 powder and fluororesin binder: photocatalytic activity and long-term stability [J], J Electroanal Chem, 1996, 415 (1-2): 183
    [15]张立德,纳米材料学[M].沈阳:辽宁科学技术出版社,1994
    [16]朱相丽纳米复合材料的研究进展[R]中国科学院文献情报中心情报研究部
    [17]陈祥凤金属基纳米粉体—聚合物复合材料的制备及微波吸收性能研究[B]大连理工大学硕士学位论文
    [18] Kun P, Zhou L P, Hu A P, et al. Synthesis and magnetic properties of NiSiO2 nanoecmposites [J]. Materials chemistry and physics , 2008, 111, 34-37.
    [19] M Ohmori, E Matijevic. Preparation and properties of uniform coated colloidal partieles VII. Silica on hematite [J]. Journal of colloid and interface science,1992,150:594一594.
    [20] Sheng Y, Zhao J Z, Zhou B, et al. In situ preparation of CaCO3/polystyrene composite nanopartieles [J]. Materials letters, 2006, 60:3248-3250.
    [21]梁玉蓉,谭英杰,PP/戮土纳米复合材料的结构与性能?J].化工学报,2008, 59: 1572 -1576.
    [22]郭宁,张明艳,张晓虹.环氧树脂/有机蒙脱土纳米复合材料的制备与表征[J].绝缘材料,2007,40: 4-7.
    [23] S H Tsai, C L Lee, C W Chao, et al. A novel technique for the formation of carbon-eneapsulated metal nanopartieles on Silicon [J] . Carbon, 2000, 38:775-785.
    [24] R S Ruoff, D C Lorents, et al. Single crystal metals eneapsulated in carbon nanopartieles [J]. Science, 1993, 259: 346-348.
    [25] Dong X L, Zhang Z D, S R Jin, et al. Surface charaeterizations of ultrafine Ni particles [J]. Nanostruetured materials, 1998, 10(4): 585-592.
    [26] Dong X L, Zhang Z D, S R Jin, et al. Charaeterization of ultrafine Fe-Co particles and Fe-Co(C) nanoeapsules [J]. Physical review B, 1999, 60(5): 3017-3020.
    [27]朱军,李毕忠,聚合物/无机纳米复合材料的研究进展[J].化工新型材料,2000,28(10): 3-13.
    [28] T Agag, T Koga, T Takeichi. Studies on Thermal and Me-chanical Properties of Polyimide-clay Nanocomposites [J]. Polymer, 2001, (42): 3399-3408.
    [29] Liang-You Jiang, Chyi-Ming Leu, Kung-Hwa. Silicates/Fluorinated Polyimide Nanocomposites forAdvanced Dielectric Materials Applications[J]. Adv Mater, 2002, 14(6): 426-429.
    [30]许金钩,王尊本,荧光分析法[M],北京:科学出版社,6-10
    [31]李浩,荧光二氧化硅纳米粒子的制备与优化[B],天津大学硕士学位论文
    [32] S G Schulman. Fluorescence and Phosphorescence spectroscopy, Physicochemical Principles and Practice[M]. New York: Oxford, 1977.
    [33]陈国珍,黄贤智,许金钩等,荧光分析法(第二版)[M],北京:北京出版社,1990.
    [34] I B Berlman. Handbook of Fluorescene Spectra of Aromatic Molecules.[M], New York: Academic Pr., 1965.
    [35]黄春辉,李福友,黄岩谊,光电功能超薄膜[M],北京:北京大学出版社,2001.
    [36] F Caruso, H Lichtenfeld, H M?hwald, et al. Electrostatic Self-assembly of Silica Nanoparticle-polyelectrolyte Multilayerson Polystyrene Latex Particles [J]. J. Am.Chem. Soc., 1998, 120: 8523-8524.
    [37] F Caruso, R A Caruso, H M?hwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998, 282: 1111-1113.
    [38] F Caruso, M Spasova, A Susha, et al. Magnetic Nanocomposite Particles and Hollow Spheres Constructedbya Sequential Layering Approach[J]. Chem.Mater. 2001, 13: 109-116.
    [39]韩坤Ⅱ-Ⅵ族半导体材料—二氧化硅复合胶体微粒的制备研究[B]吉林大学博士学位论文
    [40] S W Kim, J P Zimmer, S Ohnishi, et al. Engineering InAsxP1-x/InP/ZnSe III?V Alloyed Core/Shell Quantum Dots for the Near-Infrared [J] . J.Am.Chem.Soc.2005, 127:10526.
    [41] N E Kotelnikova, E F Panarin, N P Kudina, Zh. Obshch.Khim. Temperature-Dependent and Temperature-Independent Terms of the Thermodynamic Parameters of Stepwise Dissociation and Neutralization of Oxygen- and Nitrogen-Bearing Ligands in Aqueous Solution [J]. Russian Journal of Inorganic Chemistry.2005, 50(10):1609-1615.
    [42] N Kawahashi, E Mstijevit. Preparation and properties of uniform coated colloidal particles: V. Yttrium basic carbonate on polystyrene latex [J]. J. Colloid Interface Sci.1990, 138:534.
    [43] C Graf, D L J Vossen, A Imhof, et al. A General Method To Coat Colloidal Particles with Silica [J]. Langmuir 2003, 19:6693.
    [44] A Hasselbarth, A Eychmuller, R Eichberger, et al. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids [J]. J.Phys.Chem.1993, 97: 5333.
    [45] D Schooss, A Mews, A Eychmuller, et al. Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment [J]. Phys.Rev.B. 1994, 49, 17072.
    [46] M T Harrison, S V Kershaw, M G Burt, et al. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence[J]. Mater.Sci.Eng.B. 2000, 69-70, 355.
    [47]黄忠兵,唐芳琼,二氧化硅/聚苯乙烯单分散性核/壳复合球的制备[J].高分子学报,2004,12(6): 836-838.
    [48] A L Linsebigler, G Lu, J J T Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results [J]. Chem.Rev. 1995, 95: 735-758
    [49]范崇政,肖建平,丁延伟,纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,46(4): 265-273
    [50] M. M. Halmann. Photodegradation of Water Plooutants [M]. Florida: CRC Press, 1996
    [51]刘守新,刘鸿,光借化及光电攫化基础与应用,北京:化学工业出版社,2006:51
    [52] Wu W, J M Heman, P Piehat, Catal. 1989, 3: 73
    [53] S N Frank, A J Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J.Phys.Chem. 1977, 81: 1484
    [54] J K Leland, A J Bard, Photochemistry of colloidal semiconducting iron oxide polymorphs[J]. J.Phys.Chem.1987, 91: 5076
    [55]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社,2001
    [56] M A Fox, Nouv. J.Chem.1987, 11,129
    [57] A Fujishima, K Honda.Electrochemical proteolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37- 38.
    [58]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用[M],北京:化学工业出版社2002.
    [59] Zhu Xinle. Photocatalytic degradation of pesticide pyridaben on TiO2 particles [J]. JMC A: Chemical, 2005, 229: 95-105,
    [60] Keiichi Tanakai, Kanjana Padennpole, Teruaki Hisanaga. Photocatalytic degradation of commercial azo dyes[J]. Wat Res, 2000, 34(1): 327- 333.
    [61] R Bandala, Silvia Gelover, Mafia Teresa Leal, Solar photocatalytic degradation of aldrin erlck [J]. Catalysis Today, 2002, (76): 189- 199.
    [62] Jarek Wiszniowski, Didier Robert, Joanna Sunnacz—Gorska.Photocatalytie decomposition of humic acids on TiO2 part I: discussion of adsorption and mechanism[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002,(152): 267-273.
    [63] Sandhya Rabindranathan, Suja Devipriya, Suguna Yesodharail. Photocatalytic degradation of phosphamidon on semiconductor oxides[J]. Journal of Hazard OUS Materials B ,2003, 102: 217- 229.
    [64]井立强,袁福龙,侯海鸽等;ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J],中国科学B辑化学,2004,34(4): 310-314 .
    [65] Seung Bin Park, Yun Chan Kang, Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis [J].J Aerosol Sci, l997,28(1): 473-474.
    [66]张高科,董爱宏,刘颖等;光降解催化剂的研究和应用[J],稀有金属材料与工程,2005,34(3):341-345 .
    [67] T Pham, J B Jackson, N J Halas, et al. Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers [J]. Langmuir, 2002, 18 (12): 4915
    [68] Gao Y, Chen B H, Li H L,et al. Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties[J]. Mater Chem Phys, 2003, 80(1): 348
    [69] I L Radtchenko, G B Sukhorukov, N Gaponik, et al. Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres [J]. Adv Mater, 2001, 13(22):1684
    [70]杨晓玲,姚珂,朱以华,纳米结构的空腔二氧化硅微球的制备与缓释行为[J].无机材料学报,2005,20(6): 1403
    [71] J S Jane, K S Lee.Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization [J]. Chem.Comm. 2002, 10, 1098.
    [72] M Schmidt, F Schwertfeger. Applications for silica aerogel products[J]. Journal of Non-crystalline Solids. 1998, 225,364-368
    [73] Y Z Piao, A Bums, J Kim, et al. Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications[J]. Adv.Funct.Mater. 2008, l8: 1
    [74] K E Shafer-Peltier, C L Haynes, M R Glucksberg, et al. Toward a Glucose BiosensorBased on Surface·Enhanced Raman Scattering[J]. J.Am.Chem.Soc. 2002, 125: 588
    [75] D K Yi, S T Selvan, S S Lee, et al. Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots[J]. J.Am .Chem.Soc. 2005, 127: 4990
    [76] C Z Yu, J Fan, B Z Tian, et al. Morphology Development of Mesoporous Materials:a Colloidal Phase Separation Mechanism[J]. Chemical Material, 2004, 16: 889
    [77] N Winn, S Fan, P R Villeneuve, et al. 3D M etallo-Dielectric Photonic Crystals with Strong Capacitive Coupling between Metallic Islands[J]. Phys.Rev.Lett., 1998, 80: 2829
    [78] Wang Z L, Chan C T, Zhang W Y, et al. Three-dimensional Self-assembly of Metal Nanoparticles: Possible Photonic Crystal with a Complete Gap Below Tl1e Plasma Frequency[J]. Phys.Rev.B ,2001, 64: l13108
    [79] Lu Y, Yin Y, Li Z Y, et al. Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids[J]. Nano Lett. 2002, 2(7): 785
    [80] A Van Blaaderen, A Vrij, Synthesis and characterization of colloidal dispersions of fluorescent,monodisperse silica spheres[J]. Langmuir, 1992, 8: 2921
    [81]苏文斌,谷学新,邹洪等,稀土元素发光特性及其应用[J].化学研究,2001,12(4):55
    [82]苏锵,刘行仁;稀土发光及激光材料[M].北京:冶金工业出版社,1995:124-132.
    [83] Fang Y P, Xu A W, Song R Q, et al. Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires[J]. J Am Chem Soc, 2003, 125(51): 16025
    [84] Bu W B, Hua Z L, Chen H R, et al. Epitaxial Synthesis of Uniform Cerium Phosphate One-Dimensional Nanocable Heterostructures with Improved Luminescence[J]. J Phys Chem B, 2005, 109(30): 14461
    [85] Di W H, Wang X J, Chen B J, et al. Effect of OH- on the Luminescent Efficiency and Lifetime of Tb3+-Doped Yttrium Orthophosphate Synthesized by Solution Precipitation [J]. J Phys Chem B, 2005, 109(27): 13154
    [86] K KSmpe, H Borchert, J Storz, et al. Green-Emitting CePO4: Tb/LaPO4 Core-Shell Nanoparticles with 70% Photoluminescence Quantum Yield[J]. Angew Chem Int Ed, 2003, 42(44): 5513
    [87] Xia Y, Yang P, Sun Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Adv. Mater. 2003, 15(5): 353
    [88]肖林久,孙彦彬,邱关明等,纳米稀土发光材料的研究进展[J].稀土,2002,23(4): 46
    [89]孙进高,王广凤,尉艳等,稀土纳米材料的液相制备方法及应用[J].稀有金属快报,2005,24(11): 1
    [90]扈庆,甘树才,洪广言,La4-x(P2O5)3:Eux的合成及光谱性质[J].应用化学,2002,19(8): 804
    [91] R M Piticescu, R R Piticescu, D Taloi, et al. Hydrothermal synthesis of ceramic nanomaterials for functional applications[J]. Nanotechnology, 2003, 14, 312-317.
    [93] R Ivanic, V Breternitz, V Tvarozek, et al. Sputtered yttrium oxide thin films appropriate for electrochemical sensors [J]. VACUUM. 2001, 61, 229-234.
    [94] Wen L, Chen P, Gu M Y, et al. Effect of TMAH on rheological behavior of SiC aqueous suspension[J]. J. Eur. Ceram. Soc. 2004, 24, 2679-2684.
    [95] V de Castro, T Leguey, M A Monge, et al. Mechanical Dispersion of Y2O3 Nanoparticles in Steel EUROFER 97: Process and Optimisation [J]. J Nucl Mater, 2003, 322: 228–34.
    [96] J Feng, G M Shan, A Maquieira, et al. Functionalized Europium Oxide Nanoparticles Used as a Fluorescent Label in an Immunoassay for Atrazine [J]. Anal. Chem. 2003, 75, 5282–5286.
    [97] Wang S Y, Lu Z H, Preparation of Y2O3 Thin Films Deposited by Pulse Ultrasonic Spray Pyrolysis[J]. Mater. Chem. Phys. 2002, 78, 542–5.
    [98] C B Willingham, J M Wahi, P K Hogan, et al. Densi.cation of Nano-Yttria Powders for IR Window Applications[J]. Proc. SPIE, 2003, 5078, 179–88.
    [99] H Chang, I W Lenggoro, K Okuyama, et al. Continuous Single- Step Fabrication of Nonaggregated, Size-Controlled and Cubic Nanocrystalline Y2O3: Eu+3 Phosphors using Flame Spray Pyrolysis[J]. Jpn. J. Appl. Phys. Part 1, 2004, 43, 3535–9.
    [100] Xie J P, Lee J Y, Wang D I C, et a1. Identification of Active Biomolecules in the High-Yield Synthesis of Single-Crystalline Gold Nanoplates in Algal Solutions[J]. Small, 2007, 3(4):672
    [101] Zhang J, I Gryczynski, Z Gryczynski, et a1. Dye-Labeled Silver Nanoshell?Bright Particle[J]. J Phys Chem B, 2006, 1l0(18): 8986
    [102] Wang Q Q, Han J B, Gong H M, et al. Linear and Nonlinear Optical Properties of Ag Nanowire Polarizing Glass[J]. Adv Funct Mater, 2006, 16(18): 2405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700