用户名: 密码: 验证码:
直流磁控溅射工艺及Zr-Ni、Zr-Cu非晶合金溅射膜结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁控溅射技术作为一种高速、低温溅射镀膜方法,目前已经在镀膜领域占有举足轻重的地位。非晶合金溅射薄膜凭借其诸多优良性能,在作为功能材料方面具有广阔的应用前景。本文以Zr、Cu、Ni及它们间的合金为主要研究对象,具体研究了直流磁控溅射镀膜工艺中工作气体压强、溅射功率、溅射方式与膜层沉积量之间的关系以及反溅射和负偏压对膜基间结合力、膜层生长方式的影响;利用磁控溅射工艺制备了一系列Zr基非晶合金薄膜,对其成分、结构、热稳定性等进行了研究,并与液淬非晶进行了初步对比;另外,还进行了多层溅射膜间的固态非晶化反应(SSAR)来制备非晶合金层的初步探索。
     使用称重法对一系列单元(Ni、Cu)和二元(Zr-Ni、Zr-Cu)合金薄膜的沉积量进行测量记录,分析了溅射膜沉积量随工作气体压强、溅射功率的变化规律。结果表明,由于工作气体压强对电子与气体分子以及对靶材原子与气体分子碰撞几率的影响,使得膜层的沉积量不是随着工作气体压强的升高单纯地呈下降趋势,而是有一最佳压强范围;随着溅射功率的增大,膜层沉积量增加;在溅射功率相等的条件下,由于辉光放电电场叠加增大了工作气体的离化率,共溅膜比分层溅射膜的沉积量大得多。
     采用胶粘带拉剥法测试了膜基间的结合力,使用SEM观察了Cu膜的组织和Al/Cu的界面形貌,发现镀Cu前对Al箔进行反溅射和溅射沉积过程中对工件施加负偏压都可有效地提高膜基间的结合力,且施加较高负偏压比镀前反溅射对膜层质量影响更大。分析认为,镀Cu前反溅射,可有效地去除Al箔表面的氧化膜,使Al箔表面得到净化,磁控溅射沉积过程中对工件施加较高负偏压将产生辉光放电,使工艺转化成溅射离子镀,在Cu膜与Al箔基体之间形成明显的“伪扩散层”,从而获得与基体结合良好、晶粒细小、致密的镀层。
     采用两靶共溅镀膜工艺,制备了不同成分的Zr-Ni合金溅射膜,利用EDS和XRD对其进行了成分和结构分析,结果显示,在较宽的成分范围内,制备的合金溅射膜均为非晶态,且随着成分的变化,非晶漫射峰的数量、强度和位置逐渐发生变化,表现出与液淬非晶合金的不同。分析认为,X射线衍射图上不同的非晶漫射峰,分别富集着Zr原子和Ni原子,这极有可能与两种溅射原子在飞行后期和到达基底表面初期趋向当时温度下的平衡相有关,同时在气相直接凝聚成固相的剧冷条件下,两种溅射原子没有充分的时间进行长程扩散,会分别呈团簇状沉积在基体上,且相互嵌入抑制扩散和重排,造成了微观尺度上的偏聚;漫射峰中心位置的偏移和峰强度的改变与非晶膜此时形成的结构有关。
     采用三靶共溅镀膜工艺,制备了Zr-Ni-Cu合金溅射膜。用Ni元素部分取代Cu元素,使得X射线衍射图中漫射峰更加弥散,而用Cu元素部分取代Ni元素,与原来的Zr-Ni二元非晶膜相比,发现其X射线衍射图中漫射峰的强度增大。分析认为,尽管Cu和Ni在尺寸上相近,但由于Cu原子和Zr原子之间、Ni原子和Zr原子之,间形成非晶合金的能力不同,Cu和Ni因此不能互相等同取代,同时Cu和Ni相互部分取代后,合金系的成分也会随之改变,这些都会导致溅射合金膜漫射峰的变化。
     使用差示扫描量热仪对不同基底温度溅射沉积而成的Zr-Cu非晶合金膜进行热分析,发现基底水冷的非晶合金膜DSC曲线上除高温处有一个晶化放热峰外,在低温处还有一个放热峰,通过XRD分析后仍不能判定其起因。采用以上同样的实验方法,用典型的Fe基非晶合金(Fe78Si13B9)溅射膜对比分析确定Zr-Cu非晶合金膜DSC曲线上低温处放热峰的成因。结果显示,Fe78Si13B9非晶合金溅射膜同样在其DSC曲线上呈现出低温处放热峰。分析认为,两非晶合金薄膜DSC曲线上低温处放热峰是合金原子间非晶化反应的结果。通过Kissinger方程计算合金膜的晶化激活能,得出非水冷基底非晶合金膜比水冷基底非晶合金膜的晶化激活能稍高,但它们均比液淬非晶合金的稳定性低。
     磁控溅射制备了Zr/Ni/Zr/Ni和Zr/Cu/Zr/Cu多层膜,利用固态非晶化反应(SSAR)原理制备非晶合金层。SEM观察发现,在Zr/Cu/Zr/Cu多层膜中得到了非晶合金层,对应其扩散退火参数为260℃、8h,并通过固态非晶化反应实验对非晶合金的连接进行了探索。
Magnetron sputtering technique is a high speed and hypothermic method of sputtering film, which occupies a decisive position in the field of coating now. Amorphous alloys films have wide application prospect as functional materials for the special excellent properties of amorphous alloys. In this paper, regarding the Zr, Cu, Ni and their alloys as the main research object, the relationships between the deposition amount of sputtered films and the working gas pressure, sputtering power and sputtering method were studied separately. The effects of ions bombardment on the substrate and negative bias on adhesive force and growth pattern of thin films were also studied. The Zr-Ni, Zr-Cu binary amorphous alloy films were prepared by magnetron sputtering. The compositions, microstructures and thermal stability of films were researched and primarily compared with liquid quenched amorphous. It also presents the works on the exploring of preparing amorphous alloy by means of solid state amorphous reaction (SSAR) for multilayer sputtered films.
     The deposition amount of Zr, Cu single-metal films and Zr-Ni, Zr-Cu binary alloy films were measured using weighing method. The relationships between the deposition amount of sputtered films and the working gas pressure and sputtering power were analyzed. The results show that due to the impact of working gas pressure on electrons and gas molecules as well as on target atoms and gas molecules, the deposition amount of sputtered films does't decrease simply with the increasing of working gas pressure, but there is a best pressure range. The deposition amount of sputtered films increases with the increasing of sputtering power. Due to the superposition of glow discharge field increasing the ionization proportion of working gas pressure, the deposition amount of sputtered films by co-sputtering process is much larger than that of by layered sputtering process under the same sputtering power.
     The adhesive force of films on the substrate was measured with the adhesive tape pulling and stripper method. The microstructure of Cu film and the Al/Cu interface morphology were observed using the scanning electron microscopy. It is found that the ions bombardment on the substrate (Al foil) before the Cu film depositing and the bias voltage acted to the substrate during magnetron sputtering can improve the adhesive force of films on the substrate availably. The analysis indicates that ions bombardment on the substrate before the Cu film depositing can remove the oxide film from the surface of Al foil effectively, thereby the surface is cleaned. During magnetron sputtering, the higher bias voltage acted to substrate is able to induce a glow discharge and form magnetron sputtering ion plating, so as to form the "pseudo-diffusion layer" between the Cu film and the Al foil substrate and obtain the compact film that possess better adhesion and finer crystal grains.
     The Zr-Ni alloy sputtering films were made by magnetron co-sputtering technique with two targets at different sputtering powers. The compositions and microstructures were analyzed by EDS and XRD. The experimental results indicate that the films are amorphous basically in a wide composition range. The number, strength and location of the diffuse peaks change with compositions gradually, which is different from liquid quenched amorphous alloys in some aspects. It is considered through analysis that the two diffuse peaks in the XRD patterns are enriched by Zr and Ni atoms respectively. This is very likely to be related to the atoms trending to the equilibrium phase in the later period of flying and the initial stage of arriving substrate. The atoms do not have enough time to conduct long-range spread and are deposited on glass substrate presenting clusters-like when the gas phase turns into solid phase under quench conditions. They embed in each other and restrained diffusion and rearrangement, resulting in the segregation on a microscopic scale. The diffuse peak central position shifting and the strength increasing are related to the structures of amorphous films.
     The Zr-Ni-Cu alloy sputtering films were obtained by magnetron co-sputtering technique with three targets. It is found that the addition of Ni made the peak more diffuse, however, compared to the Zr-Ni binary amorphous alloy films, the diffuse peak strength increases on the X-ray diffraction patterns when the Cu atoms were used to replace the Ni atoms. Through analysis, the Cu, Ni and Zr atoms can not replace each other due to the glass-forming ability of Zr-Ni and Zr-Cu are different, although the atomic sizes of the Cu and Ni are similar. At the same time, the alloy composition changes when Cu, Ni and Zr atoms partially replace each other. These may result in the change of diffuse peak strength.
     The thermal analysis for Zr-Cu amorphous alloy sputtering films was conducted using differential scanning calorimeter (DSC). For the amorphous alloy film sputtered under cooling conditions, the obvious exothermic peaks are observed respectively at the high and low temperature in the DSC curves. The reason was unable to be determined by XRD analysis. In order to find the reason of the obvious exothermic peaks appearing in the DSC curves at the low temperature, the same experimental method above was applied to Fe-based (Fe78Si13B9) amorphous alloy sputtering films. The results show that the exothermic peaks also appeare at the low temperature in the DSC curves of Fe78Si13B9 amorphous sputtering film. The analysis indicates that the exothermic peaks appearing at the low temperature is due to the amorphous reaction among atoms. According to Kissinger equation, the crystallization activation energies of the Zri=0.40Cui=0.25 alloy films sputtered under cooling and non-cooling conditions have been calculated. The latter is slightly higher than the former, but their thermal stability are lower than that of the liquid quenched amorphous alloy.
     The Zr/Ni/Zr/Ni and Zr/Cu/Zr/Cu multilayered films were prepared by magnetron sputtering technique. Amorphous alloy layer is prepared based on the principle of solid state amorphous reaction (SSAR). Using SEM, a significant amorphous layer was found in the Zr/Cu/Zr/Cu multilayered films, corresponding to the parameters of diffusion annealing 260℃, 8h. Besides, the amorphous joining was explored by means of SSAR method.
引文
[1]Kelly P. J., Arnell R. D.. Magnetron sputtering:a review of recent developments and applications[J]. Vacuum,2000,56(3):159-172
    [2]Dong Y. S., Zhao W.J., Li Y. R., et al. Influence of silicon on the microstructure and mechanical properties of Zr-Si-N composite films[J]. Appl. Surf. Sci.,2006,252(14):5057-5062
    [3]肖兆娟,程晓农,严学华.磁控溅射法制备钨酸锆薄膜[J].硅酸盐学报,2006,34(3):314-317
    [4]杨志远,熊金平,左禹.工艺参数对TiN薄膜光学性能的影响[J].热加工工艺技术与材料研究,2008,(8):96-98
    [5]祁俊路,李合琴.射频磁控反应溅射制备Al203薄膜的工艺研究[J].真空与低温,2006,12(2):75-78
    [6]徐炜新,程新利,金惠娟,等.Fe-Zr-B非晶磁性薄膜的制备与研究[J].金属功能材料,2002,9(4):24-29
    [7]Sun L., He J. H., Sheng H. W., et al. Magnetic properties of amorphous Ni60Ag40films[J]. J. Non-Cryst. Solids,2003,317(1-2):164-168
    [8]Khoshman J.M., Ingram D.C., Kordesch M.E.. Growth and optical properties of amorphous Be0.13Zn0.38 O0.49 thin films prepared by radio frequency magnetron sputtering[J]. J. Non-Cryst. Solids,2008, 354(19-25):2783-2786
    [9]徐万劲.磁控溅射技术进展及应用(下)[J].现代仪器,2005,(6):5-10
    [10]戴达煌,周克崧,袁镇海,等.现代材料表面技术科学[M].北京:冶金工业出版社,2004:403-451
    [11]胡传忻等.表面处理手册[M].北京:北京工业大学出版社,2004:52-70
    [12]赵化侨.等离子体等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993:189-207
    [13]徐万劲.磁控溅射技术进展及应用(上)[J].现代仪器,2005,(5):1-5
    [14]陈荣发.电子束蒸发与磁控溅射镀铝的性能分析研究[J].真空,2003,(2):11-15
    [15]李德柱.磁控溅射法制备W03基薄膜及相关物理性能的研究[D].成都:西南交通大学,2008.
    [16]李小换.ZnO和AlN薄膜结构及其性能的研究[D].北京:北京工业大学,2003.
    [17]孙希泰,等.材料表面强化技术[M].北京:化学工业出版社,2005:123
    [18]Arnell R. D., Kelly P. J.. Recent advanced in magnetron sputtering[J]. Surf. Coat. Technol.,1999,112 (1-3):170-176
    [19]董骐,范毓殿.非平衡磁控溅射及其应用[J].真空科学与技术,1996,16(1):51-57
    [20]白力静,李玉庆,肖继明,等.闭合场非平衡磁控溅射离子镀技术在切削刀具上的应用[J].西安 理工大学学报,2006,22(1):20-23
    [21]Jin-Hyo Boo, Min Jae Jung, Heon Kyu Park, et al. High-rate deposition of copper thin films using newly designed hifh-power magnetron sputtering source[J]. Surf. Coat. Technol.,2004,188-189:721 727
    [22]刘瑞鹏,李刘合.磁控溅射镀摸技术简述[J].中国青年科技,2006,(8):56-59
    [23]于人洋,马胜歌,张以忱,等.非平衡磁控溅射结合电弧离子镀制备掺杂DLC硬质膜性能研究[J].中国表面工,2006,19(6):43-46
    [24]赵磊.磁控溅射制备掺杂氧化锌薄膜晶体结构与光电性能矿究[D].北京:北京理工大学,2008
    [25]徐滨(?),朱绍华.表面工程的理论与技术[M].北京:国防工业出版社.1999,344-350
    [26]金桂,周继承.射频磁控溅射SiO2薄膜的制备与性能研究[J].武汉理工大学学报,2006,28(8):12-15
    [27]惠迎雪,杭凌侠,徐均琪.磁控溅射薄膜沉积速率的研究[J].西安工业学院报,2005,25(4):307-310
    [28]Koski K., Holsa J., Juliet P.. Deposition of aluminum oxide thin films by reactive magnetron sputtering [J]. Surf. Coat. Technol.,1999,116-119:716-720
    [29]邱轶,万红,刘吉燕,等.磁控溅射制备SmCo薄膜的工艺及磁性研究[J].国防科技大学学报,2003,25(5):26-30
    [30]马冗远,王德苗,等.工艺参数对磁控溅射金属化薄膜性能的影响[J].真空,2008,45(4):70-74
    [31]刘宗贺,方雪冰,刘波,等,直流磁控溅射铬膜附着性的影响因素研究[J].实验科学与技术,2006,(1):31-32
    [32]Guilbaud-Massereau V., Celerier A., Machet J.. Study and improvement of the adhesion of chromium thin-films deposited by magnetron sputtering[J]. Thin Solid Films,1995,258(1-2):185-193
    [33]崔江涛,田修波,杨(?)勤.偏压对磁控溅射沉积铌膜表面性能的影响[J].真空科学与技术学报,2008,8(1):67-71
    [34]张西鹏,李伟,范洪远.工艺条件对溅射薄膜附着性的影响[J].金属热处理,2003,28(1):29-31
    [35]Lefakis H., Ho P. S.. An in situ Auger Electron Spectroscopy Study of Chromium Thin Film Coverage of Copper Surfaces:Effects of Surface Morphology, Temperature and Environment[J]. Thin Sohd Films,1991,200(1):67-76
    [36]潘永强,Yin Y..直流磁控溅射Cr/Cr2O3金属陶瓷选择吸收薄膜的研究[J].真空科学与技术学报,2006,26(6):517-521
    [37]熊小涛,阎良臣,杨会生,等.射频反应磁控溅射制备氧化铬薄膜技术及性能[J].北京科技大学学报,2005,27(2):205-212
    [38]牟宗信,李国卿,郭宝海.Ti-Ni非晶合金贮氢薄膜制备及电化学性能研究[J].金属功能材料,1998,6(1):25-28
    [39]孙金池,刘正堂,李阳平,等.射频功率对Cu-A g导电薄膜结构和性能的影响[J].西北工业大学学报,2005,23(6):693-696
    [40]周继承,郑旭强.磁控溅射SiC薄膜及其光电特性研究[J].功能材料.2007,38(2):190-192
    [41]F.E.卢博斯基博士 主编,柯成,唐与谌,罗阳,何开元译,非晶态金属合金[M].北京:冶金工业出版社,1989:1-10
    [42]Cohen M. H., Turnbull D.. Molecular transport in liquids and glasses[J]. J. Chem, Phys.,1959,31(5): 1164-1169
    [43]Duwez P., Willens R. H., Klements W. J.. Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys [J]. J. Appl. Phys.1960,31(3):1136-1137
    [44]Johnson W. L.. Bulk metallic glasses-a new engineering material[J]. Curr. Opin. Solid State Mater. Sci, 1996,1 (3):383-386
    [45]国家自然科学基金委员会工程与材料学部,金属材料科学[M].北京:科学出版社,2006:61-63
    [46]Inoue A., Kita K., Zhang T., et al. An Amorphous La55A125Ni20 Alloy Prepared by Water Quenchin [J]. Mater.Trans.JIM.,1989,30(9):722-725
    [47]Peker A., Johnson W. L.. A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl.Phys. Lett.,1993,63(17):2342-2344
    [48]Tang M. B., Zhao D. Q., Pan M. X., et al. Binary Cu-Zr Bulk Metallic Glass[J]. Chin. Phys. Lett.,2004, 21(5):901-903
    [49]Wang D., Li Y., Sun B. B., et al. Bulk Metallic Glass Formationin the Binary Cu-Zr System[J]. Appl. Phys. Lett.,2004,84(20):4029-4031
    [50]He Y., Schwarz R. B., Archuleta J. I.. Bulk glass formation in the Pd-Ni-P system[J]. Appl. Phys. Lett., 1996,69(13):1861-1863
    [51]Bains A. S., Gordon C. A., Granato A.V., et al. The Shear Modulus of Bulk Amorphous Pd40Ni40P20 and Its Relation to Viscosity and Specific Heat[J]. J. Alloys Compd.,2000,310 (1-2):20-23
    [52]Schroers J., Johnson W. L.. Highly processable bulk metallic glass-forming alloys in the Pd-Co-Ni-Cu-P system[J]. Appl.Phys.Lett.,2004,84(18):3666-3668
    [53]Tan H., Zhang Y., Ma D., et al. Optimum glass formation at off-eutectic composition and its relation to skewed eutectioc coupled zone in the La based La-Al-(Cu,Ni)pseudo ternary system[J]. Acta Mater., 2003,5:(15):4551-456:
    [54]Inoue A., Zhang T., Takeuch:A., et al. Hard magnetic bulk amorphous Nd-Fe-Al alloys of 12mm in diameter made by suction casting[J].Mater. Trans. JIM,1996,37(4):636-640
    [55]Lu Z. P., Liu C. T., Thompson J. R., et al. Structural amorphous steels[J). Phys. Rev. Lett.,2004,92(24): 245503-(14)
    [56]Ponnambalam V., Poon S. J., Shiflet G. J.. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter[J]. J. Mater. Res.,2004,19(5):1320-1323
    [57]Xu D., Duan G., Johnson W. L.. Unusual glass-forming ability of an bulk amorphous alloys based on ordinary metal copper[J]. Phys. Rev. Lett.,2004,92(24):245504-(1-4)
    [58]Guo F., Wang H. J., Poon S. J.. et al. Ductile titanium-based glassy alloy ingots[J]. Appl. Phys. Lett., 2005,86 (9):091907-(1-3)
    [59]Men H., Kin W. T., Kim D. H.. Fabrication and mechanical properties of Mg65Cui5Ag5Pd5Gd10 Bulk metallic glass[J]. Mater. Trans.,2003,44 (10):2141-2144
    [60]Choi-Yim H., Busch R., Koster U., et al. Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites [J]. Acta Mater.,1999,47(8):2455-2462
    [61]瘳西平,陈建红.世纪新材料-非晶态金属,重庆工商大学学报(自然科学版)[J].2005,22(5):501-504
    [62]孙桂琴,喻晓军.非晶及纳米晶合金研究进展[J].金属功能材科,1999,6(4):156-160
    [63]潘钰娴,谢志余.块体非晶合金研究进展[J].机械制造与研究,2004,33(1):24-26
    [64]王煦,娄德诚,高吉军,等.Zr基大块非晶合金制备轴承滚动体的应用研究[J].燕山大学学报,2005,29(2):169-173
    [65]胥锴,吴子平,刘萍.非晶态金属材料研究现状与前景[J].广东有色金属学报,2005,15(4):30-36
    [66]Wei F. L., Wu D. Q., Zheng D. S., et al. Investigation of RF-sputtered Fe-Ta-N thin films[J]. Mater. Sci. Eng.B,2000,68(3):156-160
    [67]邱轶,万红,刘吉燕,等.磁控溅射制备SmCo薄膜的工艺及磁性研究[J].国防科技大学学报,2003,25(5):26-30
    [68]Hidetoshi Miyazaki. Fabrication of YbAl3 film via annealing amorphous Yb-Al film deposited by magnetron sputtering[J]. Vacuum.2008.83(2):416-41S
    [69]盛殊然,廖显伯,孔光临.高光敏性高稳定性氢化非晶硅薄膜的研制[J].中国科学(A辑),1997,27(7):653-658
    [70]牟宗信,李国卿,郭宝海Ti-Ni非晶合金贮氢薄膜制备及电化学性能研究[J].金属功能材料,1998,6(1):25-28
    [71]杨武保,杜建,赵震,等.非平衡磁控溅射法Ti/TiO2薄膜的制备及分析[J].真空科学与技术学报,2006,26(2):137-141
    [72]Dudonis J., Brucas R., Miniotas A.. Synthesis of amorphous Zr-Cu alloys by magnetron co-sputtering co-sputtering[J]. Thin Solid Films.1996,275 (1-2):164-167
    [73]刘红飞,程晓农,徐桂芳,等.RF磁控溅射制备Al203薄膜及其介电性能研究[J].材料开发与应用,2007,22(1):5-8
    [74]张国庆,姚素薇,郭鹤桐.单晶硅上电沉积Ni-P非晶薄膜及其表征化工冶金[J].1997,18(2):176-179
    [75]Chu C.W., Jason S.C. Jang, Chen G J., et al. Characteristic studies on the Zr-based metallic glass thin film fabricated by magnetron sputtering process[J]. Surf. Coat. Technol.,2008,202(22-23):5564-5566
    [76]何乐年,徐进,王德苗.反应RF磁控溅射法制备非晶氧化硅薄膜及其特性研究[J].真空,2001,(3):16-19
    [77]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社.1984:281-296
    [78]Debenedetti P. G, Stillinger F. H.. Supercooled liguids and the glass transition. Nature,2001,410: 259-267
    [79]徐勇.Zr-Cu非晶合金薄膜的制备及其晶化过程的研究[D].秦皇岛:燕山大学,2005
    [80]NAGEL S. R., TAUC J.. Nearly-free-electron approachto the theory of metallic glass alloys[J]. Phys. Rev. Lett.,1975,35(6):380-383
    [81]TAKEUCHI A., INOUE A.. Calculation of mixing enthalpy and mismatch entropy for ternary amorph-ous alloys [J]. Mater. Trans. JIM,2000,41 (11):1372-1378
    [82]李福山,张秋美,侯军才.合金非晶形成能力影响因素探讨[J].郑州大学学报(工学版),2006,27(4):39-43
    [83]Inoue A., Negishi T., M.Kimura H., et al. High Packing Density of Zr and Pd-Based Bulk Amorphous Alloys[J]. Mater. Trans. JIM,1998,39(2):318-321
    [84]张政军.固态薄膜中亚稳相得形成及理论研究[D].北京:清华大学,1995
    [85]Joysurya Basu, Murty B.S., S. Ranganathan. Glass forming ability:Miedema approach to (Zr, Ti, Hf)- (Cu, Ni)binary and ternary alloys[J]. J. Alloys Compd.,2008,465 (1-2):163-172
    [86]Schwarz R. B., Johnson W. L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals[J]. Phys. Rev. Lett.,1983,51(3)415-418
    [87]Seyffert M., Siber A., Ziemann P.. Multiple low-temperature interface reactions:An alternative route into the amorphous state of metallic alloys[J]. Phys. Rev. Lett.,1991,67(21):3792-3795
    [88]Meng W. J., Fultz B., Ma E., et al. Solid-state interdiffusion reaction in Ni/Ti and Ni/Zr multilayered thin films [J]. Appl. Phys. Lett.,1987,51(9):661-663
    [89]Zhang Z. J., Bai H. Y., Qin Q. L., et al. Phase evolution upon ion mixing and solid-state reaction and thermodynamic interpretation in the Ni-Nb system[J]. J. Appl. Phys.,1993,73(4):1702-1710
    [90]Atzmon M., Verhoeven J. D., Gibson E. D., et al. Formation and growth of amorphous phases by solid-state reaction elemental composites prepared by cold working[J]. Appl. Phys. Lett.,1984,45(10): 1052-1053
    [91]Cooper R. J., Balogh J., Kemeny T., et al. A study of amorphization in Fe-B multilayers by neutron refletometry[J]. Mater. Sci. Eng. A,1997,226-228:90-94
    [92]Michaelsen C., Yan Z. H., Bormann R.. Amorphization of Ti/Cr multiplayer films by solid-state Reaction [J]. J. Appl. Phys.,1993,73(5):2249-2253
    [93]Kopcewicz M., Williamson D. L.. Ion-beam mixing and solid-state reaction of Fe-Zr multilayers[J]. J. Appl. Phys.,1993,74(7):4363-4370
    [94]Gupta A., Principi G, Gupta R., et al. Amorphization in Fe-Si multilayers by solid-state reaction[J], Phys. Rev. B,1994,50(5):2833-2840
    [95]Ma E.. Growth of amorphous silicide during Ti/Si interfacial reactions in multilayer thin films[J]. Mater. Sci. Eng.A,2005,398(1-2):60-65
    [96]Cheng Y. T., Johnson W. L., Nicolet M.-A.. Dominant moving species in the formation of amorphous NiZr by solid-state reaction[J]. Appl. Phys. Lett.,1985,47(8):800-802
    [97]丁世敬,赵跃智,葛德彪.电磁屏蔽材料研究进展[J].材料导报,2008,22(4):30-33
    [98]Jankowski A. F.. Thin film fracture:Ti-coating-Be-substrate bond failure[J]. J. Mater. Sci.,1987,22 (1): 346-350
    [99]杨田林,高绪团,韩盛浩.偏压磁控溅射法在柔性衬底上制备ZnO:Al透明导电膜[J].曲阜师范大学学报,2002,28(4):59-63
    [100]段玲珑.磁控溅射制备Ti膜的结构与性能研究[D].兰州:兰州大学,2008
    [101]李国英.表面工程手册[M].北京:机械工业出版社,1997:159-171
    [102]白力静,张国君,蒋百灵.偏压对CrTiAIN镀层组织形貌及磨损性能的影响[J].材料热处理报,2006,27(5):108-111
    [103]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006:207-209
    [104]黄美东,林国,董闯,等.偏压对电弧离子镀薄膜表面形貌的影响机理[J].金属学报,2003,39(5):510-515
    [105]Huffman G. L., Fahnline D. E., Messier R., et al. Stress dependence of reactively sputtered aluminum nitride thin films on sputtering parameters[J]. J. Vac. Sci.Technol A,1989,7(3):2252-2255
    [106]陈迪春,蒋百灵,吴文文,等.镁合金表面磁控溅射CrAlTiN镀层的制备技术研究[J].表面技术,2008,37(2):8-10
    [107]Chen C. J., Huanga J. C., Chou H. S., et al. On the amorphous and nanocrystalline Zr-Cu and Zr-Ti co-sputtered thin films[J]. J. Alloys Compd.,2009,483:337-340
    [108]Chou H. S., Huang J. C.. Amorphous and nanocrystalline sputtered Mg-Cu thin films[J]. J. Alloys Compd.,2009,483(1-2):341-345
    [109]Norbert Matern, Annet Gebert, Thomas Gemming, el at. Micorstructure and thermal behavior of two-phase amorphous Ni-Nb-Y alloy[J]. Scripta Mater.,2005,53(3):271-274
    [110]Altounian Z., Tu G H., Strom-Olsen J.O.. Crystallization characteristics of Ni20Zr80to Ni70Zr30[J]. J. Appl.Phys.,1983,54:3111-3116
    [111]Inoue A., Zhang T., Masumoto T.. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region[J]. Mater. Trans., JIM,1990,31:177-183
    [112]Hui X.D., Chen G.L., He G, et al. Thermodynamic model for glass forming ability of ternary meta--llic glass systems[J]. Trans. Nonferrous. Met. Sci. China,2001, 11(5):684-690
    [113]王晓东,齐民,董闯.铝元素的添加对锆基合金非晶形成能力影响的电子结构模型[J].金属学报,2002,38(12):1241-1245
    [114]朱健,齐民.添加Al对Cu基合金非晶形成能力影响的团簇模型[J].中国有色金属学报,2005,15(7):1145-1148
    [115]张文洁,藤新营,神祥博,等.Ti对Cu-Zr合金非晶形成能力的影响[J].热加工工艺,2009,38(4):35-37
    [116]王焕荣.锆基非晶合金纳米晶化及动力学研究[D].济南:山东大学,2003
    [117]王一禾,杨膺善.非晶态合金[M],北京:冶金工业出版社,1985:15
    [118]Murty B. S., Hono K.. Nanouasicrystallization of Zr-based metallic glasses[J]. Mater. Sci. Eng., A, 2001,312(1-2):253-261
    [119]张程煜,姚可夫.Cu64Zr36非晶合金的晶化动力学[J].稀有金属材料与工程,2006,35(1):158-160
    [120]牛玉超.Fe-Si-B非晶态合金结构演变及其流变行为的研究[D].济南:山东大学,2006
    [121]Saida J., Matsushita M., Li C., et al. Comparative study of grain growth behavior from a supercooled liquid region of Zr65Cu27.5Al7.5 and Zr65Cu35 metallic glasses[J]. J. Mater. Sci.,2000,35(14):3539-3546
    [122]Atzmon M., Verhoeven J. D., Gibson E. D., et al. Formation and growth of amorphous phases by solid-state reaction elemental composites prepared by cold working[J]. Appl. Phys. Lett.,1984,45 (10):1052-1053
    [123]Kopcewicz M., Williamson D. L.. Ion-beam mixing and solid-state reaction of Fe-Zr multilayers[J]. J. Appl. Phys.,1993,74(7):4363-4370
    [124]Blanpain B., Allen L. H., Legresy J.-M., et al. Solid-state amorphization in Al-Pt multilayers by low-temperature annealing[J]. Phys. Rev. B,1989,39(18):13067-13071
    [125]Chen L. J.. Solid state amorphization in metal/Si systems [J], Mater. Sci. Eng. R.2000,29(5):115-152
    [126]Rubin J. B., Schwarz R. B.. Kinetics of the solid-state amorphizing reaction in thin films studied by electrical resistivity [J]. Appl. Phys. Lett.,1989,55(1):36-38
    [127]Cotts E. J., Meng W. J., Johnson W. L.. Calorimetric Study of Amorphorphization in Planar, Binary, Multilayer, Thin-Film Diffusion Couples of Ni and Zr[J]. Phys. Rev. Lett.,1986,57(18):2295-2298
    [128]Schwarz R. B., Rubin J. B.. Heating stage for in situ studies of thin-film reaction[J]. Rev. Sci. Instrum., 1993,64(5):1292-1295
    [129]Newcomb S. B., Tu K. N.. Transmission electron microscopic observations of amorphous NiZr alloy formation by solid-state reaction[J]. Appl. Phys. Lett.,1986,48(21):1436-1438
    [130]岗特.裴卓,李新立译.金相浸蚀手册北[M].北京:科学普及出版社,1982:82-84
    [131]Meng W. J., Nieh C. W., Johnson W. L.. Maximum thickness of amorphous NiZr interlayers formed by a solid-state reaction technique[J]. Appl. Phys. Lett.,1987,51(21):1693-1695
    [132]Kagao S., Kawamura Y., Ohno Y.. Electron-beam welding of Zr-based bulk metallic glasses[J]. Mater. Sci. Eng. A,2004,375-377:312-316
    [133]Kawamura Y. Liquid phase and supercooled liquid phase welding of bulk metallic glasses [J]. Mater. Sci. Eng.A,2004,375-377:112-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700