用户名: 密码: 验证码:
基于底漆的客车车身防腐性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近10年来,我国客车业得到飞速发展,生产总量已居世界首位,客车涂装的整体水平有了长足进步,但整车防腐水平还存在差距。随着人们生活水平的提高,用户要求逐步理性化和专业化,整车耐腐蚀性能和涂层外观质量已成为影响市场竞争力的重要因素。
     根据2006年公司在海南市场进行的防腐专项调研,统计海南市场运行的几个国内主流客车生产企业的不同型号的客车,有近65%的公交车使用一年以上即出现局部腐蚀,40%的旅游客车使用两年以上即出现局部腐蚀。客车是由各种金属材料和非金属材料制成的零部件所组成的,客车腐蚀的形式多样,机理复杂,危害很大,不仅降低使用寿命,而且容易降低机械强度,引起容器部件渗漏,零部件丧失功能,使客车整车不同程度地丧失部分功能,影响用户正常运营,增加维修成本,甚至引起人身安全。研究表明,涂层失效是客车车身腐蚀的主要原因。
     涂层的耐腐蚀性及涂层与底材、配套涂层之间良好的附着力是发挥涂层保护功能的基础。涂层的耐蚀性由涂料的组成决定,主要是成膜树脂、助剂和颜料综合作用的结果;涂层的附着力与底材的特性密切相关,包括底材的表面清洁度、粗糙度、多孔性,研究表明80-90%的涂层提前失效是由于不正确的表面预处理引起;同时涂层的附着力与涂层的特性有关,主要表现在涂层对底材的渗透性、润湿性以及涂层与底材的相互作用上,涂层的宏观缺陷(如较大的针孔、裂纹以及裂缝等一般可见缺陷)通常贯穿整个涂层达到基体表面,产生原因多与施工工艺有关。
     底漆是整车涂层的基础,其主要功能是防腐,底漆自身的耐蚀性能、底漆与车身的附着力、底漆的厚度和均匀度等都是引起涂层失效的关键因素。前处理是底漆的基础,前处理的质量直接影响底漆与客车车身的附着力和耐蚀性。
     本课题主要研究影响底漆防腐性能的主要因素,探寻改进的办法,主要改善前处理的表面清洁度和磷化膜的耐蚀性;在用漆量不变的前提下提高底漆喷涂的厚度和严密度;改良底漆配方,提高底漆自身的耐蚀性能,同时改善底漆在镀锌板材上的附着力。论文以本公司客车车身底漆涂装的现有工艺为基础,分别从前处理工艺、底漆涂装方法、底漆配方三个方面分析影响底漆耐蚀性的影响因素,探索出提高底漆与车身附着力和底漆耐蚀性的途径:
     1.在车身前处理脱脂工艺中,增加了手工预处理、机械喷淋及车身上下机械移动,可利用机械作用改善磷化膜与底漆的附着力。
     2.影响磷化膜耐蚀性和附着力的主要因素中,磷化膜P比的高低直接反映了磷化膜与漆膜复合层附着力和耐腐蚀性能的大小。为提高P比,调整配方和施工参数可改善磷化膜与镀锌板材的附着力,使磷化膜与底漆层的复合层盐雾试验,由350小时提高到400小时。
     3.涂层的厚度直接影响涂层的耐蚀性。采用手工静电喷涂法,调整最佳施工参数,抽样试验结果表明,在用漆量不变的情况下可提高底漆厚度50-70%,随车样板的耐盐雾性能由原来的350小时提高到480小时。
     4.物理防锈颜料对环氧聚酰胺底漆的耐蚀性影响较大,采用氧化铁、三聚磷酸铝、云母粉,能使底漆的耐盐雾性能从350小时增加到500小时。
     5.在环氧聚酰胺的固化剂中添加10%左右(占固化剂含量)的硅烷偶联剂,可使环氧聚酰胺底漆在镀锌板上的附着力达到0级。
In the last 10 years, China's bus industry has been developed rapidly. The total production has been ranked first in the world. The overall level of bus coating has made considerable progress, but the gaps still exist in the level of bus anti-corrosion. As the standard of people's living improves, the demand of the user becomes rationalization and specialization gradually. The anti-corrosion performance and surface coating quality for the bus have become two important factors on market competition.
     According to the special investigation of anti-corrosion that carried out in 2006 in Hainan and the state of several different bus models of main current domestic bus companies that runs in Hainan market, nearly 65% of the city buses appear partial corrosion after driving a year, it is the same for 40% touring buses after two years. The bus is formed by various parts of metal materials and nonmetal materials. The bus corrosion has diverse forms, complicated mechanism and great harmful dangers. It not only lowers bus life, but also easy to reduce the mechanical strength, causing leakage of the container parts and loss of function for some components, leading to the whole bus lost some functions to varying degrees. It affects the normal operation for the user and increases maintenance cost, even lead to personal safety. The result shows that failure of the surface coating is the main reason for the bus body corrosion.
     The corrosion resistance of coatings and good adhesion between the coating and substrate and matching coatings are the foundation of coating protection. The corrosion resistance of coating is decided by the composition of the paint, mainly by the combined result of film-forming resin, promoter and pigments. The coating adhesion is closely related with the characteristics of the substrate, including the surface cleanliness, roughness, porosity. Studies have shown that 80-90% of early failure of the coating is due to improper surface pre-treatment. At the same time, the coating adhesion is related to coating characteristics, primarily on the performance of the permeability of the coating to the substrate, wettability and the interaction with the substrate coating. The macro defects of the coating (such as the larger pinholes, cracks and visible cracks and other defects in general) often throughout the coating to the substrate surface. The reasons are more concerned with the construction process.
     Vehicle based primer coating, its main function is anti-corrosion. The performance of paint corrosion resistance, the adhesion between primer and body, the thickness of paint and uniformity are the key factors that lead to coating failure. Pre-treatment is the basis of primer. The quality of pre-treatment has direct impact on adhesion and corrosion resistance between the primer and bus body.
     This subject mainly studies the influence factors of anti-corrosion primer,and explores the way of improvement to improve the surface treatment before cleanness and phosphating film corrosion resistance, with the premise of paint changeless to improve the coating thickness and primer tight, improve primer, improve their formula primer and improve corrosion resistance performance of galvanized sheet primer on adhesion.The study based on the bus body primer of existing technology of our company, separately from three aspects of once process, primer methods and primer to analyze the factors of influencing primer formula of corrosion resistance, explore the way of improving adhesion and primer and body primer corrosion resistance.
     1. In the pre-treatment of body skimmed technology, increases the degreasing manual pretreatment, mechanical spraying and body movement, with mechanical mechanism to improve the adhesion and primer phosphating film.
     2. In the main factors of affecting phosphating film corrosion resistance and adhesion phosphating film P ratio directly reflects the phosphating film and film compound layer adhesion and corrosion resistance. To improve the P ratio, adjusting formula and construction parameters can improve the galvanized sheet phosphating film adhesion make the phosphating film compound with primer layer by layer,and salt spray test increased to 400 hours from 350 hours.
     3. The coating thickness directly affects the coating corrosion resistance. Using manual method of electrostatic spraying,adjusting the best construction parameters,sampling results show that the paint in the changeless circumstance can improve primer thickness of 50-70%, any template fog-corrosion improved from original 350 hours to 480 hours.
     4. Physical antirust pigment can influent epoxy polyamide a lot on the corrosion resistance.using ferric oxide, three aluminum tripoly phosphate, mica powder, can make the paint fog-corrosion improved from 350 hours to 500 hours.
     5. The epoxy polyamide curing agent added more or less 10%(curing agent content) silane coupling agent can make the adhesion between epoxy polyamide and steel improved to 0 level.
引文
[1]Hilton. Multiple Wins Lead the Way to a Less Corroded Army. Amptiac,2003, 7(4)
    [2]David H. Rose. New DOD Policy Will Reduce the Cost of Corrosion. Amptiac, 2005,7(4):61
    [3]Brain E. Placzankis. Accelerated Corrosion Analysis of E-Coated Steel Box Panels to Determine Reapplication Intervals for Carwell Inhibitor.ADA-395457, 2001
    [4]C. Thomas Savell. Vehicle Corrosion Expert System (CES).ADA-380629,2000
    [5]徐滨士,马世宁等.军事装备腐蚀现状及对策.涂料工程.2004,34(9):9~12。
    [6]徐安桃,彭丽伟等.东南沿海地区车辆装备的腐蚀与防护研究.军事交通学院学报.2006,8(1):44~48
    [7]虞兆年.防腐蚀涂料和涂装[M].北京:化学工业出版社,2002:131
    [8]刘登良.涂料工艺.北京:化学工业出版社,2002:8-12
    [9]Phorgotten Phenomena. Fillform corrosion on coated steel [J]. Materials Performance.1998,5:67-68.。
    [10]Johnson, James R. Primary cause of coating failure [J].Materials Performance,1999,38 (6):48-49.
    [11]R. Rajagopalan, J.O. Iroh, Corrosion performance of polyaniline2 polypyrrole composite coatings applied to low carbon steel [J].Surface Engineering,2002,18 (1):59-63.
    [12]Deflorian. F, Fedrizzi. L. Characterization of protective organic coatings by electrochemical impedance spectroscopy [J]. Journal of Adhesion Science and Technology.1999,13 (5):629~645.
    [13]潘肇基.有机涂层湿附着力的研究[J].材料保护.1994,27(2):9~12.
    [14]N. Kouloumbi, G. M. Tsangaris, S. T. Kvelidies, G. C. Psarra s. Composite coatings and their performance in corrosive environment [J]. British Corrosion Journal.1999,34 (4):267~272.
    [15]张显程,巩建鸣,涂善东,孔凡玉.涂层缺陷对涂层失效与基体腐蚀行为的影响 研究[J].材料科学与工程学报.2003.(06)。
    [16]M. Fukumoto, Y. Wada, M. Umemoto, L. Okane. Effect connection pores on the corrosion behavior of plasma sprayed alumina coatings [J]. Surface and Coatings Technology.1989,39P40:711~720.
    [17]张学敏.涂装工艺学.北京:化学工业出版社,2002:1-2
    [18]叶扬祥,潘肇基.涂装技术实用手册.北京:机械工业出版社,2000:32-376。
    [19]程玉光.汽车涂装技术.北京:人民交通出版社,2005:65
    [20]吴涛.国内外汽车车身涂装技术进展.表面工程资讯.2006,6(3):5-6
    [21]冯立明,牛玉超,张殿平等.涂装工艺与设备.北京:化学工业出版社,2004:16-250
    [22]王锡春.我国汽车车身涂装15年来的技术进步及其展望.涂料工业.2000,(4):23-29
    [23]x. sun, et al. Some observations for effeets of copper on zinc phosphate conversion coatings on aluminum surfaces[J).Surface and coatings technology.2002,155:46—50
    [24]黄建中.汽车腐蚀与防护技术.北京:化学工业出版社,2004:3~14。
    [25]伍泽涌等.新型涂装前处理应用手册.成都.四川科学技术出版社,1998.7.P8
    [26]张学敏.涂装工艺学.北京:化学工业出版社,2002:123-129
    [27]陈治良.现代涂装手册.北京:化学工业出版社,2009:119
    [28涂金忠.神龙公司轿车前处理二线的工艺分析.2003年中国汽车工程学会涂装专业委员会技术交流会论文集.2003.10.p037,
    [29]庞留洋.铸钢件黑色磷化[J].电镀与环保.1999,19(1):38-39.
    [30]谢守德等.Fe2+对铝件磷化的影响.材料保护.2005,35(3):55-58
    [31]Meagher. Phosphating conversion coating. US pat:0096229,2002.
    [32]Kramer lindas. Proeess and composition for zine phosphate coating. Ep pat: 315059,1989.
    [33]Miehael Emest Brooks. Proeess and Composition for Coating Metal Surfaees. GB Pat: 2072225,1981.
    [34]Gethard Muller. Phosphate Compositions for Coating Metal Surfaces. GB pat:2093075,1982.
    [35]Michael Marzano,et al.An Overview of phosphating [J].Finishers Management,2001.
    [36]G Grundmeier, et al. Corrosion proteetion of Zn-Phosphate containing water bome dispersion Coatings [J]. Corrosion Science,2006,48(11):3716—3730.
    [37]邢宏南.Zn2*、Mn2+、Ni2+对磷化性能的影响研究.机械科学研究总院硕士学位论文.2007,53.
    [38]陈慕祖.涂装前处理材料的最新成果.汽车涂装技术文集.2003.2.p023
    [39]林自华.常温发黑磷化膜层结构与耐蚀性的探讨[J].材料保护.2001,34(5):36—37.
    [40]杨哲龙等.中温锌系磷化膜组成及结构研究[J].哈尔滨工业大学学报.2000,26(5):640—645.
    [41]杨超英等.合金化镀锌钢板与磷化、阴极电泳涂装工艺配套性研究[J].汽车工艺与材料.2006,3:34—37.
    [42]Sienkowski, et al. zinc phosphate conversion coating and process. US pat:6019858,2000.
    [43]唐春华等.磷化膜对阳极电泳涂料配套性和涂层耐蚀性的影响[J].现代涂料与涂装.2001,1:33—36.
    [44]王锡春.汽车涂装工艺技术.北京:化学工业出版社,2005.
    [45]梁治齐,熊楚材.涂料喷涂工艺及技术.北京:化学工业出版社,2006
    [46]刘士海等.涂装工必读[M].天津:天津科学技术出版社,2001
    [47]唐勇华.汽车涂装生产中的静电喷涂简介.现代涂料与涂装.第12卷3期2009.3,P40
    [49]M. Yaseen, Corrosion Control by Organic Coatings,24-27, National association of Corrosion Engineers. (1981)
    [50]A.R.德林别而格等.《非金属涂层工艺学》.119.化学工业出版社,(1966)
    [51]周立新,程江,杨卓如.有机涂层防腐性能的研究与评价方法[J].腐蚀科学与防护技术.2004.(06)
    [52]宋华.几种涂层耐腐蚀性能试验方法探讨.重庆.2001年汽车涂装技术交流会论 文集.2001.10.p120
    [53]LJ.Calbo,朱传桨,段质美.涂料助剂大全[M].上海:上海科学技术文献出版社,2000:45-47。
    [54]洪啸吟,马汉保.涂料化学.第2版.北京:科学出版社,2005
    [55]Zeno W.威克斯,Fank N.琼斯,S.Peter柏巴斯.有机涂料科学和技术[M].北京:化学工业出版社,2002
    [56]B. R. Appleman,P GCampbell. Salt spray testingfor short time evaluation of coatings. Part Ⅰ:Reaction of caotings in salt sparay[J]. Journal of Coatings Technolgy.1982,54 (686):17.
    [57]C. H.Hare, Considerations in accelerated testing of anticorrosion coatings[J].Modern pait and coatings.1982,72 (1):50
    [58]B. S. Skerry, A Alavi,K I Lindgren. Environmental and electro chemical test methods for the evaluation of protective organiccoatings[J]. Journal of Coatings Technology.1988,60 (765):97.
    [59]陈慕祖.镀锌钢板涂装中的缺陷与改进.汽车涂装技术文集.2003.2.p040

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700