用户名: 密码: 验证码:
谷氨酸受体相互作用蛋白介导AMPA受体兴奋性毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑卒中是一类常见致死性与致残性疾病,卒中发生时由于脑缺血导致兴奋性谷氨酸递质的大量释放入细胞外间隙,激活离子型谷氨酸受体引发钙内流、兴奋性毒性损伤与易损区神经元丢失是过去二十多年来的研究成果。但至今尚不清楚不同类型钙透性谷氨酸受体在引发神经元丢失的特异性作用以及为什么脑中有些区域如海马CA1锥体细胞、纹状体棘细胞与皮质投射神经元对谷氨酸兴奋性毒性损伤异常敏感。中枢神经系统(CNS)内离子型谷氨酸受体激活引发离子快速内流在介导快速突触传递、突触可塑性改变以及学习与记忆中其重要作用,但在病理状态下如缺氧、缺血,谷氨酸受体过渡激活会导致过多的钙、钠、锌离子内流就会导致神经兴奋性毒性损伤。CNS内离子型谷氨酸受体主要分三类即N-甲基-D-天门冬氨酸(NMDA)受体、α-氨基羟甲基恶唑丙酸(AMPA)受体、海人藻酸(KA)受体。因为所有NMDA受体均透过钙,起初的缺血损伤研究多集中于对该类受体的研究,然而近来已经有越来越多的研究指向钙透型AMPA受体,AMPA受体是一类由GluR1~4亚基以不同聚合形式形成的异源聚体,缺乏GluR2亚基的AMPA受体是透钙与锌离子的,GluR2亚基由于第二次跨膜区存在精氨酸可以阻滞含该亚基的AMPA受体通过钙离子,编码GluR2的基因组DNA是无此密码子的,只是在前mRNA水平在神经元内一种腺嘌呤脱氨酶的作用下,将原编码谷氨酸CAG中的A转化为I导致编码精氨酸,正常状态下脑内几乎100%的GluR2均是经过此加工的,因此绝大多数含GluR2的AMPA受体是不透钙的。以前的研究发现脑缺血可特异性导致CA1区GluR2mRNA与蛋白表达降低,由此形成了“脑缺血GluR2损伤假说”,认为缺血状态下由于GluR2表达降低导致GluR2缺失型AMPA受体生成增多,导致钙透性AMPA受体的增多,从而引发神经元的兴奋性毒性损伤。但该学说有许多未解之谜,如通过CA1区单细胞RT-PCR结合单细胞电生理研究脑缺血并未引发CA1神经元膜上AMPA受体水平与GluR2数目明显降低,Peng等人研究发现只是由于脑缺血引起神经元内2型腺嘌呤脱氨酶酶活性降低,导致非编辑状态GluR2的大量出现,从而导致了钙透性AMPA受体的增多,在CA1区的锥体细胞中GluR2在脑缺血状态下的编辑状态的GluR2在7~98%之间,以前的发现是由于研究者所采用的CA1整体区域细胞的异源性造成的,非编辑状态的GluR2有利于在组成AMPA受体时形成GluR1、GluR2、GluR3同源多聚体,从而形成的AMPA受体都是致钙透性的。
     神经细胞内合成的GluR2/3在合成后的膜向转运与树突定向转运依赖一类谷氨酸受体相互作用蛋白即GRIP1(glutamate receptor-interactingprotein GRIP1),及GRIP2(ABP-L)、激酶C反应蛋白(protein interacting withC kinase1, PICK1)等。GRIP1与GRIP2都各有7个PDZ结构域,PDZ结构域在受体的定位、分布及功能上有重要的作用。同样GRIP1与GRIP2能与驱动蛋白(Kinesin)结合,调节神经元树突的物质运输。由于GRIP1与GRIP2不仅能与Kinesin结合影响受体的合成运输,并能与AMPA受体结合调节受体的分布与功能,所以在神经损伤过程当中,GRIP1与GRIP2可能起着重要的作用,搞清楚在损伤过程中GRIP1与GRIP2的功能变化及作用机制,有可能为寻找相应的损伤拮抗剂并及早抑制神经损伤的进一步发展提供可靠的科学依据,具有较高的临床治疗意义。
     本研究采用光化学法复制成年大鼠局灶性脑梗塞模型,根据缺血缺氧性脑损伤后的不同时间点将大鼠分为5个组,首先采用免疫组织化学的方法,分别用抗GRIP1与GRIP2抗体对缺血灶局部进行了免疫标记,分析脑缺血后不同时间点缺血半暗带区内两者的表达特征。研究发现:在大鼠脑缺血损伤发生后,损伤灶周围有不同程度的坏死出现,在缺血半暗带区出现GRIP1及GRIP2的阳性标记细胞与神经纤维,损伤后6h和1d组的阳性标记较多,并且紧紧相随于坏死组织前沿,表明在损伤发生后GRIP1与GRIP2表达增强,GRIPs可能参与了脑缺血损伤过程。由于AMPA受体在神经兴奋毒性中的作用以及GRIPs对AMPA受体亚基GluR2与GluR3的调控作用,我们进一步研究了缺血损伤发生后GRIP1、GRIP2与AMPA受体亚基GluR2、GluR3的关系。通过免疫组织化学双标记技术研究,证实了AMPA受体亚基GluR2、GluR3与GRIP1、GRIP2在神经元存在双标记,有明显的共存现象,共存多出现在损伤后6h和1d。进而我们通过蛋白免疫印迹技术对缺血区GRIP1蛋白表达水平与GluR2/3在细胞膜与细胞浆的分布状态进行了研究,研究发现脑缺血导致的GRIP1升高时程与GluR2/3在细胞膜上的含量变化非常吻合,当GRIP1在缺血后6h~12h达最高水平时,GluR2/3在细胞膜上的含量也达最高,表明GRIPs的表达升高可能是致使GluR2/3在胞膜上分布升高的原因。同时我们第一次发现了脑缺血能诱导GRIP1、GRIP2在大脑少突胶质细胞上的表达。这些结果均表明GRIP1、GRIP2在缺血缺氧性脑损伤过程中可能扮演重要角色。
Stroke, because of occlusion or rupture of an artery, is a leading cause ofdeath or infirmity in developed countries. As stroke, lack of blood flow to thebrain (ischemia) results in excessive release of the neurotransmitter glutamateinto the extracellular space. For over two decades, it has been known that theglutamate release activates ionotropic glutamate receptors, causing calciumentry, excitotoxicity, and neuronal death in vulnerable brain regions. Manyaspects are remained yet including the specific role of different types of Ca2+-permeable glutamate receptor in precipitating cell death and why neurons insome regions of the brain,such as hippocampal CA1 pyramidal neurons, striatalspiny neurons, and cortical projection neurons, are more vulnerable to glutamatemediated excitotoxicity. In the central nervous system (CNS), activation ofionotropic glutamate receptors allows a rapid influx of ions across the neuronalmembrane, mediating fast excitatory synaptic transmission. Ionotropicglutamate receptors are also critical for synaptic plasticity , learning andmemory. However, excessive activation of glutamate receptors in pathologicalconditions, such as anoxia or ischemia, precipitates excitotoxic neuronal death in vulnerable neuronal types by allowing an excessive influx of Ca2+, Na+, andZn2+ into neurons. There are three main classes of ionotropic glutamate receptor:NMDA, AMPA, and kainate receptors. Because all NMDA receptors arepermeable to calcium, it is focused on the role of these receptors in ischemicinjury in early studies. More recently, however, the hotspot is gradually shiftedto a critical role played by Ca2+-permeable AMPA receptors. AMPA receptors(AMPARs) are heteromeric assemblies of subunits GluR1– GluR4. AMPARslacking GluR2 subunits are permeable to Ca2+ and Zn2+. Ca2+-impermeability inGluR2-containing receptors is specified by the presence of an arginine (R)residue present in transmembrane domain 2 of this subunit instead of theglutamine residue (Q) in the GluR1, GluR3, and GluR4 subunits. Although thevast majority of GluR2 subunits in the brain contain arginine at this site, thisphenotype is not encoded at the genomic level but is the result of RNA editingof the GluR2 pre-mRNA in the nucleus by the enzyme adenosine deaminase 2(ADAR2), which catalyzes site-selective deamination of adenosine in thegenomic glutamine codon (CAG) to an inosine, giving an arginine codon (CIG)in the mRNA. This position is nearly 100% edited in the brain, so the vastmajority of GluR2-containing AMPARs in the CNS containing GluR2(R) areCa2+-impermeable. In addition, Q/R editing also influences subunit assembly,membrane trafficking, and synaptic targeting of GluR2-containing receptors.The observation that GluR2 expression is specifically attenuated in vulnerableCA1 pyramidal neurons after transient ischemia led to the‘‘GluR2 hypothesis,’’which proposed that decreased availability of Ca2+-impermeable GluR2(R)protein after a neurological insult would result in augmented formation of Ca2+-permeable AMPARs and consequently increased neurotoxic Ca2+ (and possiblyZn2+) influx. Remaining more controversial are the molecular mechanisms that underlie the postischemic downregulation of GluR2(R) protein and, the role ofGluR2 Q/R editing in this process. Peng promoted further understanding ofthe mechanisms that increase AMPAR Ca2+ permeability in vulnerable CA1hippocampal cells after transient forebrain ischemia. By combination ofelectrophysiology and single-cell RT-PCR, the authors correlated GluR2 Q/Rediting efficiency with the Ca2+ permeability of AMPARs in single neuron.Postischemic CA1 pyramidal cells exhibited high levels of heterogeneity in Q/Rediting (7%–98%) compared with sham controls and other less-vulnerablehippocampal cell types (CA3 pyramidal or dentate granule cells), which allexhibited over 95% editing efficiency, suggesting that GluR2Q/R editing inCA1 pyramidal neurons is particularly vulnerable to ischemic insult.Importantly, the impaired GluR2 Q/R editing correlated closely with the Ca2+-permeability of AMPAR channels (assessed from the reversal potential of theAMPAR current) in these cells.Failure to detect alterations in levels of GluR2protein, GluR2 Q/R editing in ischemia in early research may reflect the use ofwhole hippocampal tissue rather than RNA derived from singleelectrophysiologicallycharacterised cells.The postischemic reduction inADAR2-dependent GluR2 Q/R editing results in accumulation of uneditedGluR2 pre-mRNA in the nucleus, which downregulates both GluR2 mRNA andprotein levels, while the remaining GluR2(Q) proteinis preferentially assembledto produce Ca2+-permeable AMPARs that are exported to synapses. Furtherinvestigaton is needed to address these differences.
     The AMPA receptor subunits GluR2/3 can bind specifically to a kind ofPDZ proteins, termed as glutamate receptor-interacting protein (GRIP), AMPAreceptor-binding protein (ABP), and protein interacting with C kinase 1 (PICK1).Both GRIP1 and GRIP2 contain seven PDZ domains without other recognizable motif, ABP resembles GRIP in primary sequence; it differs from GRIP mostnotably in lacking the C-terminal seventh PDZ domain. GRIP1 also binds akinesin that functions in transport of dendritic vesicles along microtubules indendrites, showing that the scaffolding protein determines the direction oftransport .When the kinesin was bound to a member of the JIP group of scaffoldproteins, JSAP, it moved toward the axon, while when it was bound to GRIP1, itmoved toward the dendrite.GRIP1 can directly interact and steer kinesin heavychains to dendrites of neurons as a motor for AMPA receptors.So GRIP1 andGRIP2 may play important role on exporting GluR2/3 to synapses during anoxiaand ischemia.To clarify the mechanisms of the GRIP1 and GRIP2 for exportingGluR2/3 to synapses during anoxia and ischemia will facilitate to find effectiveantagonist to anoxia and ischemia.
     In this study, focal cerebral infarction model of adult rat were establishedbased on the principle of photochemical initiation of thrombosis, the rats weredivided into 5 groups according to the timecourse after cerebral local ischemia.Anti GRIP1 and GRIP2 antibodies were used via immunohistochemistry toanalysis the differences between the normal and the injury cerebral and thedifferences among every time point after ischemia.The results show that necrosishappened around the focus of injury region.And we can also find the GRIP1 andGRIP2 labeled neurons and immunoreactive nerve fibers in the ischemicpenumbra. Neurons in the cerebral of 6h and 1d groups are more heavily labeledthan others, cells labeled by GRIP1 and GRIP2 antibodys were coincide with theischemic penumbra. It suggests that the expression of GRIP1 and GRIP2increased after irradiation, GRIPs may be play a role on the mechanisms ofischemia injury. Because of the excitotoxicity of AMPA receptors and theinteraction between GRIP1/2 and AMPA receptors, the relationship between GRIP1/2 and AMPA receptors was further investigated next. Double-labelimmunocytochemistry was used demonstrating that the GluR2、GluR3 werecolocalized with GRIP1/2 in cerebral neuron, specially in the ischemicpenumbra and V pyramidal cells, and the colocalization happeded more at 6h and1d after the irradiation. Furthermore, using Western blotting, we study therelationship the levels of GRIP1 in ischemic penumbra and the levels ofmembrane GluR2/3, we found that the elevated levels of GRIP1 was coincidewith the accumulating of GluR2/3 after rat brain ischemia.When the levels ofGRIP1 were highest during 6h~12h after rat brain ischemia, the levels ofmembrane GluR2/3 reached the highest level suggesting that the accumulatingof membrane GluR2/3 may be induced by GRIPs. We demonstrated for the firsttime that ischemia can induce the expression of GRIP1 and GRIP2 on theoligendendrocytes in corpus callosum implying an important role of GRIP1 andGRIP2 in brain ischemia.
引文
1. Park JS, Voitenko N, Petralia RS, Guan X, Xu JT, Steinberg JP, Takamiya K, Sotnik A,Kopach O, Huganir RL, Tao YX. Persistent inflammation induces GluR2internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons.JNeurosci. 2009, 29(10):3206-19.
    2. Yang H, Takagi H, Konishi Y, Ageta H, Ikegami K, Yao I, Sato S, Hatanaka K,Inokuchi K, Seog DH, Setou M.Transmembrane and ubiquitin-like domain-containingprotein 1 (Tmub1/HOPS) facilitates surface expression of GluR2-containing AMPAreceptors. PLoS ONE. 2008, 3(7):e2809.
    3. Ochiishi T, Futai K, Okamoto K, Kameyama K, Kosik KS.Regulation of AMPAreceptor trafficking by delta-catenin. Mol Cell Neurosci. 2008,39(4):499-507.
    4. Takamiya K, Mao L, Huganir RL, Linden DJ.The glutamate receptor-interactingprotein family of GluR2-binding proteins is required for long-term synaptic depressionexpression in cerebellar Purkinje cells.J Neurosci. 2008, 28(22):5752-5.
    5. States BA, Khatri L, Ziff EB.Stable synaptic retention of serine-880-phosphorylatedGluR2 in hippocampal neurons.Mol Cell Neurosci. 2008, 38(2):189-202.
    6. Baumgart F, Manche?o JM, Rodríguez-Crespo I.Insights into the activation of brainserine racemase by the multi-PDZ domain glutamate receptor interacting protein,divalent cations and ATP. FEBS J. 2007, 274(17):4561-71.
    7. Silverman JB, Restituito S, Lu W, Lee-Edwards L, Khatri L, Ziff EB.Synapticanchorage of AMPA receptors by cadherins through neural plakophilin-related armprotein AMPA receptor-binding protein complexes. J Neurosci. 2007, 27(32):8505-16.
    8. Kulangara K, Kropf M, Glauser L, Magnin S, Alberi S, Yersin A, Hirling H.Phosphorylation of glutamate receptor interacting protein 1 regulates surface expressionof glutamate receptors. J Biol Chem. 2007, 282(4):2395-404.
    9. Migues PV, Cammarota M, Kavanagh J, Atkinson R, Powis DA, Rostas JA.Maturational changes in the subunit composition of AMPA receptors and the functionalconsequences of their activation in chicken forebrain.Dev Neurosci. 2007;29(3):232-40.
    10. Dietrich MO, Mantese CE, Porciuncula LO, Ghisleni G, Vinade L, Souza DO, PortelaLV. Exercise affects glutamate receptors in postsynaptic densities from cortical micebrain.Brain Res. 2005, 1065(1-2):20-5.
    11. Pittaluga A, Feligioni M, Longordo F, Luccini E, Raiteri M.Trafficking of presynapticAMPA receptors mediating neurotransmitter release: neuronal selectivity andrelationships with sensitivity to cyclothiazide.Neuropharmacology. 2006, 50(3):286-96.
    12. Lu W, Ziff EB.PICK1 interacts with ABP/GRIP to regulate AMPA receptortrafficking.Neuron. 2005, 47(3):407-21.
    13. Liu SJ, Cull-Candy SG.Subunit interaction with PICK and GRIP controls Ca2+permeability of AMPARs at cerebellar synapses. Nat Neurosci. 2005, 8(6):768-75.Epub 2005 May 15.
    14. Fukata Y, Tzingounis AV, Trinidad JC, Fukata M, Burlingame AL, Nicoll RA, BredtDS.Molecular constituents of neuronal AMPA receptors. J Cell Biol. 2005, 169(3):399-404.
    15. Dunah AW, Hueske E, Wyszynski M, Hoogenraad CC, Jaworski J, Pak DT, SimonettaA, Liu G, Sheng M. LAR receptor protein tyrosine phosphatases in the developmentand maintenance of excitatory synapses. Nat Neurosci. 2005, 8(4):458-67.
    16. Dracheva S, McGurk SR, Haroutunian V.mRNA expression of AMPA receptors andAMPA receptor binding proteins in the cerebral cortex of elderly schizophrenics. JNeurosci Res. 2005, 79(6):868-78.
    17. Maher BJ, Mackinnon RL 2nd, Bai J, Chapman ER, Kelly PT.Activation ofpostsynaptic Ca(2+) stores modulates glutamate receptor cycling in hippocampalneurons. J Neurophysiol. 2005, 93(1):178-88.
    18. Meyer G, Varoqueaux F, Neeb A, Oschlies M, Brose N.The complexity of PDZdomain-mediated interactions at glutamatergic synapses: a case study on neuroligin.Neuropharmacology. 2004 Oct;47(5):724-33.
    19. Jayakar SS, Dikshit M.AMPA receptor regulation mechanisms: future target for saferneuroprotective drugs. Int J Neurosci. 2004 Jun;114(6):695-734.
    20. Hualing Dong,Peisu Zhang,Insuk song et al. Characterization of the glutamate receptorinteractingproteins GRIPI and GRIP2.J .Neurosci.1999.19(16),6930 -6941.
    21. Feng W, Shi Y, Li M, Zhang M.Tandem PDZ repeats in glutamate receptor-interactingproteins have a novel mode of PDZ domain-mediated target binding. Nat Struct Biol.2003, 10(11):972-8.
    22. Garry EM, Moss A, Rosie R, Delaney A, Mitchell R, Fleetwood-Walker SM. Specificinvolvement in neuropathic pain of AMPA receptors and adapter proteins for the GluR2subunit. Mol Cell Neurosci. 2003, 24(1):10-22.
    23. Seidenman KJ, Steinberg JP, Huganir R, Malinow R.Glutamate receptor subunit 2Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity inCA1 pyramidal cells. J Neurosci. 2003, 23(27):9220-8.
    24. Schenk U, Verderio C, Benfenati F, Matteoli M.Regulated delivery of AMPA receptorsubunits to the presynaptic membrane.EMBO J. 2003,22(3):558-68.
    25. Lee SH, Liu L, Wang YT, Sheng M.Clathrin adaptor AP2 and NSF interact withoverlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking andhippocampal LTD.Neuron. 2002,36(4):661-74.
    26. Gábriel R, de Souza S, Ziff EB, Witkovsky P.Association of the AMPA receptorrelated postsynaptic density proteins GRIP and ABP with subsets of glutamate-sensitiveneurons in the rat retina.J Comp Neurol. 2002 , 449(2):129-40.
    27. Braithwaite SP, Xia H, Malenka RC.Differential roles for NSF and GRIP/ABP inAMPA receptor cycling. Proc Natl Acad Sci U S A. 2002, 99(10):7096-101.
    28. DeSouza S, Fu J, States BA, Ziff EB.Differential palmitoylation directs the AMPAreceptor-binding protein ABP to spines or to intracellular clusters. J Neurosci. 2002 ,22(9):3493-503.
    29. Baran R, Jin Y.Getting a GRIP on liprins. Neuron. 2002 , 34(1):1-2.
    30. Lee SH, Valtschanoff JG, Kharazia VN, Weinberg R, Sheng M.Biochemical andmorphological characterization of an intracellular membrane compartment containingAMPA receptors.Neuropharmacology. 2001, 41(6):680-92.
    31. Ghosh KK, Haverkamp S, Wassle H.Glutamate receptors in the rod pathway of themammalian retina.J Neurosci. 2001, 21(21):8636-47.
    32. Gallo, V, Upson,L.M.,Hayes,W.P.et al., Molecular cloning and development analysis ofa new glutamate receptor summit isoform in cerebellum Neurosci.1992. 12,1010-1023.
    33. Bergle, D.E,Roberts, J.D., Somogyi, P, et al., Glumatamergic synapses onoligodendrocyte precursor cells in the hippocampus.Nature.2000.405,187-191.
    34. Turrigiano,G.G.,Lesile,K.R.,Desai,N.S,et al.Activity-dependent scaling of quantalamplitude i n eoortical neurons.Nature.1998.391,892-896
    35. Borgdoff, A.J., Choque, D. Regulation of AMPA receptor lateral movements.Nature.2002.417,649-653.
    36. Zhang Q, Fan JS, Zhang M.Interdomain chaperoning between PSD-95, Dlg, and Zo-1(PDZ) domains of glutamate receptor-interacting proteins. J Biol Chem. 2001,276(46):43216-20.
    37. Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB.PICK1 targets activatedprotein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons andreduces surface levels of the AMPA-type glutamate receptor subunit 2.J Neurosci. 2001,21(15):5417-28.
    38. Lu X, Wyszynski M, Sheng M, Baudry M. Proteolysis of glutamate receptor-interactingprotein by calpain in rat brain: implications for synaptic plasticity.J Neurochem. 2001 ,77(6):1553-60.
    39. Hirai H.Modification of AMPA receptor clustering regulates cerebellar synapticplasticity.Neurosci Res. 2001 Mar;39(3):261-7.
    40. Morgan Sheng and Terunaga Nakagawa. Glutamate receptors on the move. Nature.2002 .417:601-603
    41. Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F, Henley JM, Collingridge GL,Isaac JT.PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKCdependentregulation of AMPA receptors at hippocampal synapses. Neuron. 2000Dec;28(3):873-86.
    42. Burette A, Khatri L, Wyszynski M, Sheng M, Ziff EB, Weinberg RJ.Differentialcellular and subcellular localization of ampa receptor-binding protein and glutamatereceptor-interacting protein.J Neurosci. 2001, 21(2):495-503.
    43. Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ.Cerebellar long-term depressionrequires PKC-regulated interactions between GluR2/3 and PDZ domain-containingproteins.Neuron. 2000 , 28(2):499-510.
    44. Osten P, Khatri L, Perez JL, K?hr G, Giese G, Daly C, Schulz TW, Wensky A, Lee LM,Ziff EB.Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synapticsurface accumulation of the AMPA receptor.Neuron. 2000,27(2):313-25.
    45. Matsuda S, Launey T, Mikawa S, Hirai H.Disruption of AMPA receptor GluR2 clustersfollowing long-term depression induction in cerebellar Purkinje neurons.EMBO J. 2000Jun 15;19(12):2765-74.
    46. Li P, Kerchner GA, Sala C, Wei F, Huettner JE, Sheng M, Zhuo M.AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses.Nat Neurosci. 1999,2(11):972-7.
    47. Matsuda S, Mikawa S, Hirai H.Phosphorylation of serine-880 in GluR2 by proteinkinase C prevents its C terminus from binding with glutamate receptor-interactingprotein.J Neurochem. 1999 Oct;73(4):1765-8.
    48. Ehlers MD,Fung ET,O 'Brien RJ,Huganir RL.Splice variantspecific interaction of theNMDA receptor subunit NRl with neuronal intermediate filaments.J Neurosci.1998.18:720- 730.
    49. Kim, C. H.&Lisman, J.E. A labile component of AMPA receptor-mediated synaptictransmission is dependent on microtubule motors, actin and N- ethylmaleimidesensitivefactor. J.Neurosci.2001.21,4 188-4194.
    50. Wyszynski M, Valtschanoff JG, Naisbitt S, Dunah AW, Kim E, Standaert DG,Weinberg R, Sheng M. Association of AMPA receptors with a subset of glutamatereceptor-interacting protein in vivo.J Neurosci. 1999 Aug 1;19(15):6528-37.
    51. Bruckner,K .et al .Ephrin B ligand srecruit GRIP family PDZ adaptor proteins into raftmembrane microdomains. Neuron.1999.22,511-524.
    52. Burette A, Wyszynski M, Valtschanoff JG, Sheng M, Weinberg RJ. Characterization ofglutamate receptor interacting protein-immunopositive neurons in cerebellum andcerebral cortex of the albino rat.J Comp Neurol. 1999 Sep 6;411(4):601-12.
    53. Sheng M, Pak DT.Glutamate receptor anchoring proteins and the molecularorganization of excitatory synapses.Ann N Y Acad Sci. 1999 Apr 30;868:483-93.
    54. Srivastava S, Osten P, Vilim FS, Khatri L, Inman G, States B, Daly C, DeSouza S,Abagyan R, Valtschanoff JG, Weinberg RJ, Ziff EB.Novel anchorage of GluR2/3 to thepostsynaptic density by the AMPA receptor-binding protein ABP.Neuron. 1998Sep;21(3):581-91.
    55. Zhang QG, Han D, Hu SQ, Li C, Yu CZ, Wang R, Zhang GY.Positive modulation ofAMPA receptors prevents downregulation of GluR2 expression and activates the Lyn-ERK1/2-CREB signaling in rat brain ischemia.Hippocampus. 2009 Mar 27. [Epubahead of print]
    56. Chudakova DA, Zeidan YH, Wheeler BW, Yu J, Novgorodov SA, Kindy MS, HannunYA, Gudz TI.Integrin-associated Lyn kinase promotes cell survival by suppressing acidsphingomyelinase activity.J Biol Chem. 2008 Oct 24;283(43):28806-16.
    57. Yang CC, Chien CT, Wu MH, Ma MC, Chen CF.NMDA receptor blocker amelioratesischemia-reperfusion-induced renal dysfunction in rat kidneys.Am J Physiol RenalPhysiol. 2008,294(6):F1433-40.
    58. Hota SK, Barhwal K, Singh SB, Sairam M, Ilavazhagan G.NR1 and GluR2 expressionmediates excitotoxicity in chronic hypobaric hypoxia.J Neurosci Res. 2008, 86(5):1142-52.
    59. 59..Petralia RS,Wang YX,Mayat E ,Wenthold RJ Glutamate receptor subunit 2-selective antibody shows a diferential distribution of calcium-impermeable AMPAreceptors among populations of neurons . J Comp Neuro1.1997.385:456-476.
    60. Hefferan MP, Kucharova K, Kinjo K, Kakinohana O, Sekerkova G, Nakamura S,Fuchigami T, Tomori Z, Yaksh TL, Kurtz N, Marsala M.Spinal astrocyte glutamatereceptor 1 overexpression after ischemic insult facilitates behavioral signs of spasticityand rigidity.J Neurosci. 2007 Oct 17;27(42):11179-91.
    61. Lecrux C, Nicole O, Chazalviel L, Catone C, Chuquet J, MacKenzie ET, TouzaniO.Spontaneously hypertensive rats are highly vulnerable to AMPA-induced brainlesions.Stroke. 2007 Nov;38(11):3007-15.
    62. Wyszynski M ,Lin J,Rao A,Nigh E,Beggs AH,Craig AM,Sheng M .Competitivebinding of alpha-actinin and calmodulin to the NMDA receptor. Nature . 1997.385:439-442.
    63. Formisano L, Noh KM, Miyawaki T, Mashiko T, Bennett MV, Zukin RS.Ischemicinsults promote epigenetic reprogramming of mu opioid receptor expression inhippocampal neurons.Proc Natl Acad Sci U S A. 2007, 104(10):4170-5.
    64. Hatip-Al-Khatib I, Iwasaki K, Egashira N, Ishibashi D, Mishima K, FujiwaraM.Comparison of single- and repeated-ischemia-induced changes in expression of flipand flop splice variants of AMPA receptor subtypes GluR1 and GluR2 in the ratshippocampus CA1 subregion.J Pharmacol Sci. 2007 Jan;103(1):83-91.
    65. Yuen EY, Gu Z, Yan Z.Calpain regulation of AMPA receptor channels in corticalpyramidal neurons.J Physiol. 2007 Apr 1;580(Pt 1):241-54.
    66. Liu B, Liao M, Mielke JG, Ning K, Chen Y, Li L, El-Hayek YH, Gomez E, Zukin RS,Fehlings MG, Wan Q.Ischemic insults direct glutamate receptor subunit 2-lackingAMPA receptors to synaptic sites.J Neurosci. 2006 May 17;26(20):5309-19.
    67. Xia J ,Chung,H .J.,Wihler,C.et a1.Cerebellar long term depression requires PKCregulatedinteractions between GIuR2/3 and PDZ domain-containing prote ins . Neuron.2002.28:499-510
    68. Talos DM, Fishman RE, Park H, Folkerth RD, Follett PL, Volpe JJ, Jensen FE.Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor subunit expression in forebrain and relationship to regional susceptibilityto hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex.J Comp Neurol.2006 Jul 1;497(1):42-60.
    69. Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ, JensenFE. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit expression in forebrain and relationship to regionalsusceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. JComp Neurol. 2006 Jul 1;497(1):61-77.
    70. KomauH -C,Schenker LT,Kennedy MB,Seeburg PH.Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995.269:1737-1740.
    71. Burack, M. A., Silverman, M. A&Banker, G. The role of selective transport inneuronal protein sorting.Neuron.2000.26,465-472
    72. Quintana P, Alberi S, Hakkoum D, Muller D.Glutamate receptor changes associatedwith transient anoxia/hypoglycaemia in hippocampal slice cultures.Eur J Neurosci.2006 Feb;23(4):975-83.
    73. Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D, Lau L, Liu S, LiuF, Lu Y.ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determinesvulnerability of neurons in forebrain ischemia.Neuron. 2006 Mar 2;49(5):719-33.
    74. Kittler JT.Censoring the editor in transient forebrain ischemia.Neuron. 2006 Mar2;49(5):646-8.
    75. Kanai,Y et al.KIF5C,a novel neuronal kinesin enriched in motor neurons.J .Neurosci.2000.20,63 74-6384.
    76.韩东,廖福龙,李文,梁日新,殷晓杰,王洪志冷光源光化学诱导局灶性脑梗塞及血管损伤半暗带大鼠模型.中国微循环,2001.5,71 -75.
    77. Kaur J, Zhao Z, Geransar RM, Papadakis M, Buchan AM.Prior deafferentation conferslong term protection to CA1 against transient forebrain ischemia and sustains GluR2expression.Brain Res. 2006 Feb 23;1075(1):201-12.
    78. Soundarapandian MM, Tu WH, Peng PL, Zervos AS, Lu Y.AMPA receptor subunitGluR2 gates injurious signals in ischemic stroke.Mol Neurobiol. 2005 Oct;32(2): 145-55.
    79.于炳新,吕传真脑缺血半暗带研究进展.中国临床神经科学,2002,1,96-98
    80. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV.Blockade ofcalcium-permeable AMPA receptors protects hippocampal neurons against globalischemia-induced death.Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12230-5.
    81. Pu F, Mishima K, Egashira N, Akiyoshi Y, Liu AX, Sano K, Irie K, Ishibashi D, Hatip-Al-Khatib I, Iwasaki K, Kurauchi K, Iwasaki K, Fujiwara M. Post-ischemic treatmentwith toki-shakuyaku-san (tang-gui-shao-yao-san) prevents the impairment of spatialmemory induced by repeated cerebral ischemia in rats.Am J Chin Med.2005;33(3):475-89.
    82. Zou S, Li L, Pei L, Vukusic B, Van Tol HH, Lee FJ, Wan Q, Liu F.Protein-proteincoupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptormediatedexcitotoxicity.J Neurosci. 2005 Apr 27;25(17):4385-95.
    83. Calderone A, Jover T, Mashiko T, Noh KM, Tanaka H, Bennett MV, Zukin RS.Latecalcium EDTA rescues hippocampal CA1 neurons from global ischemia-induceddeath.J Neurosci. 2004 Nov 3;24(44):9903-13.
    84. Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y.Expression of Ca2+-permeable AMPA receptor channels primes cell death in transient forebrainischemia.Neuron. 2004 Jul 8;43(1):43-55.
    85. Oguro K, Miyawaki T, Yokota H, Kato K, Kamiya T, Katayama Y, Fukaya M,Watanabe M, Shimazaki K.Upregulation of GluR2 decreases intracellular Ca2+following ischemia in developing gerbils.Neurosci Lett. 2004 Jul 1;364(2):101-5.
    86. Dijk F, Kamphuis W.Ischemia-induced alterations of AMPA-type glutamate receptorsubunit. Expression patterns in the rat retina--an immunocytochemical study.Brain Res.2004, 997(2):207-21.
    87. Deng W, Rosenberg PA, Volpe JJ, Jensen FE.Calcium-permeable AMPA/kainatereceptors mediate toxicity and preconditioning by oxygen-glucose deprivation inoligodendrocyte precursors.Proc Natl Acad Sci U S A. 2003, 100(11):6801-6.
    88. Anzai T, Tsuzuki K, Yamada N, Hayashi T, Iwakuma M, Inada K, Kameyama K, HokaS, Saji M.Overexpression of Ca2+-permeable AMPA receptor promotes delayed celldeath of hippocampal CA1 neurons following transient forebrain ischemia.NeurosciRes. 2003 May;46(1):41-51.
    89. Friedman LK, Segal M, VelískováJ.GluR2 knockdown reveals a dissociation between[Ca2+]i surge and neurotoxicity.Neurochem Int. 2003, 43(3):179-89.
    90. Calderone A, Jover T, Noh KM, Tanaka H, Yokota H, Lin Y, Grooms SY, Regis R,Bennett MV, Zukin RS.Ischemic insults derepress the gene silencer REST in neuronsdestined to die.J Neurosci. 2003, 23(6):2112-21.
    91. Yamashita S, Miyamoto O, Janjua NA, Tomizawa K, Matsui H, Nakamura T, Nagao S,Itano T.Role of the hippocampal CA2 region following postischemic hypothermia ingerbil.Brain Res Mol Brain Res. 2003, 111(1-2):8-16.
    92. Colbourne F, Grooms SY, Zukin RS, Buchan AM, Bennett MV.Hypothermia rescueshippocampal CA1 neurons and attenuates down-regulation of the AMPA receptorGluR2 subunit after forebrain ischemia.Proc Natl Acad Sci U S A. 2003, 100(5):2906-10.
    93. Sommer C, Kiessling M.Ischemia and ischemic tolerance induction differentiallyregulate protein expression of GluR1, GluR2, and AMPA receptor binding protein inthe gerbil hippocampus: GluR2 (GluR-B) reduction does not predict neuronaldeath.Stroke. 2002 Apr;33(4):1093-100.
    94. Jover T, Tanaka H, Calderone A, Oguro K, Bennett MV, Etgen AM, ZukinRS.Estrogen protects against global ischemia-induced neuronal death and preventsactivation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci. 2002,22(6):2115-24.
    95. Tanaka H, Calderone A, Jover T, Grooms SY, Yokota H, Zukin RS, BennettMV.Ischemic preconditioning acts upstream of GluR2 down-regulation to affordneuroprotection in the hippocampal CA1.Proc Natl Acad Sci U S A. 2002 Feb19;99(4):2362-7.
    96. Wrang ML, M?ller F, Alsbo CW, Diemer NH.Changes in gene expression followinginduction of ischemic tolerance in rat brain: detection and verification.J Neurosci Res.2001 Jul 1;65(1):54-8.
    97. Ralph GS, Bienemann A, Ma J, Tan HK, Noel J, Henley JM, Uney JB. Disruption ofthe GluR2-NSF interaction protects primary hippocampal neurons from ischemic stress.Mol Cell Neurosci. 2001 Apr;17(4):662-70.
    98. Grossman SD, Rosenberg LJ, Wrathall JR.Relationship of altered glutamate receptorsubunit mRNA expression to acute cell loss after spinal cord contusion.Exp Neurol.2001 Apr;168(2):283-9.
    99. Alsbo CW, Wrang ML, M?ller F, Diemer NH.Is the AMPA receptor subunit GluR2mRNA an early indicator of cell fate after ischemia? A quantitative single cell RT-PCRstudy.Brain Res. 2001, 894(1):101-8.
    100. Tanaka H, Grooms SY, Bennett MV, Zukin RS.The AMPAR subunit GluR2: still frontand center-stage.Brain Res. 2000, 886(1-2):190-207.
    101. Opitz T, Grooms SY, Bennett MV, Zukin RS.Remodeling of alpha-amino- 3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit composition in hippocampalneurons after global ischemia. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24): 13360-5.
    102. Iizuka M, Nishimura S, Wakamori M, Akiba I, Imoto K, Barsoumian EL.The lethalexpression of the GluR2flip/GluR4flip AMPA receptor in HEK293 cells.Eur JNeurosci. 2000, 12(11):3900-8.
    103. Alsbo CW, Wrang ML, Nielsen M, Diemer NH.Ischemic tolerance affects theadenylation state of GluR2 mRNA.Neuroreport. 2000, 11(14):3279-82.
    104. Kj?ller C, Diemer NH.GluR2 protein synthesis and metabolism in rat hippocampusfollowing transient ischemia and ischemic tolerance induction. Neurochem Int. 2000,37(1):7-15.
    105. Alsbo CW, Wrang ML, Johansen FF, Diemer NH.Quantitative PCR analysis of AMPAreceptor composition in two paradigms of global ischemia. Neuroreport. 2000 Feb7;11(2):311-5.
    106. Friedman LK, Belayev L, Alfonso OF, Ginsberg MD.Distribution of glutamate andpreproenkephalin messenger RNAs following transient focal cerebral ischemia.Neuroscience. 2000;95(3):841-57.
    107. Oguro K, Oguro N, Kojima T, Grooms SY, Calderone A, Zheng X, Bennett MV,Zukin RS.Knockdown of AMPA receptor GluR2 expression causes delayedneurodegeneration and increases damage by sublethal ischemia in hippocampal CA1and CA3 neurons.J Neurosci. 1999, 19(21):9218-27.
    108. Myers SJ, Dingledine R, Borges K.Genetic regulation of glutamate receptor ionchannels.Annu Rev Pharmacol Toxicol. 1999;39:221-41.
    109. Yamaguchi K, Yamaguchi F, Miyamoto O, Hatase O, Tokuda M.The reversiblechange of GluR2 RNA editing in gerbil hippocampus in course of ischemic tolerance.JCereb Blood Flow Metab. 1999 Apr;19(4):370-5.
    110. Yoon YH, Jeong KH, Shim MJ, Koh JY.High vulnerability of GABA-immunoreactiveneurons to kainate in rat retinal cultures: correlation with the kainate-stimulated cobaltuptake.Brain Res. 1999 Mar 27;823(1-2):33-41.
    111. Ben-Ari Y, Khrestchatisky M.The GluR2 (GluRB) hypothesis in ischemia: missinglinks.Trends Neurosci. 1998,21(6):241-2.
    112. Le D, Das S, Wang YF, Yoshizawa T, Sasaki YF, Takasu M, Nemes A, MendelsohnM, Dikkes P, Lipton SA, Nakanishi N.Enhanced neuronal death from focal ischemia inAMPA-receptor transgenic mice.Brain Res Mol Brain Res. 1997, 52(2):235-41.
    113. Washburn MS, Numberger M, Zhang S, Dingledine R.Differential dependence onGluR2 expression of three characteristic features of AMPA receptors.J Neurosci. 1997Dec 15;17(24):9393-406.
    114. Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS.The GluR2 (GluR-B)hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders.TrendsNeurosci. 1997, 20(10):464-70.
    115. Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MV, ConnorJA, Zukin RS.Global ischemia induces downregulation of Glur2 mRNA and increasesAMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil.JNeurosci. 1997,17(16):6179-88.
    116. Rump A, Sommer C, Gass P, Bele S, Meissner D, Kiessling M.Editing of GluR2 RNAin the gerbil hippocampus after global cerebral ischemia.J Cereb Blood Flow Metab.1996, 16(6):1362-5.
    117. Paschen W, Schmitt J, Uto A.RNA editing of glutamate receptor subunits GluR2,GluR5 and GluR6 in transient cerebral ischemia in the rat.J Cereb Blood Flow Metab.1996, 16(4):548-56.
    118. Hof PR, Vissavajjhala P, Rosenthal RE, Fiskum G, Morrison JH.Distribution ofglutamate receptor subunit proteins GluR2(4), GluR5/6/7, and NMDAR1 in the canineand primate cerebral cortex: a comparative immunohistochemical analysis.Brain Res.1996, 723(1-2):77-89.
    119. Blümcke I, Wolf HK, Hof PR, Morrison JH, Wiestler OD.Regional distribution of theAMPA glutamate receptor subunits GluR2(4) in human hippocampus. Brain Res.1995,682(1-2):239-44.
    120. Pellegrini-Giampietro DE, Pulsinelli WA, Zukin RS.NMDA and non-NMDA receptorgene expression following global brain ischemia in rats: effect of NMDA and non-NMDA receptor antagonists.J Neurochem. 1994, 62(3):1067-73.
    121. Pellegrini-Giampietro DE, Zukin RS, Bennett MV, Cho S, Pulsinelli WA. Switch inglutamate receptor subunit gene expression in CA1 subfield of hippocampus followingglobal ischemia in rats.Proc Natl Acad Sci U S A. 1992, 89(21):10499-503.
    122. McDonald JM, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP. Oligodendrocytesfrom forebrain are highly vulnerable to AMPA/kainite receptor-mediated excitotoxicity.Nature Med. 1998, 4:291-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700