用户名: 密码: 验证码:
陶瓷膜过滤技术在拟薄水铝石生产中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟薄水铝石作为一种重要的化学品氧化铝产品,目前被应用于石化裂化催化剂(FCC)的生产过程中。该产品具有一定的粘结性和丰富的孔结构,与其他的组分一起对催化剂的活性起到决定性的作用,同时它对催化剂的强度等指标也有一定的影响。目前,中国铝业山东分公司,拟薄水铝石的生产工艺相对稳定,但洗涤过程的工艺和设备相对落后,洗涤水耗偏高,回收率低,自动化程度低,劳动环境恶劣。
     为有效解决问题,本研究首先在实验室规模进行了研究,探索了渗透膜、电渗析、超滤膜、微滤膜等几种膜过滤工艺对拟薄水铝石生产过程及产品质量的影响规律。研究结果表明:
     1、应用反渗透膜,两级反渗透膜设备的脱盐率比较高,但全过程需要在30℃左右进行。并且有机反渗透膜在碱性条件下的老化问题比较严重;
     2、电渗析过程中:浆液温度在35-38℃,流量为200L/h,电场强度应控制在600-900 V/m之间,膜组件为96对为宜;
     3、采用0.6μm陶瓷膜过滤效果比较好,处理能力达到1~2m3/m2h,经过对实验数据的比较和筛选,该研究拟采用以无机陶瓷膜过滤作为本工艺过滤技术。
     在上述基础上进行了工业化扩大试验,确定了工业化生产路线及技术参数,采用错流过滤平流洗涤的方式,料浆的固含为100g/L左右,温度为70-95℃,设备酸洗周期为30h,酸液浓度为1%。工业化运行结果表明:无机陶瓷膜过滤工艺具有洗涤水耗低,回收率高,流程简单等特点,通过与相关设备公司的合作,全程实现自动化控制,提高了生产效率,改善了工作环境,减少人为质量影响点。目前该工艺应用于生产高品质的特殊要求的高纯拟薄水铝石的生产中。
As a very important chemical aluminum oxides product, pseudoboehmite is widely applied in the preparation of FCC. This production is viscous and enrichment of pored-structure, which can decide the activation of FCC with the other components and also influence the strength of FCC. Up to now, the preparation technology of pseudoboehmite in Shangdong Filiale of Chinese Aluminum Company is relatively stable, but the facilities and washing technology are relatively behind the times, which result in the large amount of the washing water, low rate of recovery, low automaching and low enviromental-friend.
     This paper investigated the influence of different membranes and technoloy parameters on the quality of pseudoboehmite firstly in lab. The results showed as following:
     1. The desalinization of the equipemnt with two layers reverse osmosis membrane is high, but the process need to be operated at about 30℃, and the organic reverse osmosis membrane gets older seriously in the alkaline condition.
     2. The optimum parameters of electrodialysis are 35~38℃temperature,2001/h flowing rate, 600-900 V/m electrical field strength and 96 membrane.
     3. The handling capacity of 0.66μm ceramic membrane can be 1-2m3/m2-h. After comparison, the inorganic ceramic membrane is selected to be applied in this study.
     Based on the results of the experiments in lab, experiments in industrialization were carried out and the technological route and parameters are detemined:laminar filtration and stratospheric washing, slurry with about 100g/L solid content,70-95℃temperature,30h acid washing period, and 1% acid content. The results of industrial experiments showed that the inorganic ceramic membrane technology has the following properties:low amount of washing water, high rate of recovery, simple operating flow. After co-operation with the according company, the whole processing has been relized to be automatic control, which improves the production efficiency and working environment, lowers human impact. Up to now, the inorganic ceramic membrane technology has been applied in the production of high quality and purity pseudoboehmite.
引文
[1]朱德学,李翔,刘延东.温度对拟薄水铝石生产的影响初探[J].世界有色金属,2005年增刊,125-128.
    [2]吴金坤.氢氧化铝的精细化及其在无卤化阻燃剂技术中的应用[J].化工进展.1999,(2):50~53.
    [3]李翔,刘延东.拟薄水铝石的应用[J].铝镁通讯.2009,(4):18-19.
    [4]高慎琴,潘永密.化工机器[M].北京:化学工业出版社,1992:129-145.
    [5]唐谟堂.有色冶金设备(下)[M].长沙:中南工业大学教材科,1999:178-189.
    [6]刘茉娥.膜分离技术[M].北京:化学工业出版社,2000:65-168.
    [7]蒋维钧,余立新.新型传质分离技术(第二版)[M].北京:化学工业出版社,2006:213-276.
    [8]徐南平.面向应用过程的陶瓷膜材料设计、制备与应用[M].北京:科学出版社,2005:278-298.
    [9]邢卫红,童金忠,徐南平等.陶瓷微滤膜回收钛白粉水洗液中TiO2颗粒中试与现场考核[J].化学工程,2001,29(3):44-48.
    [10]徐南平,薛晓波.江苏久吾高科技股份有限公司产品说明书[M].南京:南京大学出版社,2002:4-9.
    [11]王二星,刘焦萍,武福运.氢氧化铝在造纸及有机材料领域的应用[J].非金属矿.1999,22(5):21~29.
    [12]罗玉长.拟薄水铝石结构的演化[J].轻金属,2001(2):10~12.
    [13]郑淑琴,庞新梅,刘宏海等.硫酸铝合成拟薄水铝石英钟的研究及在催化裂化催化剂上的应用[J].化工进展,2002,21(5):331~333.
    [14]罗玉长,毕亚娟,罗鹤鹏.Na2O在Al(OH)3颗粒中的赋存状态及煅烧过程的行为[J].粉体技术,1995,(1):12~17.
    [15]李凯荣,谭克勤,杨祖润等.加氢转化脱硫催化剂载体γ-AL203的改进及对催化剂性能的影响[J],无机盐工业.2003,35(2):31~34.
    [16]侯春楼,刘今,吴若琼等.拟薄水铝石逆流洗涤研究[J].中南工业大学学报,1997,28(3):238~241.
    [17]杨清河,李大东,庄福成等.NaAl02.C02法制备拟薄水铝石规律的研究[J].石油炼制 与化工,1999,30(4):59~63.
    [18]张启修,张传福.离子交换膜分离技术在冶金中的应用[J].膜科学与技术,2001,(2):28-32.
    [19]徐南平,刑卫红,赵宜江等.无机膜分离技术与应用[J].北京:化学工业出版社,2003,(3): 34-164.
    [20]赖炜.中国科技大学硕士学位论文[J].2001,97(1):68-71.
    [21]张昭.无机精细化工工艺学(第二版)[M].北京:化学工业出版社,2005:203-293.
    [22]高松平,刘有智.陶瓷膜处理含有超细颗粒的乳化悬浮液时膜预处理工艺的研究[J].化学工程师,2005,(8):29~31.
    [23]周健儿,王艳香,马光华.溶胶-凝胶法制备超滤Al2O3膜的研究Ⅰ勃姆石溶胶的制备[J].陶瓷学报,1999,2,87-91.
    [24]徐南平.无机膜研究进展[J].化工进展.,1995,(1):45~48.
    [25]徐南平.无机膜在工业废水处理过程中的应用与展望[J].膜科学与技术,2000,(3):23~28.
    [26]钟璟,徐南平,时钧.经自来水污染后的无机陶瓷微滤膜再生方法研究[J].膜科学与技术,1996,16(3):46-51.
    [27]罗益军,刘文权,蒋建平.硅溶胶堵塞陶瓷过滤板机理初探[J].江苏陶瓷,2009,42(3):7-10.
    [28]Zhang Guojun,Liu Zhongzhou.Membrane fouling and cleaning in ultrafiltration of wasterwater from banknote printing works[J].J Membra Sci,2003,211:235-249.
    [29]Chen J C,Li Qilin,Elimelech M.In situs monitoring techniques for concentration polarization and fouling phenomena in membrane filtration[J].Adv Colloid Interf Sci,2004,107:83-108.
    [30]Winston W S,Sirkar K K.Membrane handbook[M].New York:Van Nostrand Reinhold,1992:25-56.
    [31]Bhave R R.Inorganic membranes synthesis characteristics and application[M].New York:Van Nostrand Reinhold,1991:135-180.
    [32]Zhang Guojun,Liu Zhongzhou.Membrane fouling and cleaning in ultrafiltration of wasterwater from banknote printing works[J].J Membra Sci,2003,211:235-249.
    [33]Yeh H M,Cheng T W. Membrane fouling and cleaning[J]. Sep Sci Technol,1993,28:1341.
    [34]Ousman M,Minisic V J. Monitoring techniques for concentration polarization[J]. Membtta Sci.1995,105:1.
    [35]周健儿,王艳香,马光华.溶胶-凝胶法制备超滤Al2O3膜的研究Ⅰ勃姆石溶胶的制备[J].陶瓷学报,1999,2,87~91.
    [36]曾厚旭,雷霆,等.新型过滤技术在细晶粒分子筛过滤过程中的应用探索[A].第4届全国工业催化技术及应用年会[C],2007:489-491.
    [37]周文辉.陶瓷膜过滤器在微粉氢氧化铝生产中的应用[J].过滤与分离,2009,19(2):43~47.
    [38]王甚,张新妙,武文娟.操作条件对死端微滤膜通量的影响[J].膜科学与技术,2006,26(1):26-60.
    [39]牟旭风,陈红盛,白庆中.陶瓷纳滤膜处理淋浴污水及膜的清洗[J].水处理技术,2006,32(7):52-54.
    [40]邢卫红,翻益群,徐南平.无机陶瓷膜应用过程的进展[J].膜科学与技术,2003,23(4):86-91.
    [41]雷晓东,熊蓉春,魏刚.膜分离法污水处理技术[J].工业水处理,2002,22(2):1-3.
    [42]王世昌,丁涛,王志.膜技术在生态环境治理中的应用[J].膜科学与技术,2006,26(3):1-5.
    [43]钟璟,赵宜江,李红,等.陶瓷微滤膜回收偏钛酸过程中的污染机理[J].高校化工学报,1998,12(20):136.
    [44]Pontie M,Rapenne S,Thekkedath A,et al.Tools for membrane autopsies and antifouling strategies in seawater feeds:a review[J].Desalination,2005,181:75-90.
    [45]陈士冰,王世峰,辛旭亮,李亮.多孔陶瓷过滤材料的研究进展.山东轻工业学院学报,2009,23(2):1 7~20.
    [46]丁星兆,董远达.溶胶凝胶工艺在材料科学中的应用[J].材料科学与工程,1994,(6):1-8.
    [47]王志,杨毅宏,等.碳酸化分解的机理研究与进展[J].轻金属,2001,(3):24-27.
    [48]李教,彭益云,贾传宝.降低拟薄水铝石生产中新水消耗的几种途径[J].有色冶金节能,2009,8(4):19-20.
    [49]马艳红,陈玮,史志荣.拟薄水铝石溶胶-凝胶过程的影响因素研究[J].轻金属,2009,(6):11~13.
    [50]Vasant R C,Prabhse J.Direct oxidation of H2 to H2O2 over PdO/A12O3 catalysts in aqueous acidic medium:Influence on H2O2 formation of Pd loading,calcination temperature and reduetion of catalyst and presence of halide anions[J].Catalysis Communications,2008,9(14):2371-2375.
    [51]Cai wei-quan,li hui-quan,zhang yi.Preparation of Pseudoboehmite from Hydrothermally Supersaturated Sodium Aluminate Solution with SB Seed[J]. CHINESE JOURNAL OF INORGANIC CHEMISTRY,2006,22(7):1303-1306.
    [52]Yuefeng yanjianping zhi,gaoyong zhang.Exothermal Water Release from Pseudoboehmite Gels and Their Mechanically Treated Analogs Caused by Activated Hydrogen[J]. JOURNAL OF NATURAL GAS CHEMISTRY,2005,14:181-188.
    [53]Reinhard Stosser, Michael Feist.Exothermal Water Release from Pseudoboehmite Gels and Their Mechanically Treated Analogs Caused by Activated Hydrogen[J]. The journal of physical chemistry, C, Nanomaterials and interfaces,2008,112(42):16438-16444.
    [54]张哲良,杨清河,聂红等.NaAl02-Al2(S04)3法制备拟薄水铝石成胶机理的研究[J].石油化工,2003,32(7):522~525.
    [55]陈启元,曾文明,张平民,等.几种铝化合物的热力学性质[J].金属学报,1996,32(1):6-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700