用户名: 密码: 验证码:
316L不锈钢表面Cr_2O_3涂层的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚变反应中的防氚渗透问题是堆用材料学领域的关键问题之一。316L不锈钢塑性好、强度高、氚渗透率低,是聚变堆包层很有希望的候选结构材料之一,在316L不锈钢表面制备氧化物涂层对于进一步提高其阻氚渗透有重要的应用价值。本文提出了采用双层辉光离子渗金属技术在316L不锈钢表面制备氧化铬涂层。
     首先以高纯铬靶作为源极,采用双层辉光离子渗金属技术在316L不锈钢表面制备了渗铬涂层。通过分析双层辉光离子渗金属技术中各工艺参数对涂层制备的影响,确定了渗铬工艺参数为:源极电压900V,工件极电压350V,气压35Pa,极间距10mm,占空比0.82;采用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)和透射电子显微镜(TEM)对涂层进行组织结构分析,结果发现渗铬时间为1h时,涂层表面主要形成的是铬在铁中的固溶体和少量的纯铬沉积层;随着渗铬时间的增加,基体中的碳元素出现了向外迁移的现象,涂层表面出现了铬的沉积层,室温下涂层由表及里的组织分别为铬的沉积层+铬在铁中的固溶体层+铬碳化物层。
     在渗铬层表面进一步采用双层辉光离子渗氧法制备了氧化铬涂层。渗氧工艺参数为:源极电压650V,工件极电压350V,气压35Pa,极间距为10mm,占空比0.82。重点研究了氧流量对涂层组织结构的影响,结果表明,氧流量较低时,涂层表面主要是纯铬相和极薄的Cr2O3层,且表面疏松;随氧流量的增加,涂层表面出现明显的氧化铬层,并且出现了择优生长的现象。此外,双层辉光离子渗氧后涂层的耐磨性和耐蚀性都比基体有明显的提高,且具有良好的抗热震性能。其中,氧流量为10sccm时涂层具有最佳的综合性能。
To prevent the permeation of tritium through the structures of a fusion reactor is a key issue to fusion materials. Having an excellent deformative ability, high strength and low tritium permeability, 316L stainless steel is one of the most promising materials. To prepare oxide coatings on the surface of 316L stainless steel is an important approach to improve the resistance of tritium permeation in fusion reactor. In this dissertation, it was proposed to prepare chromium oxide coatings on 316L stainless steel by means of double glow plasma technique.
     The chromized layer was formed on the substrate with pure chromium target firtly. After the analysis on the effects of the parameters on the coating qualities, the parameters for chromizing were obtained as follows: source polar voltage 900V, workpiece polar voltage 350V, the distance between the two polar 10mm, working pressure 35Pa, duty ratio of impulsing power source 0.82. The microstructure and compositon of the coatings were characterized respectively with the aid of scanning electron microcope (SEM), energy dispersion X-ray spectrum (EDS), X-ray diffraction (XRD) and transmission electron microscope (TEM). The results indicated that the chromized layer consisted of solid solution layer of Cr in Fe and a small amount of Cr deposition layer after one hour treatment. With the increase of chromizing time, carbon element in the matrix diffused from the substrate to chromized layer. Thus, the coatings were mainly composed of Cr deposition layer + the solid solution of Cr in Fe + chromized carbide from the surface to the substrate.
     Then, chromium oxide coatings were gained by the double glow plasma oxidation treatment at different oxygen flow rates. And the parameters for oxidation were set as follows: source polar voltage 650V, workpiece polar voltage 350V, the distance between the two polar 10mm, working pressure 35Pa, duty ratio of impulsing power source 0.82. The researches focus on the effect of different oxygen flow rate on the microstructure of the chromium oxide coatings. The results showed that the coating consisted of pure Cr and thin Cr2O3 layer with loosen structure at a low oxygen flow rate. And the oxygen flow rate was beneficial to the preferential growth of chromium oxide coating. Moreover, the wear resistance, corrosion resistance and thermal shock resistance properties of the chromium oxide coatings were greatly improved comparing to the substrate. It was also found that the coating prepared at the oxygen flow rate of 10 sccm exhibited the best conbined properties.
引文
[1]丁厚昌,黄锦华.受控核聚变研究的进展和展望[J].自然杂志, 2006, 28 (3): 143-149.
    [2]王佩璇,宋家树.材料中的氦及氚渗透[M].北京:国防工业出版社, 2002, 53-79.
    [3]钱家溥.中国聚变堆材料研究[A].见: 96中国材料研讨会论文集[C].北京:化学工业出版社, 1998, 215-222.
    [4] Bamati G. Tritium Permeation Barrier[M]. Technical Evaluation Report, 1999, 3: 79-81.
    [5]许增裕.聚变材料的现状和展望[J].原子能科学技术, 2003, 37: 105-109.
    [6]姚振宇.聚变堆包层材料不同涂层的防氚渗透性能研究[D].北京:中国原子能科学研究院, 2001, 89-93.
    [7]师昌绪.材料科学大词典[M].北京:化学工业出版社, 1994, 146-273.
    [8]卡恩PW,哈森P,克雷默EJ.核材料II[M].北京:科学出版社, 1999, 342-353.
    [9] Alefeld G, Volkl J. Hydrogen in Metal [M]. Berlin: Spingger-verlag, 1978, 121-125.
    [10] Smith D L, Konys J, Muroga T, etal. Development of coatings for fusion power applications [J]. Journal of Nuclear Materials, 2002, 307-311: 1314-1322.
    [11] Benamati G, Chabrol C, Perujo A. Development of tritium permeation barriers on A1 base in Europe[J]. Nuclear Materials, 1999, 271: 391.
    [12] Roux N,吴继红.陶瓷增殖材料的发展[J].国外核聚变, 2000, 3: 8-10.
    [13] Gasparotto M, Boccaccini LV, Giancarli L, et a1. Demo blanket technology R&D results in EU[J]. Fusion Engineering and Design, 2002, 61: 263-264.
    [14]任大鹏,邹觉生,陈锡瑶.不锈钢充氚后的微观组织研究[J].机械工程材料, 2002, 26(8):15.
    [15]陶杰,周建初,朱正吼,等.金属表面功能涂层基础[M].北京:航空工业出版社, 1999, 184.
    [16] Yoshjj K, Suzaki Y, Takeuchi A, etal. Crystallization Behaviour of Amorphour SiC Films Prepared by R F Sputlering[J]. Thin Solid Films, 1991, 199: 85-87.
    [17]刘兴钊,黄秋荣,杜家驹. HR-1型奥氏体不锈钢镀Cr2O3及TiN膜复合材料的气相氢渗透研究[J].核科学与工程, 1997, 9: 283-286.
    [18] Hones D, Iserens M, Levy F. Characterization of sputter-deposited chromium oxide thin films[J]. Surf Coat Technol, 1999, 120-l21: 277.
    [19] Bhushan B, Theunissen G S A M, Li X D. Tribological studies of chromium oxide films for magnetic recording applications[J]. Thin Solid Films, 1997, 311: 67-69.
    [20] Sourty E, Sullivan J L, Bijker M D. Chromium oxide coatings applied to magnetic tape heads forimproved wear resistance[M]. HboI Inter, 2003, 36: 389.
    [21] Contoux G, Cosset F. Celerier AMachet [J]. Thin Solid Films, 1997, 292: 75-78.
    [22] Bermudez V M, Desisto J J .Vac Sci Techno, 2001, 19: 576.
    [23] Stanoi D, Socol G. Chromium oxides thin films prepared and coated in situ with gold by pulsed laser deposition[J]. Marerials Science and Engineering, 2005, 118: 74-78.
    [24] Priyantha W, Waddill G D. Structure of chromium oxide ultrathin films on Ag(111) [J]. Surface Science, 2005, 578: 149-161.
    [25] Hyo-Sok A, Oh-Kwan K. Tribological behaviour of plasma-sprayed chromium oxide coating[J]. Wear, 1999, 225/229: 814-824.
    [26]纪爱玲,汪伟.电弧离子镀氧化铬涂层的组织结构及硬度[J].金属学报, 2003, 39(9):979-983.
    [27] Wang D, Lin J, Wei Y. Study on chromium oxide synthesized by unbalanced magnetron sputtering[J]. Thin Solid Films, 1998, 332: 295-299.
    [28] Hones P, Diserens M, Levy F. Characterization of sputter-deposited chromium oxide thin films[J]. Surface and Coatings Technology, 1999, 120/121: 277-283.
    [29] Lee J W, Duh J G, Tsai S Y. Surf Coat Technol, 2003, 153: 59-62.
    [30]利霍维奇.金属和合金的化学热处理手册[M].上海科学技术出版社, 1986, 262-271.
    [31] Wagner C. Reaaktionstypen beider oxydation von legierungen [J]. Zeitschrift fur Elektrochemie, 1995, 63: 772-782.
    [32] Wagner C. Theoretical analysis of the diffusion processes determining oxidation rates of alloys [J]. Electrochem Soc, 1952, 99: 369-373.
    [33]李正伟.金属高温氧化中的一些基础问题研究[D].北京科技大学博士论文, 2000, 6: 116-160.
    [34]陈长军,张敏,马红岩,常庆明. BT20钛合金表面渗氧研究[J].功能材料, 2008, 3 (39): 439.
    [35]马红岩,王茂才,魏政.钛合金的高温固态渗氧一扩散固溶复合处理[J].稀有金属材料与工程, 2007(36): 686.
    [36]郑传林,徐重,谢锡善,贺志勇.钛等离子渗氧研究[J].北京科技大学学报, 2002(l): 44-46.
    [37] Bell T, Dong H. Surface engineering of titanium-the metal for the 21st century[A]. Proceedings of 12th IFHTSE Congress[C]. Australia: Melbourne, 2000, 1-10.
    [38] Boettcher C. Deep case hardening of titanium alloys with oxygen[J]. Surface Engineering, 2000, 16(2): 148-152.
    [39]徐重,王从曾,苏隶安,等.离子渗钨钼技术在手用钢锯上的应用研究[J].金属热处理, 1988,3: 23.
    [40]周孝重.等离子体热处理技术[M].北京:机械工业出版社, l990, 9-13.
    [41]汪泓宏,田民波.离子束表面强化[M].北京:机械工业出版社, 1992, 44.
    [42]高原,徐重.离子渗金属阴极表面空位浓度分布及对扩散的影响[J].真空科学与技术, 1993(12): 53-55.
    [43]周开亿.空心阴极放电及其应用[M].北京:真空科学与技术出版社, 1982, 7-8.
    [44]徐重,王振民,古凤英.双层挥光离子渗金属[J].热处理学报, 1982, 1: 71.
    [45] Xu Zhong. Double Glow Surface Alloying Process. Third Pacific Rim Intemationnal Conference On Advaneed Materials and Processing. Hawaii, 1998, 1969.
    [46]范本惠,潘俊德,徐重. A3钢板等离子镍铬共渗[J].金属热处理, 1988(9): 37-39.
    [47]古风英,贺志勇,高原.铸铁为基双层辉光离子渗金属[J].太原工业大学学报, 1993(1): 21-26.
    [48]徐重,等.离子表面冶金技术的现状与发展[J].中国工程科学, 2002, 4(2): 36-41.
    [49]徐重,王振民.金属钛对氮化过程的强化及其机理探讨[J].航空工艺技术, 1978, 7: 1-4.
    [50] Li Chengji, Xu Zhong. Diffusion mechanism of ion bombardment[J]. Surface Engineering, 1987, 4: 310-312.
    [51]池成忠,等.双辉低温(560℃)等离子渗铬的工艺研究[J].太原理工大学学报, 2003, 31(3): 275.
    [52]池成忠,高原. T8钢的低温双辉等离子渗铬研究[J].太原理工大学学报, 2003, 34(3): 285.
    [53]贺志勇,高原,古凤英,等.双层辉光离子渗金属技术中的离子轰击行为[J].真空学报, 1995, 5(1): 29-35.
    [54]郑英,高原.碳素工具钢560℃双辉等离子渗铬硬化的研究[J].真空科学与技术出版社, 1995, 5(1): 35-38.
    [55]范本惠,潘俊德,徐重,等. 20钢复合渗铬中的相变[J].金属热处理, 1999(5): 13-15.
    [56]倪宏昕,单丽云,王超,等.预先氮碳共渗对渗铬和渗钒的影响[J].金属热处理, 1999, 6: 13-15.
    [57]池忠成,等.表面渗铬T8钢中碳迁移的热力学分析[J].金属热处理, 1988, 3: 23.
    [58]池忠成,等.碳素工具钢表面低温双辉等离子渗铬硬化的研究[J].真空科学与技术出版社, 1995, 5(1): 23.
    [59]孔德谆.化学热处理原理[M].北京航空工业出版社, 1991, 177-232.
    [60]贺志勇,等.钢的离子渗铬层组织及表面应力研究[J].功能材料. 2008, 3(39): 439-443.
    [61] Pulugurtha S R, Bhat D G, Gordon M H, Shultz. Effect of substrate orientation on film propertiesusing AC reactive magnetron sputtering[J]. Surface & Coatings Technology, 2007(22): 755–761.
    [62]王德仁,何业东,李顺华,高唯. Ag-In合金在不同氧分压下的氧化现象[J].中国腐蚀与防护学报, 2002(22): 25-34.
    [63]郑传林,徐重,谢锡善,等.钛等离子渗氧研究[J].北京科技大学学报, 2002, 24(1): 44-46.
    [64] Stierle A, Zabel H, Kinetics of Cr2O3 growth during the oxidation of Cr(110) [J]. Surface Science, 1997, 385(1): 167-168.
    [65] Lian Jianshe, Dong Qizh, Guo Zuoxin, Xu Qin, Yang Jing. Surface oxidation kinetics of Cr film by Nd-YAG laser[J]. Materials Science and Engineering, 2005, 391: 210-220.
    [66]蒙继龙,吴护林,邹敢锋,等.钢的离子渗铬层组织及表面应力研究[J].华南理工大学学报, 1995, 23(2): 15-16.
    [67]孙成文,陈深.碳钢与不锈钢表面高浓度渗铬法[J].材料科学与工艺, 1997, 5(3): 84-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700