用户名: 密码: 验证码:
Mo、Nb、C/C表面双辉Ir涂层制备及其结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铱具有优异的高温抗氧化性能,是目前唯一能同时满足高温强度、高熔点和优异抗氧化性的贵金属,可作为难熔金属钼、铌和碳/碳复合材料抗氧化涂层。本研究采用双层辉光等离子表面合金化技术制备铱涂层,采用扫描电镜、X-射线衍射仪和光学显微镜等分析手段分析铱涂层的表面形貌和微观结构,并利用划痕仪、纳米压入和氧-乙炔焰烧蚀等测试手段对铱涂层进行性能表征。
     研究结果表明,工艺参数、基体对铱涂层的表面形貌,沉积速率,(220)晶面优先生长程度等都有较大影响。难熔金属与铱涂层之间结合较好,界面处存在一个两元素共存的共混区,共混区内,基体、涂层元素呈梯度分布;铱涂层呈柱状晶,生长方向垂直于基体表面。纳米压入研究表明,同种基体上铱涂层的应力状态均匀性较好,不同基体上涂层应力状态不同,从而导致涂层的表面硬度、弹性模量差异较大。烧蚀实验研究表明,烧蚀失效主要体现在基体氧化后蒸发,气体冲蚀铱涂层导致其起泡和脱落;铱涂层高温状态下由柱状晶转变为等轴晶导致晶界处有微孔出现;由于涂层未完全涂敷基体表面,基体有不同程度的氧化。
     本研究采用双层辉光等离子表面合金化技术首次制备铱涂层,研究发现利用该方法制备的涂层具有(220)晶面择优取向,并对这一现象从涂层晶粒间应变能密度方面进行了分析讨论;提出了铱涂层界面处共混区的概念,共混区内涂层元素、基体元素呈梯度分布,对共混区的形成过程进行了模型解释。
Iridium has excellent properties of oxidation resistance and high strength at high temperature. In this dissertation, Iridium coatings were prepared on the surfaces of molybdenum, niobium and carbon/carbon substrates by double glow plasma technique. The microstructure and the morphology of the coatings were systematically investigated by scanning electron microscope, x-ray diffraction and microscope. The binding performance, mechanic property and quality parameters were measured by the scratch test measurement and nano-indendation, respectively. The ablation property of the Iridium coating was evaluated by oxy-acetylene torch in the temperature range of 1800~2000oC.
     The quality of the coating was related to the process parameters. The micromorphology, the deposition ratio and the (220) preferential growth orientation of the Iridium coating were determined by the process parameters and the substrates. The coating/substrate interface exhibited excellent adhesion with no evidence of delamination. A buffer layer, which combined the elements of the substrate and the target, presented between the coating and the substrate. The element concentration distributed gradiently along the depth of the buffer layer. The coating was composed of lots of columnar crystals which had embedded mode. The growth direction of these columnar crystals was perpendicular to the surface of the substrate. The mechanical properties of the coating were different for the different substrates. The difference of the stress state resulted from the deposition process and the thermal stress. One failure mode of the coating under oxy-acetylene torch at high temperature was the surface blistering for the oxidation of the substrate. Another failure model of the coating was the recrystallization from the column crystal to equiaxed grain that result in the micropore in the grain boundary. Because the substrates were not fully covered by the coating, the substrates were oxidized during ablation.
     Iridium coating was firstly prepared on the refractory materials by double glow plasma technique. There were two new phenomena in the experiment. The first was the (220) preferential growth orientation which was explained by the strain energy density between the grains. The second was the buffer layer between the coating and the substrate which was explained by sputtering and diffusion.
引文
[1] Griffith W P. Bicentenary of four platinum group metals partⅡ: osium and iridium-events surrounding their discoveries [J]. Platinum Metals Review, 2003, 48 (4): 182~189.
    [2] Strife J R, Sheehan J E. Ceramic coatings for carbon– carbon composites [J]. Ceramic Bulletin, 1988, 67(2): 369~374.
    [3]杨文彬. Ir-热解碳-碳化硅复合涂层体系质量研究[D], [硕士学位论文].陕西西安:西北工业大学, 2005.
    [4]王洒颍.化学元素[M].贵阳:贵州人民出版社, 1987: 25~42.
    [5] Hunt L B. A History of Iridium: overcoming the difficulties of melting and fabrication [J]. Platinum Metals Review, 1987, 31 (1): 32~41.
    [6] Savitskii E M, Polyakova V P, Gorina N B. Research on single crystals of some platinum group metals [J]. Platinum Metals Review, 1979, 23 (2): 57~65.
    [7]益小苏,杜善义,张立同.中国工程材料大典,第十卷:复合材料工程[M].北京:化学工业出版社, 2006: 662~663.
    [8] Bran D R. High temperature oxidation behavior of iridium-rhenium alloys [R]. AIAA 94-2893, NASA-Lewis Research Center Cleveland, 1994: 1~6.
    [9] Wimber R T, Hills S W, Wahl N K, et al. Kinetics of evaporation/oxidation of iridium [J]. Metallurgical Transactions A, 1977, 8A: 193~199.
    [10] Hecker S S, Rouhr D L, Stein D F, et al. Brittle fracture in iridium [J]. Metallurgical Transactions A, 1978, 9A: 481~488.
    [11] Panfilov P, Yermakov A. Brittle intercrystalline fracture in iridium [J]. Platinum Metals Review, 2001, 45 (4): 179~183.
    [12] Tuffias R H, Williams B E, Kaplan R B. Method of forming a composite structure such as a rocket combustion chamber [P]. US Patent, 5855828, 1999.
    [13] Promisel N E. The science and technology of tungsten, tantalum, molybdenum, niobium and their Alloys [M]. Pergamon, Oxford, 1964: 382~384.
    [14] Machlin I. Refractory Metal Alloys [M]. Metallurgy and Technology, Plenum, New York, 1968: 277~279.
    [15] http://www.ultramet.com/chemical_vapor_deposition.html.
    [16]曾志安,催红,李瑞珍. C/C高温抗氧化研究进展[J].碳素, 2006, 1: 12~16.
    [17]张中伟,王俊山,许正辉. C/C抗氧化研究进展[J].宇航材料工艺, 2004, 2: 1~7.
    [18] Yamabe M, Gu Y, Huang C, et al. Platinum group metal based intermetallics as high-temperature structural materials [J]. Journal of the Minerals, Metals and Materials Society, 2004, 56(9): 34~39.
    [19] Das R R, Lee C L, Noh Y Y, et al. Optical and electroluminescent properties of a new green emitting Ir (Ⅲ) complex [J]. Optical Materials, 2002, 21: 143~146.
    [20] Amao Y, Ishikawa Y, Okura I. Green luminenscent iridium (Ⅲ) immobilized in fluoropolymer film as optical oxygen-sensing material [J]. Analytica Chimica Acta, 2001,445: 177~182.
    [21] Ramke W C. High temperature protective coatings for graphite [R]. ML-TDR-64-173, 1964: 6~12.
    [22] Macklin R A, Lamar P A. Development of improved methods of deposition iridium coatings on graphite [R]. AD843766, 1968: 12~19.
    [23] Harding J T, Kazaroff J M, Appel M A. Iridium-coated rhenium thruster by CVD [C]. Proceedings of the Second International Conference on Surface Modification Technologies, Chicago, IL, 1988: 267~271.
    [24] Schneider S J. High-temperature thruster technology for spacecraft propulsion [R]. I AF-91-54, 1991:16~26.
    [25] Harding J T, Fry V R. Oxidation protection of refractory materials by CVD coatings of iridium and other platinum group metals [M]. Precious metals. Lake Tahoe: Nevada, International Precious Metals Institute, 1986: 431~437.
    [26] Wooten J R, Lawsaw P T. High-temperature, Oxidation - resistant thruster research [R]. NASA CR-185233, 1990: 282~291.
    [27] Jassowski D M. Advanced small rocket chambers basic program and optionⅡ- Fundamental Processes and Material Evaluation[R]. NASA CR-195349, 1993: 352~355.
    [28] Jasssowski D M, Schoenman L. Advanced small rocket chambers basic program and optionⅢ-110 1bf Ir - Re Rocket Volume I [R]. NASA CR-195435, 1995: 678~683.
    [29] Fortini A J, Tuffias R H. Advanced materials for chemical propulsion: Oxide-Iridium/Rhenium combustion chambers [R]. AIAA 99-2894, Ultramet Pacoima, CA, 1999: 1~13.
    [30]胡昌义,邓德国,高逸群. CVDIr涂层/铼基复合喷管研究[J].宇航材料工艺, 1998, 3: 7~10.
    [31] http://www.ultramet.com/chemical_vapor_deposition_insideout.html.
    [32] Ohring M. The materials science of thin films [M]. San Diego: Academic Press, Inc., 1992: 238~242.
    [33] Wasa K, Hayakawa S. Handbook of sputter deposition technology [M]. New Jersey: Noyes Publications, 1992:176~179.
    [34] Mumtaz K, Echigoya J, Hirai T, et al. Iridium coatings on carbon-carbon composites produced by two different sputtering methods: a comparative study [J]. Journal of Materials Science Letters, 1993, 12: 1411~1417.
    [35] Mumtaz K, Echigoya J. R.f. magnetron sputtered iridium coatings on carbon structural materials [J]. Materials Science and Engineering A, 1993, 167 (1-2): 187~195.
    [36] Yan L. Woollam J A. Optical constants and roughness study of dc magnetron sputtered iridium films [J]. Journal of Applied Physics, 2002, 92 (8): 4386~4392.
    [37]胡昌义,李靖华,高逸群. CVD在Ir涂层和薄膜制备中的应用[J].贵金属, 2002, 23(1): 53~56.
    [38] Harmon D P. Iridium-Base alloys and their behavior in the presence of carbon [R]. ML-TR-66-290, 1966: 1~7.
    [39] Snell L, Nelson A, Molian P. A novel laser technique for oxidation-resistant coating of C-C composite [J]. Carbon, 2001, 39: 991~999.
    [40] Changyi H U, Jigao W. Iridium/corbon films prepared by MOCVD [J]. Platinum Metals Review, 2005, 49 (2): 70~76.
    [41] Hua Y F, Zhang L T, et al. Structural and morphological characterization of iridium coating grown by MOCVD [J]. Materials Science and Engineering B, 2005, 121: 156~159.
    [42] Smith D C, Pattillo S G, Zocco T G, et al. Low-Temperature chemical vapor deposition of rhodium and iridium thin films [J]. Materials Research Society Symposium, 1990, 168: 36~377.
    [43]戴姣燕,胡昌义,万吉高等. MOCVD法制备Ir/C簇膜的成分与结构研究[J].贵金属, 2006, 27(1): 21~26.
    [44]阎鑫,张秋禹. MOCVD法制备高温抗氧化Ir涂层研究进展[J].宇航材料工艺, 2003, 2: 1~3.
    [45] Gelfond N V, Tuzikov F V, Igumenov I K. An XPS study of the composition of iridium films obtained by MOCVD [J]. Surface Science, 1992, 275: 323~331.
    [46] Goto T, Vargas J R, Hirai T. Preparation of iridium clusters by MOCVD and their electrochemical properties [J]. Mateials Science and Engineering A, 1996, 217/218: 223 ~226.
    [47] Goswami J, Majhi P, Dey S K, et al. Highly (111)-oriented and conformal iridium films by liquid source metalorganic chemical vapor deposition [J]. Journal of Materials Research, 2001, 16 (8): 2192~2195.
    [48] Maury F, Senocq F, Iridium coatings grown by metal-organic chemical vapor deposition in ahot-wall CVD reactor [J]. Surface and Coatings Technology, 2003, 163-164: 208~213.
    [49] Sun Y M, Endle J P, Smith K, et al. Iridium film growth with iridium tris-acetylacetomate:oxygen and substrate effects [J]. Thin Solid Films, 1999, 346: 100~107.
    [50] Toenshoff D A, Lanam R D, Ragaini J. Iridium coated rhenium rocket chambers produced by electroforming [R]. AIAA 2000-3166, 2000: 1~11.
    [51] Criscione J M, Rexer J, Fenish R G. High temperature protective coatings for refractory metals under contract NASw1030 [R]. National Aeronautics and Space Administration, 1965: 9~11.
    [52]徐重,等离子表面冶金技术的现状与发展[J].中国工程科学, 2002, 4, (2): 36~41.
    [53] Zhang X, Yang Z M, et al. Surface metallurgy of nickel base superalloy [J]. Journal of Beijing University of Science and Technology, 1999, 1: 47~51.
    [54] Zhang X, Xie X S, et al. A study of nickel-based corrosion resisting alloy layer obtained by double glow plasma surface alloying technique [J]. Surface and Coatings Technology, 2000, 131: 378~382.
    [55] Xu J, Ai J H, et al. Multi-element Ni–Cr–Mo–Cu surface alloyed layer on steel using a double glow plasma process [J]. Surface and Coatings Technology, 2003, 168: 142~147.
    [56] Xu Z. Method and apparatus for introducing normally solid materials into substrate surfaces [P]. US Patent: 452202685, 1985.
    [57]徐重.等离子表面冶金学[M].北京:科学技术出版社, 2007: 23~48.
    [58] Richard P, Thamas J, Landolt D, et al. Combination of scratch test and acoustic microscopy imaging for the study on coating adhesion [J]. Surface and Coating Technology, 1997, 91: 83~90.
    [59]冯爱新,张永康,谢华琨等.划痕实验法表征薄膜涂层界面结合强度[J].江苏大学学报, 2003, 24 (2): 15~19.
    [60] Lafaye S, Gauthier C, Schirrer R. Analyzing friction and scratch tests without in situ observation [J]. Wear, 2008, 265 (5~6):664~673.
    [61] Berg G, Friedrich C, Broszeit E, et al. Scratch test measurement of tribological hard coatings in practice [J]. Fresenius Journal of Analytical Chemistry, 1997, 358: 281~285.
    [62]王刚.氮化铝刀具钛涂层刀具研究[D], [硕士学位论文],吉林长春:长春理工大学,2006.
    [63]Sekler J, Steinhmann P A, Hintermann H E. The scratch test: difference critical load determination techniques [J]. Surface Coatings Technology, 1988, 36 (1-2): 519~529.
    [64] Saunders S J, Vetters H R. Standardization of test methods for the mechanical properties of thin coating presented at ICMCTF 96[C]. San Diego, 2008.
    [65] Ternovskii A P, Alekhin V P, Shorshjorov M K, et al. Micromechanical testing of materials bydepression [J]. Zavod. Lab, 1973, 39: 1242~1247.
    [66] Wu T W, Hwang C, Lo J, et al. Microhardness and microstructure of ion beam sputtered nitrogen doped NiFe films [J]. Thin Solid Films, 1988, 166: 299~308.
    [67] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Material Research, 1992, 7: 1564~1583.
    [68] Kinosita K. Recent developments in the study of mechanical properties of thin films [J]. Thin Solid Film, 1972, 12: 17~28.
    [69] Sneddon I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile [J]. International Journal of Engineering Science, 1965, 3: 47~57.
    [70]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展, 2003, 32 (3): 349~364.
    [71]徐重,王振民,古凤英.双层辉光离子渗金属[J].金属热处理学报, 1982, 3(1): 71~82.
    [72]郑传林,谢锡善,董建新. TiAl双层辉光等离子渗Cr的工艺研究[J].宇航材料工艺, 2002, 2: 51~54.
    [73]徐晋勇,刘燕萍,王建忠. Q235钢双层辉光等离子Mo-Cr共渗及热处理工艺研究[J].材料热处理学报, 2006, 27(1): 104~107.
    [74]张平则,徐重,张高会.双辉等离子表面冶金Ti-Cu阻燃合金的制备工艺[J].中国有色金属学报, 2005, 15 (1): 110~115.
    [75]吴红艳. Ti2AlNb基合金等离子表面合金化及摩擦学行为的研究[D], [博士学位论文].江苏南京:南京航空航天大学, 2008.
    [76] Movchan B A, Demchishin A V. Study of the structure and properties of thick vacuum ondensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide [J]. Physics of Metals and Metallography, 1969, 28: 83~90.
    [77] Thornton, J A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings [J]. Journal of Vacuum Science and Technology, 1974, 11(4): 666~670.
    [78] Thornton, J A. Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings [J]. Journal of Vacuum Science and Technology, 1975, 12 (4): 830~835.
    [79] John A, Thornton. High rate thick film growth [J]. Annual Review of Material Science, 1977, 7: 239~260.
    [80] Bauer E. Epitaxy of metals on metals [J]. Applied Surface Science, 1982, 11-12: 479~494.
    [81] Borer B, Rudolf V R. Growth structure of SiOx films deposited on various substrate particles byPRCVD in a circulating fluidized bed reactor [J]. Surface & Coatings Technology, 2005, 200: 377~381.
    [82] Kajikawa Y, Noda S. Growth mode during initial stage of chemical vapor deposition [J]. Applied Surface Science, 2005, 245: 281~289.
    [83] Patil P, Chigare P, Sadale S, et al. Thickness-dependent properties of sprayed iridium oxide thin films [J]. Material Chemistry Physics, 2003, 80 (3): 667~675.
    [84] William D N, Mehl R F, Medalist R. Mechanical properties of thin films [J]. Metallurgical Transactions A, 1989, 20A: 2217~2245.
    [85]张建民,徐可为.面心立方多晶薄膜中应变能密度对晶粒取向的依赖[J].物理学报, 2002, 51(11): 2562~2566.
    [86] Zhang J M, Xu K W, He J W. Effects of grain orientation on preferred abnormal grain growth in copper films on silicon substrates [J]. Journal of materials science letters, 1999, (18): 471~473.
    [87] Ohriner E K, George E P. Growth of intermetallic layers in the iridium-molybdenum system [J]. Journal of alloys and compounds, 1991, 177: 219~227.
    [88]夏灿.麦克斯韦分子速率分布定律的推导[J].安徽冶金科技职业学院学报, 2007, 17(2): 68~72.
    [89] Wang L B, Chen Z F, Zhang Y, et al. Ir coating prepared on Nb substrate by double glow plasma [J]. Internal Journal of Refractory Metals and Hard Materials, 2008, 27: 590~594.
    [90] Wang L B, Chen Z F, Zhang P Z, et al. Ir coating prepared on Mo substrate by double glow plasma [J]. Journal of Coating Technology and Research, DOI 10.1007/s11998 -008-9123-7.
    [91]陈照峰,王亮兵,张平则. C/C复合材料表面双辉等离子渗铱微观结构分析[J].宇航材料工艺, 2008, 2: 30~33.
    [92]朱晓东,米彦郁,何家文.膜基结合强度评定方法的探讨[J].中国表面工程, 2002, 4: 28~31.
    [93] Pemsler J P, John K L. Oxidation resistant coating for carbon-carbon composites at ultra-high temperatures [R]. AD-A283 323, 1994: 6~13.
    [94] Zhang Y, Chen Z F, Wang L B, et al. Effect of heat treatment at 1300°C on W coating prepared by double-glow plasma on carbon/carbon composite [J]. Journal of Coating Technology and Research, 2008, DOI 10.1007/s11998-008-9109-5.
    [95] Zhang Y, Chen Z F, Wang L B, et al. Phase and microstructure of coating on C/C composite prepared by double-glow plasma [J]. Fusion Engineering and Design, 2008, 84(1): 15~18.
    [96]张泰华,杨业敏.纳米硬度技术在表面工程力学性能检测中的应用[J].中国机械工程, 2002,12(24): 2148~2150.
    [97] Bouzakis K D, Skordaris G, Mirisidis J, et al. Determination of coating residual stress alterations demonstrated in the case of annealed films and based on a FEM supported continuous simulation of the nanoindentation [J]. Surface and coatings technology, 2003, 174-175: 487~492.
    [98] Wang K, Robert R R. The role of defects on thermophysical properties: thermal expansion of V, Nb, Ta, Mo and W [J]. Materials Science and Engineering, 1998, 23: 101~137.
    [99] Halborson J J, Wimber R T. Thermal expansion of Iridium at high temperatures [J]. Journal of applied physics, 1972, 43 (6): 2519~2522.
    [100] Zhao J G, Li K Z, Li H J, et al. The thermal expansion of carbon/carbon composites from room temperature to 1400 oC [J]. Journal of material science, 2006, 41: 8356~8358.
    [101]白新德,邱钦伦,甘东文.铌在空气中的氧化动力学及成膜机制的研究[J].清华大学学报, 1998, 38(6): 71~73.
    [102] Hellwing O, Zabel H. Oxidation of Nb (110) thin films on a-plane sapphire substrates: an X-ray study [J]. Physica B, 2000, 283: 228~231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700