用户名: 密码: 验证码:
航天机械泵驱动两相流冷却环路循环特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械泵驱动两相流冷却系统(MPCL)是一种新型的主动式航天热控冷却技术,该技术与毛细泵热管或者环路热管有很多相似的地方,均是采用两相流将电力电子设备或者发热元件所产生的废热排放出去。本论文首先对系统设计和地面实验台的搭建进行介绍,本研究以二氧化碳为循环工质,以机械泵为驱动力,最大散热量可以达到1000瓦。
     本文首先对系统循环工质的选择进行理论分析和计算机模拟。在理论分析中提出了MPCL系统工质选择的基本依据。在模拟计算中,采用Sinda/Fluint软件建立系统的计算机模型,模拟氨、丙烯和二氧化碳三种常用工质的运行特性,结果表明:在目前散热量小于1000W的航空主要应用背景下,氨的循环工质量较少,稳定性和机械泵流量的控制方面效果较差;丙烯由于沿蒸发段的温度梯度大,因此等温性差;二氧化碳在散热量小于1000瓦的条件下具有较大的优势,主要因为循环阻力较小,泵的能耗和压头较小。此外其热物性品质较高,液/气密度比较小,使得蒸发段的温度梯度大大减小,更适合于散热区域分散或等温化程度要求较高的设备使用。
     接下来的实验研究主要包括系统的启动、工作点的控制以及稳态和瞬态的运行特性分析。其中启动过程是MPCL两相系统运行的基础,实验部分首先对启动过程的动态响应进行分析。MPCL系统的启动主要分为压力稳定阶段、机械泵启动和加载热负荷三个基本过程。实验结果表明,在机械泵启动过程中,系统的蒸发段将出现过热现象,在过热的亚稳态向两相态闪蒸的同时对系统产生力脉冲(系统绝对压力激增)和阻力脉冲(泵前后的差压激增)。其中过热度的大小与设定温度、流量和热流密度等条件有关,启动温度越高,过热度越小;热流密度越高,过热时间越短,阻力脉冲越大;流量越大过热时间变长,阻力脉冲越高。为了减小阻力脉冲,实验还发现采用高热流密度预热器的方法可以有效的减小阻力脉冲。
     在随后关于MPCL系统工作点的温度控制方面研究发现采用半导体制冷片和主回路支路协同工作的方案是目前该类系统的最优控温方法。实验结果表明,该方法使得储液器的控温精度达到±0.1℃,在制冷片10瓦的输入功率下降温速度提高到0.36℃/min,较常用控温方案既保证储液器的控温精度和降温速度又提高了半导体制冷片的工作效率。
     在系统的运行特性研究中,实验重点是研究稳态运行和瞬态运行的工质散热及循环规律,寻找决定系统稳定性的影响因素。研究内容包括边界条件恒定与边界条件周期性变化实验、变流量或热负荷实验、系统支路热负荷不平衡性实验等。结果表明,系统具有较高的可靠性,当外界扰动发生时,系统通过自身调整很快进入稳定状态。其中,储液器的设计和系统工质的充灌量在很大程度上决定了系统的稳定程度,当运行参数或者边界条件发生改变时,储液器和主回路之间将发生液体的交换,系统的主要压力与温度参数将发生改变,当储液器内的汽液相界面稳定到新的位置,系统进入稳定状态。
     综上所述,在机械泵和储液器合理设计的前提下,只要保证泵的入口为液态、蒸发段的出口干度小于0.5、冷凝器有足够的放热能力而温度小于循环工质的三相点,系统就能够稳定可靠的运行。该类系统具有等温性高、传输距离远、可控性强、多支路运行等特点,并且同毛细泵相比较在启动、工作点控制和处理瞬态扰动及热负荷不平衡问题方面有较为明显的优势。以二氧化碳为循环工质大大降低了蒸发段的温度梯度,减小了系统的设计尺寸,提高了运行的稳定性和可靠性,在保证散热的同时又使得系统的结构和能耗得到进一步优化。总之,机械泵两相冷却系统将成为未来空间主动式热控系统的发展趋势。
Two-phase mechanically pumped cooling loop (MPCL) is a promising thermal control system which is just like a loop heat pipe or capillary pumped loops to realize heat extraction from energetic electrical or electronic equipments efficiently. In this paper, a brief review of system design and work principle is presented and a proposed experimental system was described. The testing system was able to accomplish the thermal management of up to 1000 W by using CO2 as the working fluid. Then ,a serial tests were carried out ot investigate the MPCL systematically. It mainly includes the system startup, working set point controlling and running characteristic tests.
     The startup of a two-phase cooling system is a complex transient phenomenon, especially for the feasibility application of an MPCL. The experiments on the startup processes under variety of conditions were carried out. Special attention has been paid to the startups of the system in different evaporative temperature, various mass flow or heating load and some abnormal startup prehistory. The transient flow exchange between the main loop and accumulator was observed and discussed according to 3 different startup step which have been identified as pre-condition, pump startup and heat load startup. During the startup processes, the system presents a good stability and each part of the system performs a reasonable temperature wave, except some superheat phenomena in the evaporator. The superheat is mainly related to startup conditions such as evaporative temperature, mass flow, heat load or initial liquid distributions in a loop. In general, the lower the evaporative temperature is, the higher superheat occurs. A lower heat load or a larger mass flow may lead to a huge pressure impact and a long time superheat. In the following , experiments have been carried out on how to cool the accumulator and realize a stable set point temperature. The paper points out a novel method to combine thermoelectric coolers (TEC) with the branch of a main loop. The novel method is realized by the use of the cold plate of TEC to control the set point while the hot plate is cooled down by the subcooled liquid in branch loop. Tests result have proved the feasibility and stability of the new design which not only uprates the accuracy from±0.4℃to±0.1℃and increases the cooling speed to 0.36℃/min under 10W TEC input power ,but also finds a novel way to improve the efficiency of a TEC by using subcooled fluid to dissipate heat from the hot plate.
     During the running characteristic tests, the stable and transient experiments have been investigated. Tests mainly included sinusoidal temperature variations of boundary condition, heat load or mass flow fluctuation , unbalanced heat load on the evaporators and so on. According to the experimental findings, The transient liquid distribution between the main loop and accumulator was analyzed to find the factors for system stability. From the experiments, it is found that the system presents a good pressure performance of the loop and is able to handle large temperature wave and heat impacts perfectly.
     In conclusion, important performance characteristics demonstrated by this paper included: 1) Operation of an active two-phase thermal system driven by mechanical pump with dual-evaporator; 2) sussessful startup processes in different situations; 3) Effectiveness of TECs and a rapid dropping speed in controlling the MPCL operating temperature and a higher controlling accuracy of the evaporators; 4)Robustness and reliability running of the system under various test conditions if temperature at the pump's inlet has enough sub-cooling to keep a liquid state and vapor quality is less than 0.5 at the evaporator outlet.
引文
[1] 闵桂荣,郭舜,航天器热控制 (第二版),北京:科学出版社,1998 .
    [2] D.F Hall , A.A Fote. α/ε measurements of thermal control coatings on the spacecraft. AIAA Paper , 1530(80) :1-11.
    [3] L.M.Grob, T.D. Swanson. Parametric study of variable emissivity radiator surfaces, STAIF2000 Proceedings, New York, 504(2000): 809-814 .
    [4] 韩鸿硕,国外航天器防热系统和材料的应用研究现状,宇航材料工艺,1994 ,24 (6):1-12 .
    [5] 李贵佳, 张伟儒, 尹衍升,等,无机纤维隔热材料在航空航天热防护,陶瓷,2004,168(2): 28-31 .
    [6] 陈传福,习复,潘增富,等,一种新型贮能材料的研制及其应用前景,中国空间科学技术,1995 (5) :31-36.
    [7] D Theodore, Swanson Gajanana C. Birur. NASA thermal control technologies for robotic spacecraft, Appl .Therm. Eng, 23 (2003):1055–1065 .
    [8] 丁连芬,电子设备可靠性热设计手册, 北京:电子工业出版社, 1989.
    [9] G . M. Grover, T. P. Cotter, G . F. Erikson , Structures of very high thermal conduction , J . Appl . Phys . 35( 1990), 1964-1973.
    [10] V. Baturkin, S. Zhuk, J. Vojta, F. Lura et al., Elaboration of thermal control systems on heat pipes for microsatellites Magion 4, 5 and BIRD, Appl .Therm. Eng, 23 (2003) , 1109–1117.
    [11] Christine Hoa , Benot Demolder, Alain Alexandre. Roadmap for developing heat pipes for ALCATEL SPACE satellites. Appl .Therm. Eng, 23 (2003) , 1099–1108.
    [12] M. dubois , B. mullender, J. druart, et al, Space qualification of high capacity grooved heat pipes. Proceedings of the 10th International Heat Pipe Conference, Paris France , 1996: 1-10.
    [13] M. amidieu, Development of a deployable radiator using a LHP as heat transfer element, 6th European Symposium on Space Environmental Control Systems,Netherlands, 1997:283-288.
    [14] 邵兴国,范含林,苗建印,等,热管技术在航天领域应用和发展前景,第十届热管会议,贵州,2006:278-285.
    [15] L.M. Grob, T.D. Swanson, NASA thermal control technologies for robotic spacecraft Appl .Therm. Eng, 23(2003): 1055-1065.
    [16] M. donya , S. dougla, S theodore, Development of variable emittance thermal suite for space technology microsatellite. Space Technology and Applications International Forum ,New Mexico (USA) , 2002: 204-210.
    [17] J.S Hale, J.A Woollam, Prospects for IR emissivity control using electro chromic structures, Thin Solid Films, 339(1999): 174-180.
    [18] Eva Frankea, H. Neumanna, M. Schubert ,Low orbit environment protective coating for all solid state electro chromic surface heat radiation control devices. Surface and Coating Technology, 151- 152(2002): 285-288.
    [19] C. L. Trimble, E. Franke, J. S. Hale, J. A. Woollam1, Electrochromic emittance modulation devices for spacecraft thermal control . Space technology and Applicationinternational forum, Albuquerque(USA), 504(2000) :797-802.
    [20] 黄良甫,贾付云, 空间微机电系统的研究与进展, 真空与低温,2002,8(4): 187-190.
    [21] Y shimakawa, T. yoshitake ,A variable emittace radiator based on metal insulator transition of (La, Sr) MnO3 thin films. Applied Physics Letters, 2002, 80 (25) : 4864- 4866.
    [22] Sum ita ka. Tach ikawa, Akiraohnishi. Design and ground test results of variable emittace radiator. 30th International Conference on Environmental Systems (ICES) and 7th European Symposium on Space Environmental Control Systems, Toulouse (France), 2000:8-13.
    [23] G. Birur, K. Novak, M. Pauken, E. Sunada Wax actuated heat switch development, 13th annual spacecraft thermal control workshop, El Segundo(CA), 2002, 02-0545: 312-317.
    [24] E.Sunada, M.Pauken, K.Novak ,et al, Design and flight qualification of a paraffin-actuated heat wwitch for Mars surface applications, SAE transactions, 111 (2002): 202-207.
    [25] 张正纲,空间飞行器对流主动温度控制,国外空间技术,1980,1:111-119.
    [26] 田文华,闵桂荣,卫星热控技术,北京:宇航出版社,1991.
    [27] 吴亦农,机械制冷技术在空间遥感领域的应用与发展,遥感技术与应用,1999,3:32-36.
    [28] 肖福根,刘国青,胡朝斌,低温技术在航天领域应用的国外发展情况,低温工程,2002,129 (5):54-64.
    [29] 朱建炳,潘雁频,空间制冷技术在星载红外遥感器中的应用与发展,真空与低温,2003,9 (1):6-12.
    [30] R A Hopkins , S J Niecaoski , K L Russell , et .al , Cryogenic/ Thermal systemfor the SIRTF observatory. Advances in Cryogenic Engineering , 1998 , 43 : 73-79.
    [31] B Collaudin, T Passvogel, The FIRST and PLANCK ‘Carrier’ mission description of the cryogenic system. Cryogenics ,1999 , 39 : 57-65.
    [32] 张敏,王如竹,空间低温技术的新进展,低温工程,2000,114 (2):1-6.
    [33] 王小群,杜善义,热电制冷技术在航空航天领域的应用,中国航天,2006,10:22-24
    [34] P.Rengasamy , High power thermal management Issues in Space Based system, Space technology and application international forum, NewYork: American Institute of Physics, 2002: 65-71 .
    [35] Ernst Messerschmid , Reinhold Bertrand, Space station : systems and utilization . Springer Verlag , Berlin Heidelberg , 1999.
    [36] 王爱华,梁新刚,任建勋,航天器短时大功率排热系统质量分析,清华大学学报(自然科学版),2004,44 (8):1130-1133.
    [37] B Pradeep, C Gajanana, B Marsh, Mechanical pumped cooling loop for spacecraft thermal control, the 26th International Conference on Environmental Sciences , California, 1996: 1123-1126.
    [38] Z Aidoun, Vapor compression heat pump for a lunar Lander/Rover thermal control, SAE961537: 856-864.
    [39] P Kimar, E A.Stipandic , Thermal design of the communication technology satellite, AIAA Paper,1976, No. 76-458: 933-938.
    [40] R P Scaringe , W Haskin. Spacecraft heat pump thermal bus development status & technical issues, Presented by 25th Intersociety Energy Conversion Conference, 1990:130-135.
    [41] J Haobo, R Reinhard , A distributed model of a space heat pump under transient conditions, International Journal of Energy Research ,2002 27( 2): 145-160.
    [42] P F Dexter, W L Haskin , Analysis of heat pump augmented systems for spacecraft thermal control .19th AIAA thermophysics Conference, Colombia , 1984:25-28.
    [43] A J Hanford, M K Ewert, An assessment of advanced thermal control system technolggies for future human space flight ,NASA, 1996, AIAA-96-1480.
    [44] M K.Ewert Investigation of lunar base thermal control system options. SAE, 1993, 102(1): 829-841.
    [45] K R .Sridhar, Thermal control system for lunar base cooling, Journal of thermophysics and heat transfer, 1996, 10 (3): 490-496.
    [46] 李劲东,何知朱, 热泵强化大型航天器排热的概念研究及其理论分析,航天器工程,1997,6(3):45-51.
    [47] 李明海,宋耀祖,任建勋,等,光伏热泵强化空间辐射器排热的理论分析, 太阳能学报,2001,22 ( l ):91-95.
    [48] 李明海,任建勋,梁新刚,等, 航天器热控系统中的热泵一蓄冷组合方案, 宇航学报,2002 , 23 ( 2 ):l -5.
    [49] 徐超,现代电子器件冷却方法研究动态,制冷与空调,2003,3(4):10-13.
    [50] H.Wulz, E. Embacher. Capillary pumped loops for space applications: experimental and theoretical studies on the performance of capillary evaporator designs. Seattle . the 5th Joint Thermophysics and Heat Transfer Conference,Seattle, 1990, AIAA90-1739.
    [51] Y. Cao, A. Faghri. Analytical solution of flow and heat transfer in a porous structure with partial heating and evaporation on the upper surface. Int. J. Heat Mass Transfer , 37 (10) 1994,: 1525-1533.
    [52] Y. Cao, A. Faghri, Conjugate analysis of a flat-plate evaporator for capillary loops with three-dimensional vapor flow in the groove, Int. J. Heat Mass Transfer , 37 (3), 1994: 401- 409.
    [53] V. Platel , C Butto, J. Y.Grandpeix, et .al, Detailed modelling of the evaporator of a capillary pumped loop. Revue Generate de Thermique . 35 (415), 1996: 434 – 449.
    [54] I. Muraoka, F.M Ramos , V.V.Vlassov, Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser, Inter. J. of Heat and Mass Transfer, 44 (12) 2001: 2287-2297.
    [55] E. Pouzet, L. Joly, V. Platel, Dynamic response of a capillary pumped loop subjected to various heat load transients, Inter. J. of Heat and Mass Transfer, 47 (10) 2004:2293-2316.
    [56] E. Bazzo, M. Nogoseke, Capillary pumping systems for solar heating application, Appl. Therm. Eng. 23 (9) (2003), 1153–1165.
    [57] T. Kaya, T. Hoang, Mathematical modeling of loop heat pipes and experimental validation, J. Thermophys. Heat Transfer ,13 (3) ,1999: 314–320.
    [58] W.B. Bienert, A.D. Wolf, Temperature control with loop heat pipes: analytical model and test results, in: Proceedings of the 9th International Heat Pipe Conference, Los Alamos National Laboratory, 1995, 2:981–988.
    [59] T. Kaya, R. Pérez, C. Gregori, A. Torres , Numerical simulation of transient operation of loop heat pipes , Appl. Therm. Eng., In Press, Corrected Proof, Available online, 2007.
    [60] Y. Maydanik, Loop heat pipes, Appl. Therm. Eng, 25(3),2005: 635–657.
    [61] M.T. North, D.B. Sarraf, J.H. Rosenfeld, et. al, High heat flux loop heat pipe,American Institute of Physics Conference Proceedings, 387 (1) ,1997: 561–566.
    [62] 向艳超,环路热管技术(LHP)的发展现状,工程热物理学报,2004,25(4):682-684.
    [63] D. Chalmers, J. Fredley, M. Kurtz, A new era of instrument thermal management systems with capillary heat transport. 51st Int. Astronautical Congress, Brazil, 2000: 1922-1926.
    [64] R. Mcintosh, M. Kaylor, M. Buchko, et. al , A capillary pump loop cooling system for the NICMOS instrument, 28th International Conference on EnvironmentalSystems,Massachusetts,1998,SAEPaper,No.981814: http://www.sae.org/technical/papers/981814.
    [65] P.C. Chen, W.K. Lin, The application of capillary pumped loop for cooling of electronic components, Appl. Therm. Eng. 21 (17) ,2001:1739–1754.
    [66] E. Bazzo, R.R. Riehl, Operation characteristics of a small-scale capillary pumped loop, Appl. Therm. Eng. 23 (6) 2003: 687–705.
    [67] K Jentung, Overview of capillary pumped loop technology: Heat Pipes and Capillary Pumped Loop, ASME, 236, 1993:1–17.
    [68] C. Figus, L. Ounougha, P. Bonzom, et al , Capillary fluid loop developments in Astrium , Appl .Therm. Eng, 23(9),2003: 1085-1098.
    [69] Ku J , Hoang T T. An Experimental Study of Pressure Oscillation and Hydrodynamic Stability a Capillary Pumped Loop,National Heat Transfer Conference , ASME , 1995:25-32.
    [70] H Zengqiou, Experimental study on a capillary pumped loop testing model, Proceedings of 7th IHPC. USSR:Minsk,1990: 197-199.
    [71] H Zengqiou, Performance test on an engineering CPL model. Proceedings of 9th IHPC, New Mexico( USA), 1995:967-971.
    [72] H Zengqiou, The tests study on the unsteady operation of capillary pumped loop, Proceedings of 10th IHPC, Germany, 1997 : 1478-1482.
    [73] Zh Jiaxun, H Zengqi, S Chenghui. Theoretical analysis of the pressure oscillationphenomena in capillary pumped loop .J. of Thermal Science . 7(2), 1998 : 89-96.
    [74] Zhang Jiaxun, Hou Zengqi. The effect of disturbance in the evaporator on the performance of capillary pumped loop. J. of Thermal science,8(2), 1999: 120-124.
    [75] 张加迅,侯增祺, CPL 技术在空间飞行器上的应用,工程热物理学报,2001, 22 (3) : 340-343.
    [76] 向艳超,侯增祺,张加迅,环路热管技术((LHP)的发展现状,工程热物理学报,2004,25(4):682-684.
    [77] 张加迅,侯增祺,反向式蒸发器芯层内蒸汽阻力的分析计算,中国空间科学技术,1999,22(2):8-14.
    [78] 苏磊,张红,回路脉动热管运行稳定性分析,化工学报,2007,158(18):1931-1934.
    [79] 张红星,林贵平,曹剑峰,等,回路热管性能的地面实验研究,宇航学报,2003,24(5):468-472.
    [80] 苗建印,曹剑锋,侯增祺,LHP 在模拟空间环境下的性能实验研究,工程热物理学报,2003,24(1):88-90.
    [81] 张红星,林贵平,丁汀,等, 环路热管启动特性的实验研究,中国科学 E辑(工程科学),2005,35(1):17-30.
    [82] 张加迅,侯增祺,CPL 储液器的温度调控方案,导弹与航天运载技术,2002,257(3):60-62.
    [83] 刘庆志,侯增祺,一种并行 CPL/LHP 冷凝器的流动/传热分析,中国空间科学技术, 2004,5:37-42.
    [84] 邓强,毛细泵环蒸发器内的传热和流动研究,博士论文,中科院工程热物理所,1998.
    [85] Q Wei, M Tongze. Investigate on operational unsteady characteristics of CPL: the effects of evaportator and reserveoir, J.of Thermal Science, 8(2),1999: 114-119.
    [86] 韩延民,刘伟,黄晓明,等,CPL 冷凝器多孔芯及槽道内蒸气的冷凝分析,华中科技大学学报(自然科学版),2003,31(7):58-60.
    [87] 牟其峥,屠传经.毛细抽吸两相回路蒸发器管内流动的理论分析,浙江大学学报(工学版),2000,34(3):253-256.
    [88] 张红星,林贵平,丁汀,等,环路热管温度波动现象的实验分析,北京航空航天大学学报,2005,31 (2):116-120.
    [89] 钱吉裕,李强,宣益民,毛细泵回路(CPL)蒸发器的数值研究,中国空间科学技术,2005,25:28-32.
    [90] S C figu, G L ornou , P S bon zom, et al. Capillary fluid loop development in Astrium . Appl .Therm. Eng, 23 (9) 2003 :1085-1098.
    [91] 郑小平,丁信伟,喻健良,新型涡轮-泵驱动式回路热管设计及热力学分析,大连理工大学学报,2006,46(4):495-498.
    [92] A.A.M. Delil, A.A. Woering, B. Verlaat, Development of a Mechanically Pumped Two-Phase CO2 Cooling Loop for the AMS-02 Tracker Experiment,National AerospaceLaboratory(NLR), Presentation at the Conference of Technology & Applications International Forum, Albuquerque(USA), 2002: http://www.nlr.nl/id~3025/lang~en.pdf.
    [93] J.Ku, L.Ottenstein, M.Kovel, et al. Temperature oscillations in loop heat pipe operation,Space Technology and Application International Forum, Albuquerque(USA), 2001, 255 -262.
    [94] Tarik Kaya, Jentung Ku, Experimental investigation of performance characteristics of small loop heat pipes. AIAA 2003,1038-1042.
    [95] D.Wolf,Bienert W. Investigation of Temperature control characteristics of loop heat pipe, Society of Automotive Engineers. SAE.941576.
    [96] M. K Cheung , T. T Hoang , J. Ku,et.al, Thermal performance and operational characteristics of loop heat pipe, SAE-981813.
    [97] 俞平,张加迅,侯增祺,CPL 系统运行稳定性影响因素的实验研究,第六届全国热管会议论文集,武夷山(福建),中国工程热物理学会热管专业组编,北京,1998: 43-51.
    [98] 俞平,张加迅,王维城,毛细抽吸两相环系统稳定性的实验研究,清华大学学报(自然科学版),1999,39(6):86-89.
    [99] 刘伟,宰军,刘志春,等,平板式毛细抽吸两相回路系统启动实验研究,华中科技大学学报(自然科学版),2005,33(12):31-33.
    [100] 刘志春,刘伟,宰军,等,平板式 CPL 蒸发器启动特性研究, 制冷学报, 23(03), 2006:14-17.
    [101] E Bazzo , R R .Riehl , Operation characteristics of a small-scale capillary pumped loop. Appl .Therm. Eng. ,2003 ,23(6): 687-705.
    [102] L. Ottenstein, D. Butler,J.Ku, Flight testing of the capillary pumped loop experiments, 2002 International Two-Phase Thermal Control Technology Workshop, Mitchellville, 2002:24–26.
    [103] R Brown, F Edeletein., M.Liandris. Testing of a 30KW prototype space station thermal bus, AIAA Paper,1989, No.89-1702.
    [104] Aoseph. Weimer, Challenges and opportunities for the more electric aircraft, Presentation on Purdue university,West Lafayette,4 (11), 2004.
    [105] Holmes, H.R, Goepp, J.W, Development of lock heed pumped two-phase thermal bus, AIAA paper, 1987, N0.87-1627.
    [106] S.M Bednov, A.K Desyatov, P.D Vezhnevets, et al, Experimental flight facility-two-phase heat transfer model in the Russian Segment of the International Space Station. Proceedings “Aviation and spacecraft industry and technology”, N13, “Kharkov aviation institute”, 1999.
    [107] J. Pettersen, R. Rieberer, S. Tollak Munkejord, Heat transfer and pressure drop for flow of supercritical and subcritical CO2 in microchannel tubes , Report of Norwegain University of Science and Technology, Norway, 2000: SINTEF Energie.Research.ISBN82-594-1733-2: http://www.energy.sintef.no/publ/rapport/00/tr5127.htm.
    [108] Pettersen, R. Rieberer, S. Tollak Munkejord ,Heat transfer and pressure drop for flow of supercritical and subcritical CO2 in microchannel tubes,Norway Trondheim 2000; Norwegain University of Science and Technology,SINTEF Energie Research ISBN 82-594-1733-2.
    [109] Delil, Gravity Dependence of Pressure Drop and Heat transfer in Straight Two-PhaseHeat Transport System Condenser Ducts”, 22nd Int. Conf. onEnvironmental.Systems,Seattle(USA),1992:SAE-Paper921168: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6248699.
    [110] 马同泽,侯增祺,吴文铣,热管,北京:科学出版社,1983.
    [111] 王如竹,丁国良,最新制冷空调技术,北京:科学出版社,2002.
    [112] Amir Fartaj, S. K David, Ting, et. al,Second law analysis of the transcritical CO2 refrigeration cycle, Energy Conversion and Management, 45 (2004): 2269–2281.
    [113] G Lorentzen, J Pettersen. A new efficient and environmentally benign system for car air conditioning. Int. J. Refrig. , 16(1),1993:4–12.
    [114] P Neksa, H Rekstad, GR Zakeri, et al.CO2-heat pump water heater characteristics, system design and experimental results,Int. J. Refrig, 21(17),1998: 2–9.
    [115] Rin Yun , Yongchan Kim, Chasik Park, Numerical analysis on a microchannel evaporator designed for CO2 air-conditioning systems, Appl .Therm. Eng. 27 (2007): 1320–1326
    [116] Sinda/Fluint 使用参考手册,美国 C&R 公司.
    [117] 赵建福,微重力条件下气/液两相流流型的研究进展,力学进展,1999,29(3):369-382.
    [118] 赵建福,解京昌,林海,等,部分重力条件下气液两相流型研究,工程热物理学报,2004,25(1):85-87.
    [119] S Karri, V K Mathur, Two-phase flow pattern map predictions under microgravity, AI Ch E. J, 1988, 34(1) :137-130.
    [120] J M Mandhane . Flow pattern map for gas-liquid flow in horizontal pipe .Int J Multiphase Flow, 1 ,1974: 537-553.
    [121] 陈万鹏,两相流流型识别方法研究,天津大学硕士论文,2006 .
    [122] Pettersen, R. Rieberer, S. Tollak Munkejord ,Heat transfer and pressure dropfor flow of supercritical and subcritical CO2 in microchannel tubes,Norway Trondheim 2000; Norwegain University of Science and Technology,SINTEF Energie Research ISBN 82-594-1733-2.
    [123] V.V. Klimenko, Heat transfer intensity at forced flow boiling of cryogenics liquids in tubes, Cryogenics 22 (1982) : 569-576.
    [124] M.M. Shah, Prediction of heat transfer during boiling of cryogenics fluids flowing in tubes, Cryogenics 24 (1984) : 231-236.
    [125] S. Edelstein, A.J. Perez, J.C. Chen, Analytic representation of convective boiling functions, AICHE Journal 30 (1984) : 840-841.
    [126] T.N. Tran, M.W. Wambsganss, D.M. France, Small circular and rectangular-channel boiling with two refrigerants, Int. J. Multiph. Flow 22 (1996) : 485-498.
    [127] 齐守良,微通道中液氮流动和换热特性研究,博士论文,上海交通大学,2007.
    [128] R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase, two components flow in pipes, Chem. Eng. Prog. 45 (1949) : 39-48.
    [129] D. Chisholm, Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels, Int. J. Heat Mass Transfer 16 (1973) : 347-358.
    [130] L. Friedel, Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow, European Two-Phase Flow Group Meeting, Paper E2, Ispra, Italy, 1979 :1158-1162.
    [131] 余凯伦,空间热控制系统箱体及部件的传热特性数值模拟研究 硕士论文,中山大学,2007
    [132] S.G. Kandlikar, Fundamental issues related to flow boiling in minchannels and microchannels, Exp. Therm. Fluid Sci. 26 , 2001:389-407.
    [133] A.A.M. Delil, A.A. Woering, B. Verlaat, Feasibility demonstration of amechanically pumped two-phase CO2 cooling loop for the AMS-02 tracker experiment Presentation at the Conference of Technology & Applications International Forum , Albuquerque(USA), 2002: http://www.nlr.nl/id~4404/lang~en.pdf.
    [134] 潘志文,TTCS工程测试控制与数据采集系统的计算机实现, 硕士论文,中山大学,2007.
    [135] Fluke2680 Series Data Acquisition Systems使用手册:http://www.fluke.com.cn.
    [136] 德国莱宝氦质谱检漏仪使用手册:http://www.leyboldvac.de
    [137] 曾丹苓,工程非平衡热力学,北京:科学出版社,1991.
    [138] 陈仁烈,统计物理引论,北京:人民教育出版社,1978.
    [139] 曾丹苓,气液相变中成核的热力学理论,重庆大学学报,1995,18(2):1-81.
    [140] 孙良锋,史宇文,刘俊吉,等,过热现象的动力学—液体过热亚稳态研究,天津大学学报,1995,28(1): 89-95.
    [141] L Frenke , J. Kinetic ,Theory of liquids, Oxford:Clarendon Press, 1946.
    [142] 苏长荪,谭连城,刘桂玉,高等工程热力学,北京:高等教育出版社,1987.
    [143] 陈听宽,荆建刚,罗毓珊,并联管两相流不稳定性的研究,工程热物理学报,2002,23(1):99-102.
    [144] 朱玉琴,毕勤成,曹子栋,等,分离式热管蒸发段工质流动不稳定性的实验研究,2006:27(2):45-49.
    [145] 张焕,分离式热管蒸发段倾斜布置的传热特性与流动特性的实验研究,西安交通大学硕士学位论文,1997.
    [146] 魏东,马一太,苏维诚,等,CO2跨临界循环中膨胀过程的亚稳态特性研究,流体机械,2002,30(6):40-43.
    [147] 马一太,管海清,曾宪阳,超临界CO2迅速降压过程的亚稳成核机理研究,工程热物理学报,2006,27(2):208-210.
    [148] Product Specification of Melcor Company: http://www.melcor.com/tec.html .
    [149] 徐德胜,半导体制冷与应用技术,上海:上海交通大学出版社,1992.
    [150] 鲁钟琪,两相流与沸腾传热,北京:清华大学出版社, 2002.
    [151] 陈听宽,两相流与传热研究,西安:西安交通大学出版社,2004. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700