用户名: 密码: 验证码:
细菌B-FS01抗菌物质的鉴定以及对串珠镰刀菌生长和伏马菌素B1产生的抑制效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
串珠镰刀菌(Fusarium verticillioides或Fusarium moniliforme Sheldon)为非专性、非宿主特异性的病原菌,主要污染玉米、高粱、小麦、棉花、西红柿、花生、香蕉、大豆、青椒及某些饲料。串珠镰刀菌的水溶性代谢产物伏马菌素(Fumonisin FB),可以引起动物各种疾病,如马脑白质软化症、猪肺水肿或大鼠肝癌,还有证据表明伏马菌素与人类食管癌的高发率有关。
     本实验室从被油菜菌核病菌(Sclerotinia sclerotiorum)感染的油菜茎杆内分离得到一株内生拮抗菌,通过形态特征、培养性状、生理生化特性试验以及16S rDNA序列分析鉴定其为枯草芽孢杆菌(Bacillus subtilis),暂定代号为B-FS01。研究发现B-FS01对串珠镰刀菌有强烈的拮抗作用,而且能够分泌抗菌物质到发酵液中。对其抗菌物质粗提液生化性质分析表明,该抗菌物质的抑菌性质对热稳定,耐碱不耐酸,对蛋白酶K和胃蛋白酶均不敏感。
     通过硫酸铵沉淀、DE52离子交换层析、Sephadex G100分子筛层析、HPLC等手段,分离得到了该抗菌物质。通过HPLC-ESI MS分析发现,该类抗菌物质包含一簇分子量非常相近的化合物([M+H]m/z=1,434.0;1,435.9;1,450.6;1,464.0;1,479.0;1,492.9;1,506.0;1,519.9),与Fengycins家族成员相似。进一步对各个分子进行的二级质谱分析证实这些化合物属于Fengycins家族,包括Fengycins A、Fengycins B和一类新发现的fengcyin。此后,我们对纯化手段进行了改进,引进中压制备系统,采用盐酸酸沉定与硅胶柱层析相结合,简化了Fengycins纯化步骤,可以进行半制备规模的Fengycins分离纯化工作。Fengycins家族成员构成非常接近,在一般研究和应用中,只需要对Fengycins家族的整体分析即可。液质联用仪过于昂贵,普通实验室难以具备,而SDS-PAGE不太适合小分子脂肽的分析。本研究发现在高于临界胶团浓度以上时,Fengycins能够像核酸分子一样在紫外光下被染料染色,基于这一性质,建立了通过琼脂糖电泳对Fengycins进行半定量的快速检测方法。
     通过各种生测手段,测定了Fengycins对串珠镰刀菌抑制活性。结果显示,Fengycins在PDA固体培养基上对串珠镰刀菌菌丝径向生长的IC_(50)为20μg/mL,对孢子生长的MIC为0.78μg/杯;在PD液体培养基中对串珠镰刀菌菌丝生长量的IC_(50)为48μg/mL。此外Fengycins能够延滞串珠镰刀菌孢子萌发,而且能在活体玉米种子上表现出对串珠镰刀菌生长的抑制作用。
     普通显微观察结果显示,Fengycins处理能使部分串珠镰刀菌菌丝顶端破裂。进一步通过PI染色与荧光显微观察发现,Fengycins处理会导致串珠镰刀菌菌丝膜的损伤。琼脂糖电泳结果表明,Fengycins能够与细胞膜上卵磷脂结合。Fengycins是两性抗菌肽,容易形成聚合体。所以我们认为Fengycins与膜上卵磷脂结合,并在那里生成聚合物造成膜穿孔,是一个导致膜破坏的主要原因。而向培养基里加入卵磷脂能缓解Fengycins的抑菌作用,在一定程度上支持了这一推论。最近研究表明,磷脂酶与真菌毒性密切相关。目前已证实磷脂酶是很多真菌的致病因子,而且通过以磷脂酶B为靶标筛选抗真菌药物的实验发现磷脂酶的抑制剂能够抑制病原菌的生长。我们发现Fengycins能够抑制串珠镰刀菌分泌的磷脂酶A_2的活性。该性质很可能也在Fengycins的抑菌活性中起到了一定的作用。
     Fengycins除了能够抑制串珠镰刀菌的生长以外,还能够抑制其伏马菌素B1的产生。通过HPLC对串珠镰刀菌产生的伏马菌素分析,发现50μg/mLFengycins处理的串珠镰刀菌菌丝的产毒能力明显下降,单位重菌丝的产毒量仅为对照的28%。串珠镰刀菌体内控制伏马菌素产生的基因在基因组内呈簇状分布,其中FUM1和FUM8是负责伏马菌素产生的关键基因。RT-PCR实验结果表明:Fengycins处理对串珠镰刀菌体FUM1的转录水平没有明显影响,但是能够下调FUM8的转录水平。
Fusarium moniliforme Sheldon (Fusarium verticiIIioides) is a facultative and non-host necrotrophic pathogen, which broadly contaminates maize, sorghum, wheat, cotton, tomato, peanut, bananas, soybean, pimiento and feed. Fumonisins are the water-soluble metabolites produced by E moniliforme. They are acutely toxic to livestocks and cause diseses like leukoencephalomalacia in equines, pulmonary edema and hydrothorax in swine, and liver cancer in rats. In humans, the occurrence of fumonisin is correlated with higher incidence of esophageal cancer.
     In this study, an antagonistic bacterial strain B-FS01 was isolated from the rape stem infected by SIerotinia Sclerotiorum. Following analysis of its cultural, morphological, biochemical and physiological characters and partial sequencing of 16S rDNA, strain B-FS01 was identified as Bacillus subtilis. B-FS01 showed strong antagonism against F. moniIiforme and released antifungal substances to culture. The characterization of crude extractions containing antifungal substances indicated that the antifungal activity was thermostable, tolerant to basic pH, untolerant to acid pH, unsensible to proteinase K and pepsin.
     By approaches of ammonium sulphate precipitation, DE52 ion-exchange chromatography, Sephadex G100 gel filtration and HPLC, antifungal substances were able to be isolated and purified from the culture of B-FS01. The HPLC/ESI mass spectrum of antifungal substances revealed a cluster containing several molecules that was observed at [M+H] m/z =1,434.0; 1,435.9; 1,450.6; 1,464.0; 1,479.0; 1,492.9; 1,506.0 and 1,519.9. On the base of further CID spectrums of respective molecules, these compounds were identified as fengycin homologues containing Fengycins A, Fengycins B and a new fengycin type. In addition, by HC1 precipitation and silica gel column chromatography in the middle pressure preparative chromatography system, the purification of Fengycins from B-FS01 culture was greatly improved. The new approches are well suited for the semi-scale preparation of fengyicns.
     HPLC/MS is competent for analysis, but it is too expensive to be accepted by most labs. Also, SDS-PAGE is not a good approach for analysis of lipopeptide with low molecular weight. Fortunately, it was found that the Fengycins at the concentration upper critical micelle concentration (CMC) could be dyed as well as nucleic acid in the ultraviolet radiation. With this finding, we established a method for the rapid semi -quantitative detection of Fengycins by agar-gel electrophoresis.
     The bioassay of Fengycins against the growth of E moniliforme was performed. The results showed that IC_(50) of AAC inhibiting the mycelial radial growth was 20μg/mL; MIC of AAC by agar diffusion inhibiting the spore growth was 0.78/μg per cup and IC_(50) of AAC inhibiting the mycelial growth-weight was 48μg/mL. Additionaly, Fengycins could delay the germination of E moniliforme spores, and treatment with Fengycins significantly modified infection of maize seeds by ATCC 38932.
     Microscopic observation on morphology of F. moniliforme mycelia revealed that tips of partial mycelia were lysed, and intensive PI staining of Fengycins-treated F. moniliforme mycelia was observed under fluorescence microscope, indicating the toxin-mediated damage of cytoplasmic membrane. We also performed agar gel electrophoresis and found that Fengycins could bind the phosphatidylcholine. Fengycins are amphiphilic compounds and can aggregate at a concentration. So it can be hypothesized that Fengycins interacted with the memberane by binding the phosphatidylcholine, then formed Fengycins/phospholipid aggregates, and eventually caused the formation of ion-conducting pores as well as the damage of F. moniliforme mycelia membrane. Our hypothesis could be supported by the anatagonism of phosphatidylcholine aganist the antifungal activity of Fengycins in agar media. Recently studies demonstrate that phopholipase is closely relevant to the virulence of fungi, and is the virulence factor for many fungi. In the screening of antifungal agents using phopholipase as a target, inhibitors of this enzyme also could arrest the growth of many pathogens. It was noted that Fengycins could depress activity of PLA_2 secreted by F. moniliforme, which might contribute to the antifungal activity against F.moniliforme.
     In addition to the inhibitory activity against the growth of F. moniliforme, Fengycins was also shown to inhibit production of fumonisin B1 (FB1) . It was found that the mycotoxin-producd ability of F. moniliforme treated with 50/μg/mL Fengycins was significantly reduced, and the quantity of FB1 produced by unit mass mycelia decreased to 28% of the control. Genes involved in the fumonisins biosynthesis were identified and showed to be clustered in the genome of F. moniIiforme. Expression patern by reverse transcription-PCR (RT-PCR) showed that treatment of Fengycins did not affect transcriptional level of FUM1, but the level of FUM8 was down-regulated
引文
1.陈志谊,许志刚.拮抗细菌B-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究.江苏农业学报,2000,16(3):148-152
    2.陈中义,张杰,黄大昉.植物病害生防芽孢杆菌机制与遗传改良研究.2003,33(2):97-103
    3.东秀珠,蔡妙英.常见细菌鉴定手册.北京:科学出版社,2001.
    4.方中达.植病研究方法(第三版).北京:中国农业出版社,1998,46-53
    5.耿运琪等.Tn917在短小芽袍杆菌中的转座作用.微生物学报,1992.32(4):305-307
    6.顾觉奋.抗生素.上海:上海科学技术出版社.2001,13-20
    7.郭云昌,刘秀梅,刘江.伏马菌素B_1免疫检测方法的研究.卫生研究,1999,28(4):238-240
    8.郝飞.抗真菌药物作用靶位的研究进展.中国皮肤性病学杂志,2001,15(2):123-124
    9.黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展。浙江农业科学,2005,3:213-219
    10.刘静,王军,姚建铭等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化.微生物学报,2004,44(4):511-514
    11.饶贤才,胡福泉.肽抗生素控制感染的新希望.生命的化学,2001,21(5):357-359
    12.萨姆布鲁克,拉塞尔,(黄培堂等译).分子克隆试验指南.北京:科学出版社,2002
    13.孙雪文,周金燕,邓洪渊等.有效分离1kDa分子量环脂肽的电泳方法.生物技术,2005,15(6):47-49
    14.孙延忠,曾洪梅,李国庆.抗生素对微生物作用的研究.微生物学杂志,2003,23(3):44-47
    15.汪家政,范明.蛋白质技术手册.北京:科学出版社,2002
    16.王金生,张学军,钱显明等小麦纹枯病生防菌株的筛选及小区试验.生物防治通报,1993,9(3):102-105
    17.王晓英,刘秀梅.串珠镰刀菌伏马菌素产毒株聚合酶链式反应检测方法的研究.卫生研究,2003,32(3):228-231
    18.颜燕,张玉琴,李军等.山东省主粮中几种真菌的污染状况及菌株产毒能力调查.中国公共卫生,1999,15(5):382
    19.殷瑜,黄为一,陈代杰.微生物来源的抗真菌抗生素的研究进展.中国新药杂志,2004,13(2):113-117
    20.余凤玉,李振华,曾会才.抗真菌农用抗生素的研究进展.热带农业科学,2005,25(1):60-65
    21.张宁.细菌中一种抗菌蛋白的分离纯化及特性分析.植物学报,1993,35(5):342-348
    22.张穗,郭永霞,唐文华.井岗霉素A对水稻纹枯病菌的毒力和作用机制研究.农药学学报,2001,3(4):31-37
    23.朱昌雄,白新盛,张木.生物农药的发展现状与展望.上海环境科学,2002,21(11):654-691
    24.朱昌雄,谢得龄,倪楚芳.农抗120防治西瓜枯萎病菌的室内药效实验.生物防治通报,1990,6(3):124-127
    25. Akpa E, Jacques P, Wathelet B, et al. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotech, 2001, (91): 551-561
    26. Albaugh D, Albert G, Bradford P, et al. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256γ . Ⅱ. Biological properties of 15G256 γ. J Antibiot (Tokyo), 1998, 51(3): 317-322
    27. Albengres E, Louet H, Tillement J P. Systemic antifungal agents drug interactions of clinical significance. Drug Saf, 1998, 18(2): 83-97
    28. Alberts J F, Gelderblom W C, Thiel P G, et al. Effects of temperature and incubation period on production of fumonisin B1 by Fusarium moniliforme.Appl Environ Microbiol, 1990, 56(6): 1729-1733
    29. Anthony J, Lucca D, Thimas J W. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother, 1999, 43(1): 1-11
    30. Arima K, Kakinuma A, Tamura G. Surfactin acrystalline peptidelipid surfactant produced by bacillus subtilis:isolation,characterization and its inhibition of fibrin clot formation. Res. Commun. Biochern. Biophys, 1968, 31(3): 488-496
    31. Asaka O and Shoda M. Biocontrol of Rhizoctonia solani damping-of of tomato with Bacillu sublilis RB14. Appl Enviro Microbiol, 1996, 62(11): 4081-4085
    32. Axel G, Stoverand A D. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J Bacteriol, 1999, 181(17): 5476-5481
    33. Backer J O and Cook R J. Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathol, 1988, 78:778-782
    34. Bacon C W, Battista J. Endophytic fungi of grasses. In: Advances in Applied Mycology (Arora DK, ed). New York:Marcel Dekker, 1991; 231-256
    35. Bacon C W, Bennett R M, Hinton D M, et al. Scanning electron microscopy of Fusarium moniliforme within asymptomatic corn kernels and kernels associated with equine leukoencephalomalacia. Plant Dis, 1992, 76:144-148
    36. Bacon C W, Hinton D M. SymptomLess endophytic colonization of maize by Fusarium moniliforme. Can J Bot, 1996,74:1195-1202
    
    37. Bacon C W, Yates I E, Hinton D M, et al. Biological Control of Fusarium moniliforme in Maize. Environ. Health. Perspect, 2001,109(suppl 2): 325-332
    
    38. Barrett-Bee K, Hayes Y, Wilson R G, et al. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol, 1985,131:1217-1221
    
    39. Bender C I, Alarcon, Chaidez F, et al. Pseudomonas syringae phytotoxins: mode of action, regulation and biosynthesis by peptide and polyketide synthetases. Micro Mole Biol Rev, 1999, 63(2): 266-292
    
    40. Besson F, Michel G. Action of the antibiotics of the iturin group on artificial membranes. / Antibiot(Tokyo), 1984, 37(6): 646-651
    
    41. Bezuidenhout S C, Gelderblom W C A, Gorst-Allman C P, et al. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun 1988, 11: 743-745
    
    42. Birch M, Robson G, Law D, et al. Evidence of multiple extracellular phospholipase activities of Aspergillus fumigatus. Infect Immun, 1996, 64: 751-755
    
    43. Bjeldanes L F, and Thomson S V. Mutagenic activity of Fusarium moniliforme isolates in the Salmonella typhimurium assay. Appl. Environ. Microbiol, 1979,37:1118-1121
    
    44. Blackwell B A, Edwards O E, Fruchier A, et al. NMR structural studies of fumonisin B1 and related compounds from Fusarium moniliforme. Adv Exp Med Biol, 1996,392: 75-91
    
    45. Blackwell B A, Miller J D, Savard M E. Production of carbon 14-labeled fumonisin in liquid culture. J AOAC Int, 1994,77:506-511
    
    46. Blaesse M, Kupke T, Huber R, et al. Structure of MrsD, an FAD-binding protein of the HFCD family. Acta Crystallogr D Biol Crystallogr, 2003, 59:1414-1421
    
    47. Branham B E, andPlattner R D. Alanine is a precursor in the biosynthesis of fumonisin Bl by Fusarium moniliforme. Mycopathologia, 1993,124: 99-104
    
    48. Brotz H, Bierbaum G, Reynolds P E, et al. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem, 1997, 246: 193-199
    
    49. Buede R, Rinker-Schaffer C, Pinto W J, et al. Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. J Bacteriol, 1991,173,4325-4332
    
    50. Butchko R A, Plattner R D, Proctor R H. FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. JAgric Food Chem, 2003,51: 3000-3006
    51. Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by Polyoxin D and nikkomycins. Antimicrob Agents Chemother, 1991, 35(1): 170-173
    
    52. Caldas E D, Sadilkova K, Ward B L, et al. Biosynthetic studies of fumonisin B1 and AAL toxins. JAgric Food Chem, 1998, 46: 4734-4743
    
    53. Carrillo C, Teruel J A, Aranda F J, et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta, 2003, 1611: 91-97
    
    54. Chen C L, Chang L K, Chang Y S, et al. Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis. Mol Gen Genet, 1995, 248:121-125
    
    55. Chiba H, Kaneto R, Agematu H, et al. Mer-WF3010, a new member of the papulacandin family II Structure determ ination. J Antibiot(Tokyo), 1993,46(2): 356-358
    
    56. Clewll D B. Evidence of chromosome-borne resistance-transposon( Tn916) in Streptococcus faealis that is capable of "conjugal" Transfer in Absence of a Conjugative Plasmid. J Bacteriol, 1981,14(1): 494-502
    
    57. Clewll D B. Regeneration of insertationally in activated streptococcal DNA fragment after excision of transposon Tn 916 in E. coli sargeting and cloning of dened from gram-postive bacteria. J Bacteriol, 1991,159(1): 4347-4352
    
    58. Cole R J, Kirksey J W, Cutler H G, et al. Toxin from Fusarium moniliforne: effects on plants and animals. Science, 1973,179:1324-1326
    
    59. Cubon I G. Micromiceti della cariossidi di grano turco in rapporto colla pellagra. Arch Psichiat Sci Penali Antrop Crim, 1882, 3: 353
    
    60. David H E and Tania C S. Hexadecylphosphocholine (Miltefosine) Has Broad-Spectrum Fungicidal Activity and Is Efficacious in a Mouse Model of Cryptococcosis.Antimicrob Agents Chemother,, 2006,50(2): 414-421
    
    61. Deleu M, Paquot M, Nylander T. Fengycin interaction with lipid monolayers at the air-aqueous interface - implications for the effect of fengycin on biological membranes. J Colloid Interface Sci, 2005,283, 358-365
    
    62. Deleu M, Razafindralambo H, Popineau Y P, et al. Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,152: 3-10
    
    63. Denning D W. Echinocandins and pneumocandins-a new antifungal class with a novel mode of action. Antimicrob Chemother, 1997,40(5): 611-614
    64. Desjardins A E, Munkvold G P, Plattner R D, et al. FUM12a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant Microbe Interact, 2002,15(11): 1157-1164
    
    65. Desjardins A E, Plattner R D, Lu M, et al. Distribution of fumonisins in maize ears infected with strains of Fusarium moniliforme that differ in fumonisin production. Plant Dis, 1998, 82: 953-958
    
    66. Desjardins A E, Plattner R D, Proctor R H. Linkage among genes responsible for fumonisin biosynthesis in Gibberella fujikuroi mating population A. Appl Environ Microbiol, 1996, 62: 2571-2576
    
    67. Desjardins A E, Plattner R D. Fumonisin B (1)-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J Agric Food Chem, 2000, 48: 5773-5780
    
    68. Ding,Y., R.S. Bojja, and L.C.Du .2004. Fum3p, a 2-Ketoglutarate-Dependent Dioxygenase Required for C-5 Hydroxylation of Fumonisins in Fusarium verticillioides. Appl. Environ. Microbiol. 4:1931-1934.
    
    69. Dominguez J M, Kelly V A, Kinsman O S, et al. Sordarins: A new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother, 1998,42(9): 2274-2278
    
    70. Duitman E H, Hamoen L W, Rembold M, et al. The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc NatlAcad Sci USA, 1999, 96:13294-13299
    
    71. Dutton M F. Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacol Ther, 1996,70:137-161
    
    72. Duttweiler H M. Bacterial growth medium that significantly increased the yield of recombinant. Plasmid Biotech. 1998,24(3): 438-444
    
    73. Duvick J. Prospects for Reducing Fumonisin Contamination of Maize through Genetic Modification. Environ Health Persp, 2001,109(suppl 2): 337-342
    
    74. Epand R M, Vogel H J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999,1462:11-28
    
    75. Fiddaman P J, Rossall S. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol, 1994,76: 395-405
    
    76. Flaherty J E, Pirttila A M, Bluhm B H, et al. PAC1, a pH-Regulatory Gene from Fusarium verticillioides. Appl Environ Microbiol, 2003,69:5222-5227
    
    77. Flaherty J E, Woloshuk C P. Regulation of Fumonisin Biosynthesis in Fusarium verticillioides by a Zinc Binuclear Cluster-Type Gene, ZFR1. Appl Environ Microbiol, 2004, 70:2653-2659
    78. Fukuda D S, Bus R H D, et al. A54145, a new lipopeptide antibiotic complex: isolation and characterization. The Journal of Antibiotics, 1990, 43(6): 594-600
    79. Ganendren R, Widmer F, Singhal V, et al. In Vitro Antifungal Activities of Inhibitors of Phospholipases from the Fungal Pathogen Cryptococcus neoformans. Antimicrob Agents Chemother. 2004, 48:1561-1569
    80. Gelderblom W C A, Jaskiewicz K, Marasas W F O, et al. Fumonisins: novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol, 1988, 54:1806-1811
    81. Gelderblom W C A, Thiel P G, Jaskiewicz K, et al. Investigations on the carcinogenicity of fusarin C-a mutagenic metabolite of Fusanium moniliforme. Carcinogenesis,1985, 7: 1899-1901
    82. Gelderblom W C, Thiel A P G, Merwe K J, et al. A mutagen produced by Fusarium moniliforme. Toxicon, 1983, 21:467-473
    83. Gerwald A. Kohler, Audrey B, Eric H S, et al. Phospholipase A2 and Phospholipase B activities in fungi. Biochimica et Biophysica Acta, 2006, 1761:1391-1399
    84. Ghannoum M A, Rice L B. Antifungal agents: mode of action,mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clm Microbiol Rev, 1999, 12(4): 501-517
    85. Gottlieb D, Carter H E, Sloneker J H, et al. Mechanisms of inhibition of fungi by filipin. Phytopathology, 1961, 51:321-330
    86. Gottlieb D, Carter H E, Wu L, et al. Inhibition of fungi by filipin and its antagonism by sterols. Phytopath, 1960, 50:594-603
    87. Grau A, Gomez-Femandez J C, Peypoux F, et al. Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides, 2001, 22: 1-5
    88. Griffin G J, Garren K H. Population levels of Aspergills flavus and the A. niger group in Virginia peanut field soils. Phytopathology. 1974, 64: 322-325
    89. Grimm C, Geisen R. A PCR2ELISA for the detection of potential fumonisin producing Fusarium species. Lett Appl Microbiol, 1998, 26:456-462
    90. Groll A, Lucca A J D, Walsb T J. Emerging targets for the development of novel antifungal therapeutics. Trend Microb, 1998, 6(3): 117-124
    91. Guder A, Wiedemann I, Sahl HG. Posttranslationally modified bacteriocins- the lantibiotics. Biopolymers, 2000, 55:62-73
    92. Gunawardana G, Rasmusen R R, Scherr M, et al. Corynecandin: a novel antifungal glycolipid from Coryneum modonium. J Antibiot(Takyo), 1997,50(10): 884-886
    
    93. Hamoen L W, Venema G, Kuipers O P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology, 2003,149: 9-17
    
    94. Harrison L R, Colvin B M, Greene J T, et al. Pulmonary edema and hydrothorax in swine produced by fumonisin B, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Invest, 1990, 2:217-221
    
    95. Hary R, Michel P, Choukri H, et al. Purification of antifungal lipopeptides by reversed-Phase high-performance liquid chromatography Journal of Chromatography, 1993, 639: 81-85
    
    96. Hemphill H E, Gage I, Zahler SA, et al. Prophage-mediated production of a bacteriocin-like substance by SP beta lysogens of Bacillus subtilis. Can J Microbiol, 1980, 26:1328-1333
    
    97. Hillson N J, Walsh C T. Dimeric structure of the six-domain VibF subunit of vibriobact in synthetase: mutant domain activity regain and ultracentrifugation studies. Biochemistry, 2003, 42(3): 766
    
    98. Hilton M D, Alaeddinoglu N G., Demain A L. Synthesis of bacilysin by Bacillus subtilis branches from the prephenate of the aromatic amino acid pathway. J Bacteriol, 1988,170: 482-484
    
    99. Hofemeister J, Conrad, B, Adler B, et al. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics, 2004, 272: 363-378
    
    100. Holz RW. The effects of polyene antibiotics nystain and amphotericin B on the lipid memberanes.Ann NY Acad Sci, 1974,235(10): 469-479
    
    101. Hori M, Equchi J, Kakik K. Studies on the mode of action of Polyoxins VI. Effect of Polyoxin on chitin synthesis in Polyoxin sensitive and resistant strains of Alternria kikuchiana. Journal of Antibiotics, 1974, 27(4): 260-266
    
    102. Hsuchen C C, Feingold D F. Polyene antibiotic action on lecithin liposomes: effect of cholesterol and fatty acyl chains. Biochem Biophys Res Commun, 1973,51(5): 972-978
    
    103. Hube B, Monod M, Monod M, et al. Functional aspects of secreted Candida proteinases, 1998b, 339-344. In M. N. G. James (ed.), Aspartic proteinases
    
    104. Hube B. Possible role of secreted proteinases in Candida albicans infections. Rev Iberoam Micol, 1998a, 15: 65-68
    
    105. Ibrahim A S, Mirbod F, Filler S G, et al. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun, 1995, 63:1993-1998
    106. Inaoka T, Takahashi K, Ohnishi-Kameyama M, et al. Guanine nucleotides guanosine 5-diphosphate 3-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J Biol Chem, 2003, 278:2169-2176
    107. Inaoka T, Takahashi K, Yada H, et al. RNA polymerase mutation activates the production of a dormant antibiotic 3,3φ-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis. J Biol Chem, 2004, 279:3885-3892
    108. Ivanovska N. Phospholipases as a factor of pathogenicity in microorganisms. J Mol Catalysis B: Enzymatic, 2003, 22:357-361
    109. Iwamoto T, Fujie A, Tsurumi Y, et al. FR900403, a new antifungal antibiotic produced by a Kernia sp. J Antibiot(Tokyo), 1990, 43(9): 1183-1185
    110. Jack R W, Jung G. Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curt Opin Chem Biol, 2000, 4:310-307
    111. Jim-enez M, Cabanes J, Gand_ia-Herrero F, et al. A continuous spectrophotometric assay for phospholipase A2 activity Analytical Biochemistry, 2003, 319:131-137
    112. Joffe A Z. Environmental conditions conducive to Fusarium toxin formation causing serious outbreaks in animals and man. Vet Res Commun, 1983, 7:187-193
    113. Jones D B. Pathogenesis of bacterial and fungal keratitis. Trans Ophthalmol Soc UK, 1978, 98:367-371
    114. Kawulka K E, Sprules T, Diaper C M, et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subfilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Biochem, 2004, 43:3385-3395
    115. Keating G M, Jawis B. Caspofungin. Drugs, 2001, 61(8): 1121-1129
    116. Kedera C J, Leslie J F, Claflin L E. Genetic diversity of Fusarium section Liseola (Gibberella fujikuroi) in individual maize stalks. Phytopathology, 1994, 84:603-607
    117. Keller S E, Sullivan T M. Liquid culture methods for the production of fumonisin. Adv Exp Med Biol, 1996, 392:205-212
    118. Kellerman T S, Marasas W F O, Thiel P G, et al. Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1. Onderstepoort J Vet Res, 1990, 57:269-275
    119. Kim P I, Bai H, Bai D, et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol, 2004, 97:942-949
    120. Klein C, Entian K D. Genes involved in selfprotection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol. 1994. 60:2793-2801
    121. Koul A, Jessup C J, Deluca D J, et al. 1987. Gen. Meet. Am Soc Microbiol, 1998, abstr. F-78
    
    122. Kowall M, Vater J, Kluge B, et al. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci, 1998,204:1-8
    
    123. Kriek N P J, Kellerman T S, Marasas WFO.A comparative study of the toxicity of Fusarium verticillioides (=F.moniliforme) to horses, primates, pigs, sheep, and rats. Onderstepoort J Vet Res, 1981, 48:129-131
    
    124. Kriek N P J, Marasas W F O, Thiel P G. Hepatoand cardiotoxicity of Fusarium verticillioides (F. moniliforme) isolates from southern African maize. Food Cosmet. Toxicol, 1981,19:447-456
    
    125. Kunihiro S, Kaneda M. Glomecidin, a novel antifungal cyclic tetrapeptide produced by Streptomyces lavendulae H698 SY2. J Antibiotics, 2003,56(1): 30-33
    
    126. Kunst F, Ogasawara N, Moszer I., et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997,390: 249-256
    
    127. Lambalot R H, Gehring A M, Flugel R S, et al. A new enzyme superfamily-the phosphopantetheinyl transferases. Chem Biol, 1996,3: 923-936
    
    128. Lampen J O, Arnow P M, Safferman R S. Mechanism of protection by sterols against polyene antibiotics. J Bacteriol, 1960, 80:200-206
    
    129. Leifert C L H, Chidburce S. Antibiotic production and biocontrol activity by Bacillus subtitis C L27 and Bacillus pumilus CL 45. JAppl Bacteriol, 1995, 78(2): 9 7-108
    
    130. Leifert C, Li H. Antibiotic Production and Biocontrol Activity by Bacillus subtilis CL27 and Bacillus pumilus CIA5.J Appl Bacteriol,y, 1995,78: 97-108
    
    131. Leonian LH. The pathogenicity and the variability of Fusarium moniliforme from corn. West Virginia Agr Expt Sta Bull, 1932,248:1-16
    
    132. Leslie J F. Introductory biology of Fusarium moniliforme. Adv Exp Med Biol, 1996,392: 153-164
    
    133. Lichtenberg D, Robson R, Dennis E. Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim Biophys Acta, 1983,737:285
    
    134. Maget D, Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 1994,87:151-174
    
    135. Makoto S. Bacterial control of Plant diseases. Journal of Biosci and Bioeng, 2000, 89(6): 515-521
    
    136. Malev V V, Kanlin Y A, Bezrukov S M, et al. Kinetics of opening and closure of syring omycin E chan nels formed in lipid bilayers. Membr Cell Biol, 2001,14(6): 813-829
    137. Marahiel M A, Nakano M M, Zuber P. Regulation of peptide antibiotic production in Bacillus. Mol Microbiol, 1993, 7: 631-636
    
    138. Marasas W F O, Kellerman T S, Gelderblom W C A, et al. Leukoencephalomalacia in a horse induced by fumonisin Bl isolated from Fusarium moniliforme. Onderstepoort J. Vet. Res, 1988,55:197-203
    
    139. Marasas W F 0, Miller J D, Riley R T, et al. Fumonisins- occurrence, toxicology, metabolism and risk assessment, 2001, p, 332- 359. In B. A. Summerell, J. F. Leslie, D. Backhouse, W. L. Bryden, and L. W. Burgess (ed.), Fusarium. Paul E. Nelson Memorial Symposium. APS Press, St. Paul, Minn.
    
    140. Marasas WFO, Nelson P E,Toussoun T A.Toxigenic Fusarium species: identity and mycotoxicology. Pennsylvania State University Press, University Park. 1984
    
    141. Marasas W F 0, P. E. Nelson, and T. A. Toussoun. 1984. Toxigenic Fusarium species: identity and mycotoxicology. Pennsylvania State University Press, University Park.
    
    142. Marasas W F O, Thiel P G, Rabie C J, et al. Moniliformin production in Fusarium section Liseola. Mycologia, 1986,78: 242-247
    
    143. Marasas W F O, Wehner F C, Rensburg S J, et al. Mycoflora of corn produced in human esophageal cancer areas in Transkei, southern Africa. Phytopathology, 1981,71: 792-796
    
    144. Marasas W F O. Fumonsins: history, world-wide occurrence and impact, 1996,1-17. In L. S. Jackson, J. W. DeVries, and L. B. Bullerman (ed.), Fumonosins in food.
    
    145. Martin D F, Priest F G, Todd C, et al. Distribution of beta-glucanases within the genus Bacillus. Appl Environ Microbiol, 1980, 40(6): 1136-1138
    
    146. Marx R, Stein T, Entian K D, Glaser S J. Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem, 2001, 20: 501-506
    
    147. McAuliffe O, Ross R P, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev, 2001,25: 285-308
    
    148. Merkel O, Fido M, Mayr J A, et al. J. Biol. Chem. 1999,274: 28121-28127
    
    149. Merrill A H Jr, Sullards M C, Wang E, et al. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ. Health Perspect, 2001,109(Suppl. 2): 283-289
    
    150. Mhammed A, Peypoux F, Besson F, et al. A new antibiotic of iturin group: Isolation and characterization. The Journal of Antibiotics, 1982, 3: 306-311
    
    151.MizunoK, YagiA. Satoi S, et al. Studies on aculeacin. I . Isolation and characterization of aculeacin A. J Antibiot(Tokyo), 1977,30(4): 297-302
    
    152. Moore-Landecker E and Stotzky G. Inhibition of fungal growth and sporulation by volatile metabolites from bacteria.Can J Microbiol, 1972,18: 957-962
    
    153. Mootz H D, Finking R, Marahiel M A. 4-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis.J Biol Chem, 2001, 276:37289-37298
    
    154. Morikawa M, Ito M, Imanaka T. Isolation of a new surfactant producer Bacillus pumilus A-l,and cloning and nucleotide sequence of the regulator gene, psf-1. Journal of Fermentation and Bioengineering, 1992, 74: 255-261
    
    155. Moyne A L, Cleveland T E, Tuzun S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett, 2004, 234: 43-49
    
    156. Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol, 2001, 90: 622-629
    
    157. Munkvold G P, Desjardins A E. Fumonisins in maize: can we reduce their occurrence. Plant Dis, 1997,81: 556-565
    
    158. Nagiec M M, Baltisberger J A, Wells G B, et al. The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc. Natl. Acad. Sci. USA, 1994,91: 7899-7902
    
    159. Nakano M M, Corbell N, Besson J, et al. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet, 1992,232: 313-321
    
    160. Nakano M M, Zheng G, Zuber P. Dual control of sbo-alb operon expression by the SpoO and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J Bacteriol, 2000,182: 3274-3277
    
    161. Nakano M M, Zuber P. Molecular biology of antibiotic production in Bacillus. Cre Rev in Biotech, 1990,10(3): 223-240
    
    162. Nelson P E, Desjardins A E, Plattner R D. Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu. Rev. Phytopathol, 1993, 31: 233-252
    
    163. Nelson P E, Toussoun T A, Marasas W F O. Fusarium species. An illustrated manual for identification. Pennsylvania State University Press, University Park, PA. 1983
    
    164. Nelson P E. Taxonomy and biology of Fusarium.moniliforme. Mycopathologia, 1992,117: 29-36.
    
    165. Nicholas A. Transposition of Tn917 in Bacillus Megaterium. J Bacteriol, 1986, 167(2): 716-718
    166. Nireberg H I, O'Donnell K. New Fusarium species and combination within the Gibberella fujikuroi species complex. Mycologia, 1998, 90: 434-458
    
    167. O'Donnell K, Elizabeth C, Helgard I N. Molecular systematcs and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 1998, 90(3): 465-493
    
    168. Ohki H, lnamoto Y, Kawabata K, et al. Synthesis and antifungal activity of FR109615 analogs. J Antibiot(Tokyo ), 1991, 44(5): 546-549
    
    169. Ohno A, Ano T, Shoda M. Production of a lipopeptide antibiotic surfactant with recombinant Bacillus Subtilis. Biotech Lett, 1992, (14): 1165-1168
    
    170. Ou S H. Fungus Diseases-Diseases of Grain and Inflorescence Rice Diseases. England: Commonwealth Mycological Institute Kew Press, 1972, 289-295
    
    171. Oxford A E, Raistrick H, Simonart P. Studies in the biochemistry of micro-organisms: Griseofulvin, C17H17O6C1, a metabolic product of Penicillium griseo-fulvum Dierckx. J Biochem, 1939, 33(2): 240-248
    
    172. Paik S H, Chakicherla A, Hansen J N. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem, 1998, 273: 23134-32142
    
    173. Paul E. Nelson, M. Cecilia Dignani, Elias J. Anaissie. Taxonomy, Biology, and Clinical Aspects of Fusarium Species. Cli Micro Rev. 1994, 7(4): 479-504.
    
    174. Peraica M, Radic B, Lucic A, et al. Toxic effects of mycotoxins in humans. Bull. W.H.O, 1999,77: 754-766
    
    175. Peters A T. A fungus disease in corn. Agric. Exp. Stn.Nebr. Annu. Rep, 1904,17:13-22
    
    176. Peypoux F, Besson F, Michel G, et al. Structure de l'iturine C de Bacillus subtilis. Tetrahedron, 34:1147-1152
    
    177. Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol, 1999,51: 553-563
    
    178. Peypoux F, Guinand M, Michel G, et al. Structure of iturin A, an antibiotic from Bacillus subtilis. Biochem, 1978,17,3992-3996
    
    179. Pinchuk I V, Bressollier P, Sorokulova I B, et al. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol, 2002,153: 269-276
    
    180. Pinchuk I V, Bressollier P, Verneuil B, et al. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Chemother, 2001,45: 3156-3161
    
    181. Pirttila A M, McIntyre L M, Payne G A, et al. Expression profile analysis of wild-type and fccl mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Fungal Genet. Biol, 2004, 41: 647-656
    
    182. Plattner R D, Norred W P, Bacon C W, et al. A method of detection of fumonisins in corn samples associated with field cases of equine leukoencephalomalacia. Mycologia, 1990, 82: 698-702
    
    183. Plattner R D, Shackelford D D. Biosynthesis of labeled fumonisins in liquid cultures of Fusarium moniliforme. Mycopathologia, 1992,117:17-22
    
    184. Poo Food Toxic, Institute of Public Afairs Review, 2003, 55(3):31
    
    185. Precott A G, Two-oxoacid-dependent dioxygenases: inefficient enzymes or evolutionary driving force. In: Romeo, J.T., Ibrahim, R., Varin, L., De Luca, V. (Eds.), Evolution of Metabolic Pathways. Pergamon, Amsterdam, pp. 2000,249-284
    
    186. Proctor R H, Desjardins A E, Plattner R D, et al. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol, 1999, 27:100-112
    
    187. Proctor R H, Desjardins A E, Plattner R D. Biosynthetic and genetic relationships of B-series fumonisins produced by Gibberella fujikuroi mating population A. Nat. Toxins, 1999,7: 251-258
    
    188. Proctor, R.H., Brown, D.W., Plattner, R.D., Desjardins, A.E. 2003. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol. 38, 237-249.
    
    189. Quentin M J, Besson F, Peypoux F, et al. Action of peptidolipidic antibiotics of iturin group on erythrocytes. Effects of some lipids on hemolysis. Biochim Biophys Acta, 1982, 684:207
    
    190. Reddy P G, Singh H D, Pathak M G, et al. Isolation and functional characterization of hydrocation emulsifying and solubilizing factors produced by a Pseudomonas Species. J Biotech Bioeng, 1983,25: 387-401
    
    191. Rheeder J P, Marasas W F, Vismer H F. Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol, 2002,68: 2102- 2105
    
    192. Ross P F, Nelson P E, Richard J L, et al. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl Environ Microbiol, 1990,56: 3225-3226
    
    193. Roy K, Mukhopadhyay T, Reddy G, et al. Mulundocandin, a new lipopeptide antibiotic .I. Taxonomy, fermentation, isolation and characterization. J Antibiot (Tokyo), 1987, 40(3): 275-280
    
    194. Saccardo P A. Fungi Italici AutographiceD elinati, 1881, Figure 879. Patavii
    
    195. Salyers A, D Witt. Virulence factors that promote colonization. Bacterial pathogenesis: a molecular approach, ASM Press, Washington, D.C. 1994: 30-46
    
    196. Sandrin C, Peypoux F, Michel G. Coproduction of surfactin and iturin A, Lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotech Appl Bioch, 1990, (12): 370-375
    
    197. Satoi S, Yagi A, Assano K, et al. Studies of aculeacin.Isolation and characterization of aculeacins B, C, D, E, F and G. J Antibiot (Tokyo), 1977,30(4): 303-307
    
    198. Schagger H, Jagow G. Tricine - sodium dodecyl sulfate polyacrylamid gel electroproesis for the sepoaration of proteins in the range from 1 to 100 kDa. Anal Bioch, 1987,16(6): 368 - 379
    
    199. Schmatz DM, Romancheck MA, Pittarelli A, et al. Treatment of Pneumocystis carinii with 1,3-glucan synthesis inhibitors. Proc. NatlAcad Sci USA, 1990, 87: 5950-5954.
    
    200. Schnell N, Entian K D, Schneider U, et al. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature, 1988, 333:276-278
    
    201. Seo J A, Proctor R H, Plattner R D. Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol, 2001, 34,155-165
    
    202. Sheldon J L. A corn mold (Fusarium moniliforme n. sp.). Agric Exp Stn Nebr Annu Rep, 1904,17: 23-43
    
    203. Shim W B, Woloshuk C P. Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett, 1999,177:109-116
    
    204. Shu H Y, Lin G H, Wu Y C, et al. Amino Acids Activated by Fengycin Synthetase FenE. Biophys Res Comm, 2002,292: 789-793
    
    205. Springer J P, Clardy J, Cole R J, et al. Structure and synthesis of moniliforme, a novel cyclobutane microbial toxin. J Am Chem Soc, 1974, 96:2267-2268
    
    206. Stein T, Borchert S, Conrad B, et al. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol, 2002,184:1703-1711
    
    207. Stein T, Borchert S, Kiesau P, et al. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol, 2002, 44: 403-416
    
    208. Stein T, Dusterhus S, Stroh A, et al. Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol, 2004, 70: 2349-2353
    209. Stein T, Heinzmann S, Solovieva I, et al. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem, 2003,278: 89-94
    
    210. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol, 2005,56:845-857
    
    211. Steller S, Sokoll A, Wilde C, et al. Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochem, 2004,43:11331-11343
    
    212. Steller S, Vater J. Purification of the fengycin synthetase multienzyme system from Bacillus subtilis b213. J Chromatogr B, 2000,737: 267-275
    
    213. Steller S, Vollenbroich D, Leenders F, et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and Al/3. Chem Biol, 1999,6: 31-41
    
    214. Sun L J, Lu Z X, Bie X M, et al. Isolation and characterization of a co-producer of Fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol, 2006, (Original paper)
    
    215. Sweeney M J, Dobson A D W. Molecular biology of mycotoxin production. FEMS Microbiol Lett, 1999,175:149-163
    
    216. Sydenham E W, Gelderblom W C A, Thiel P G et al. Evidence for the natural occurrence of fumonisin B1, a mycotoxin produced by Fusarium moniliforme, in corn. J Agric Food Chem, 1990,38; 285-290
    
    217. Sydenham E W, Shephard G S, Thiel, P G, et al. Fumonsin contamination of commercial corn-based human foodstuffs. J Agric Food Chem, 1991,39: 2014-2018
    
    218. Takeuchi S, Hirayama K, Ueda K, et al. Blasticidin S, a new antibiotic. J Antibiot (Tokyo), 1958,11:1-5
    
    219. Takeuchi T, Hara T, Naganawa H , et al. New antifungal antibiotics benanomicins A and B from 811 actinomycete. J Antibiot(Tokyo), 1988,41(6): 807-811
    
    220. Tamehiro N, Okamoto-Hosoya Y, Okamoto S, et al. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother, 2002, 46: 315-320
    
    221. Tang W H. Advances in biological control of plant diseases: proceeding of the international workshop on biological control of plant diseases. Bejing: China Agricultural University Press, 1996
    
    222. Terras FRG, Schoofs HME, De Bolle, et al. Analysis of two novel classes of antifungal proteins from radish(Raphanus sativus) seed. J Biol Chem, 1992,267:15301-15309
    223. Theiss S, Ishdorj G, Brenot A, et al. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A(2) activity and attenuates virulence Int J Med Microbiol, 2006, 296:405-420
    224. Thimon L, Peypoux F, Wallach J, et al. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett, 1995, 128: 101-106
    225. Tsitsigiannis D I, Keller N P. Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol, 2006, 59:882-92
    226. Tsuge K, Akiyama T, Shoda M. Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol, 2001, 183:6265-6273
    227. Tsuge K, Ano T, Hirai M, et al. The genes degQ, pps, and lpa-8 sfp. are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother, 1999, 43:2183-2192
    228. Ueki M, Taniguchi M. The mode of action of UK-2A and UK-3A, novel antifungal antibiotics from Streptomyces sp. 517-02. J Antibiot (Tokyo), 1997, 50(12): 1052-1057
    229. Ueki T, Numata K, Sawada Y, el al. Studies on the mode of antifungal action of pradimicin antibiotics Ⅱ. D-mannopyranoside-binding site and calcium-binding site. J Antibiot (Tokyo), 1993, 46(3): 455-464
    230. Umezawa H, Aoyagi T, Nishikiori T, et al. Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. Ⅰ. Taxonomy, production, isolation and preliminary characterization. J Antibiot (Tokyo), 1986, 39:737-744
    231. Utkhede, R S and Rahe, JE. Biological control of onion white rot. Soil Biol Biochem, 1980, 12:101-104
    232. Vanittanakom N, Loeffer W, Koch U, et al. Fengycin--a novel antifungai lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo), 1986, 39:888-901
    233. Vater J, Kablitz B, Wilde C, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol, 2002, 68: 6210-6219
    234. Vijayakumar EK, Roy K, Chatterjee S, et al. Arthrichitin, A New Cell Wall Active Metabolite from Arthrinium phaeospermum. J Org Chem, 1996, 61(19): 6591-6593
    235. Walter A Z, Peter A T. Steroid Interference with Antifungal Activity of Polyene Antibiotics. Appl Microbiol, 1966, 14(6): 865-869
    236. Wang J, Liu J, Wang X, et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol, 2004, 39, 98-102
    
    237. Wang J, Liu J, Wang X., et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. LettAppl. Microbiol, 2004, 39: 98-102
    
    238. Westers H, Dorenbos R, van Dijl J M, et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol, 2003, 20: 2076-2090
    
    239. Wilson D M, Huang L H, Jay E. Survival of Aspergillus flavus and Fusarium moniliforme in High-Moisture Corn Stored Under Modified Atmospheres. Appl Microbiol, 1975, 30(4): 592-595
    
    240. Wilson K E, Flor J E, Schwartz R E, et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization. JAntibiot (Tokyo), 1987, 40:1682-1691
    
    241. Woo JH, Kitamura E, Myouga H, et al. An antifungal protein from the marine bacterium streptomyces sp. Strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Environ Microbiol, 2002, 68(6): 2666-2675
    
    242. Yates IE, Bacon CW, Hinton DM. Effects of endophytic infection by Fusarium moniliforme on corn growth and celluar morphology. Plant Dis, 1997, 81:723-728
    
    243. Yates IE, Hiett KL, Kapczynski DR, et al. GUS transformation of the maize fungal endophyte Fusarium moniliforme. My col Res, 1999,103:129-136
    
    244. Yazgan A, Cetin S, Ozcengiz G. The effects of insertional mutations in comQ, comP, srfA, spoOH, spoOA and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim Biophys Acta, 2003,1626: 51-56
    
    245. Zheng G, Hehn R, Zuber P. Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol, 2000, 182: 3266-3273
    
    246. Zheng G, Slavik M. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Bacteriol, 1999, 28: 363-367
    
    247. Zheng G, Yan L Z, Vederas J C, et al. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J Bacteriol, 1999, 181: 7346-7355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700