用户名: 密码: 验证码:
第二相对Mg-Zn-Zr-Y镁合金动态再结晶演变及热加工性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变形镁合金因其缺陷少以及综合力学性能优异的特点能够满足不同领域的特殊用途,成为镁合金研究开发的一个重要方向。Mg-Zn-Zr系镁合金具有较高的强度成为目前应用最为广泛的变形镁合金之一,然而其塑性和热成形性差的缺点使其不能得到大规模的工业应用。本文在低Zn含量的Mg-2.0Zn-0.3Zr镁合金的基础上,添加不同含量的稀土元素Y,通过半连续铸造方法获得Mg-2.0Zn-0.3Zr-x(wt.%)Y合金以提高合金的综合力学性能,并改善合金的热加工性能。研究结果表明,随着Y添加量的增大,挤压态Mg-2.0Zn-0.3Zr-x(wt.%)Y合金的晶粒逐渐得到细化;当Y含量为0.9wt.%时,Mg-2.0Zn-0.3Zr-0.9Y合金的抗拉强度达到254±1.0MPa,延伸率达到24.3±0.4%,合金表现出较好的综合力学性能;当Y含量为5.8wt.%时,Mg-2.0Zn-0.3Zr-5.8Y合金的平均晶粒尺寸达到4.5±1.2μm,合金的抗拉强度和延伸率分别达到281±2MPa和30.1±0.7%,达到所有试验合金最优的综合力学性能。通过水冷冷却增大熔体过冷度的方法获得更大体积分数I-相的Mg-Zn-Zr-Y合金。
     由于Mg的层错能低,热变形过程中合金更容易发生动态再结晶。因此,动态再结晶是镁合金细化晶粒和提高综合力学性能的一种重要手段。为了研究第二相对变形镁合金在热变形过程中动态再结晶演变和热加工性的影响,通过热压缩实验,分别研究了半连续铸造获得的Mg-2.0Zn-0.3Zr-x(wt.%)Y合金中W-相、18RLPSO相、14H LPSO相和I-相对合金热变形行为、动态再结晶和热加工性能的影响机制;在大量实验数据的基础上,基于Avrami方程,本文提出一种新的动态再结晶动力学模型:并在不同成分合金的热模拟实验中进行验证;提出并采用结合显微组织分析、动态再结晶动力学模型和动态材料模型(DMM)塑性加工图计算的方法系统优化合金热加工工艺参数,指导工业生产。研究结果表明:1). Mg-2.0Zn-0.3Zr合金的动态再结晶激活能Q的平均值为169.8KJ/mol;在实验条件范围内没有出现加工失稳区。2). W-相的生成使Mg-2.0Zn-0.3Zr-0.9Y合金的再结晶激活能增大到236.2KJ/mol;当应变速率在0.001-0.01s-1之间,变形温度在250-400℃之间,Mg-2.0Zn-0.3Zr-0.9Y合金的动态再结晶机制以连续动态再结晶(CDRX)机制为主,伴随有晶界弓出形核的不连续动态再结晶(DDRX)机制发生,动态再结晶体积分数随着变形温度的升高而逐渐增大当应变速率在0.1-1s-1之间,在较低温度范围(250-300℃),动态再结晶主要以孪生-动态再结晶(TDRX)机制为主,当变形温度升高,孪晶密度减小,动态再结晶机制又以连续动态再结晶(CDRX)机制为主,同时伴随有晶界弓出形核的不连续动态再结晶(DDRX)机制的发生,动态再结晶体积分数随着变形温度的升高先增大后降低;3).含18R LPSO相的Mg-2.0Zn-0.3Zr-5.8Y合金的动态再结晶激活能Q的平均值为293.0KJ/mol;18R LPSO相和层错(SFs)会阻碍和延迟动态再结晶的发生,合金在300-350℃和0.001-0.01s-1以及300-450℃和0.1-1s-1变形参数范围内发生不完全动态再结晶;热压缩变形过程中,以CDRX机制为主,伴随有晶界弓出形核的DDRX机制。4).含14H LPSO相的Mg-2.0Zn-0.3Zr-5.8Y合金的动态再结晶激活能(Q值)平均值为348.4KJ/mol;14H LPSO相的动态再结晶机制与18R LPSO相基本相同,以原始晶界附近和LPSO相与Mg基体界面附近亚晶形核长大的CDRX机制为主,伴有少量晶界弓出形核的DDRX机制发生;在相同的变形条件下,经过500℃×20h均匀化退火热处理后,在Mg-2.0Zn-0.3Zr-5.8Y合金基体中析出的片层状14H LPSO相以及变形过程中形成的扭折带延迟动态再结晶和阻碍动态再结晶晶粒的长大的作用要大于18R LPSO相;14H LPSO相的生成增大了Mg-2.0Zn-0.3Zr-5.8Y合金的失稳区,降低了合金在较低加工温度下的热加工性能。6).通过水冷冷却制备含I-相的Mg-2.0Zn-0.3Zr-0.2Y合金的平均激活能Q=277.8KJ/mol;在低应变速率下(0.001-0.01s-1),热压缩试样主要在原始晶界附近发生的CDRX机制为主,动态再结晶体积分数随着变形温度的升高而增大;当应变速率达到0.1s-1,在较低变形温度,晶粒内部开始局部发生TDRX,动态再结晶体积分数随着变形温度的升高逐渐增大;当应变速率达到1s-1,变形温度在350-350℃之间,动态再结晶主要以TDRX机制为主,随着变形温度的升高,孪晶密度不断减小,原始晶界附近的CDRX机制逐渐开始占主导地位,动态再结晶体积分数先减小后增大。
Wroughtmagnesium alloy takes lots of advantages, such as excellentmechanicalproperties and fewer defects,which makes the development of improved wroughtalloysbecome an active research field. Mg-Zn-Zr alloys with high strength are one ofthe most widely usedwroughtmagnesium alloy, but their poor plasticity and workabilitylimits their application to major extent. In this paper, various Y contents were added intoMg-2.0Zn-0.3Zr alloy to improve its mechanical properties and hot workability. Theresults show: when Ycontent reached0.9wt.%,Mg-2.0Zn-0.3Zr-0.9Y alloy performed agood mechanical propertieswith the tensile strengthof254±1.0MPa and the elongationof24.3±0.4%. The grains of as-extruded Mg-2.0Zn-0.3Zr-x(wt.%)Y alloys wererefined with the increaseing addition of Y element; when the content reached5.8wt.%,the average grain size of Mg-2.0Zn-0.3Zr-5.8Y reached4.5±1.2μm, and the tensilestrength and elongation reached281±2MPa and30.1±0.7%, respectively.Mg-Zn-Zr-Yalloys containing quasicrystal phase were prepared by as-cast method withwater-cooling, and the effects of different Zn and Y content (same Zn/Y ratio) onmicrostructure and micro-hardness were also discussed.
     Because of the low stacking fault energy of Mg, non-basal slip is activated hardlyby means of the broad extended dislocation, which can cause dynamic recrystallization(DRX) much more easily. Thus, the DRX becomes one of the factors to improve themechanical properties and refine grains of magnesium alloys. Base on Avrami equation,an new kinetics model of DRX evolution is proposed in this paper as:X1exp[k(ε-εcε*) n
     DRX], and the accuracy of the model was verified in thecompression test of different alloys. The effects of second phases (W-phase,18R LPSOphase,14H LPSO phaseand I-phase) on hot deformation behavior, DRX and hotworkability of Mg-2.0Zn-0.3Zr-x(wt.%)Y alloys were studied by compression test;theeffect of on hot deformation behavior, DRX and hot workabilityofMg-2.0Zn-0.3Zr-0.2Y alloy prepared by as-cast method with water-cooling wasstudied; a method for optimizing deformation techniques by combining microstructureobservation and kinetics model of DRX with dynamic materials model (DMM)processing map was proposed. The results show that:1). By means of regressionanalysis for the Arrhenius type equation of flow behavior, the average activation energy Q value of Mg-2.0Zn-0.3Zr alloy was determined as169.8KJ/mol; the instable regiondoes not appear under experimental conditions;2). the average activation energy Qvalue of Mg-2.0Zn-0.3Zr-0.9Y alloy increased to236.2KJ/mol for the formation of Wphase; in temperature range of250-400℃and strain rate range of0.001-0.01s-1, themain DRX mechanism was continuous dynamic recrystallization (CDRX),accompanied the discontinuous dynamic recrystallization (DDRX)--the nucleation bybulging of local grain boundaries, and the volume fraction of DRX grains increasedwith the increasing of deformation temperature; in temperature range of250-300℃andstrain rate range of0.001-0.01s-1; the main DRX mechanism was TDRX; when thetemperature in the range of300-400℃, under the strain rate range of0.001-0.01s-1, thedensity of twins decreased with the increasing of deformation temperature, CDRXmechanism became the main DRX mechanism, accompanied the DDRX―thenucleation by bulging of local grain boundaries, as the deformation temperatureincreased, the volume fraction of DRX grainsfirst increased and then decreased.3). theaverage activation energy Q value of Mg-2.0Zn-0.3Zr-5.8Y alloy containing18R LPSOphase increased to293.0KJ/mol;18R LPSO phase can delayed the DRX, un-completedDRX occurred in the deformation temperature range of300-350℃and the strain raterange of0.001-0.01s-1, and at the deformation temperature range of300-450℃and thestrain rate range of0.1-1s-1; the main DRX mechanism was CDRX, accompaniedDDRX―the nucleation by bulging of local grain boundaries.4) the average activationenergy Q value of Mg-2.0Zn-0.3Zr-5.8Y alloy containing14H LPSO phase was348.4KJ/mol; the DRX mechanism of the alloy containing14H LPSO phase is almostsimilar to that of the18R LPSO phase; compared with18R LPSO phase,lamellar14HLPSO phase distributed in Mg matrix and deformation kinks can delay the DRX andhinder the growth of DRX grains significantly at same deformation condition; theformation of14H LPSO phase after homogenization treatment at500℃for20hincreased the instability region and reduced the workability of Mg-2.0Zn-0.3Zr-5.8Y atlow deformation temperatures.6). the average activation energy Q value ofMg-2.0Zn-0.3Zr-0.2Y alloy containing icosahedral quasicrystal phase prepared by watercooling was277.8KJ/mol; under a strain rate range (0.001-0.01s-1), CDRX occurrednear local grain boundaries was the main DRX mechanism, accompanied the DDRXwith nucleation by bulging of local grain boundaries, and the volume fraction of DRXgrains increased with the increasing of deformation temperature; when the strain ratereached0.1s-1, some twins formed at a lower deformation temperature, the volume fraction of DRX grains also increased with the increasing of deformation temperature;in the deformation temperature range of250-350℃and the strain rate range of1s-1, themain DRX mechanism was TDRX, and the volume fraction of DRX grains increasedwith the increasing of deformation temperature; in the deformation temperature range of350-450℃and the strain rate range of1s-1, the density of twins decreased with theincreasing of deformation temperature, CDRX occurred near local grain boundariesgraduallybecame the main DRX mechanism, accompanied the DDRX with nucleationby bulging of local grain boundaries, and the volume fraction of DRX grainsfirstincreased and then decreased.
引文
[1]陈振华.镁合金[M].化学工业出版社,2004.
    [2] D. Eliezer, E. Aghion, F.H. Froes. Magnesium Science, Technology and Applications[J].Advanced Performance Materials.1998,5(3):201-212.
    [3] F.H. Froes, D. Eliezer, E. Aghion. The Science, Technology, and Applications ofMagnesium[J]. JOM.1998,50(9):30-34.
    [4] D. Letzig, J. Swiostek, J. Bohlen, P.A. Beaven, K.U. Kainer. Wrought Magnesium Alloys forStructural Applications[J]. Materials Science and Technology.2008,24(8):991-996.
    [5] B.L. Mordike, T. Ebert. Magnesium: Properties—Applications—Potential[J]. MaterialsScience and Engineering: A.2001,302(1):37-45.
    [6] I.J. Polmear. Magnesium Alloys and Applications[J]. Materials Science and Technology.1994,10(1):1-16.
    [7]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [8]潘复生,韩恩厚.高性能变形镁合金及其塑性加工技术[M].北京:科学出版社,2007.
    [9]罗守靖,田文彤,谢水生,毛卫民.半固态加工技术及应用[J].中国有色金属学报.2000,10(6):765.
    [10] B.L. Mordike, F. Hehmann. Magnesium Alloys and Their Applications[M]. DGMInformationsgesellschaft,1992.
    [11] M.M. Avedesian, H. Baker. ASM specialty handbook: magnesium and magnesium alloys[J].ASM international.1999,274.
    [12] Y. Kojima. Platform Science and Technology for Advanced Magnesium Alloys[J]. MaterialsScience Forum.2000,350-351:3-18.
    [13] K.H. Matucha,丁道云.非铁合金的结构与性能[M].科学出版社,1999.
    [14] L. Lu, L. Froyen. Mechanically Alloyed High Strength Mg5wt.%Al10.3%wt.Ti4.7%wt.BAlloy[J]. Scripta Materialia.1999,40(10):1117-1122.
    [15]丁文江.我国镁合金研究现状及前景展望[C].2004年中国镁业发展高层论坛论文集,北京,2004:445-448.
    [16]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报.2002(10):37-39,53.
    [17]高仑.镁合金成形技术的开发与应用[J].轻合金加工技术.2004,32(3):5-12.
    [18]尹守义.国外镁合金的新发展[J].世界有色金属.1994(07):9-11.
    [19]森久史,彭惠民.镁合金在车辆结构构件上的应用[J].国外机车车辆工艺.2013(01):27-30.
    [20]刘祚时,谢旭红.镁合金在汽车工业中的开发与应用[J].轻金属.1999(01):55-58.
    [21]高敬.镁合金在交通运输系统中的应用概述[J].特种铸造及有色合金.2003(z1):80-83.
    [22]宋齐婴.飞机制造业对机床设备的需求[J].制造技术与机床.2008(12):67-69.
    [23]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修.2002(4):41-42.
    [24]李凤梅,钱鑫源,李金桂,王乐安,赵进.稀土在航空工业中的应用现状与发展趋势[J].材料工程.1998(06):10-13.
    [25]丁文江,付彭怀,彭立明,蒋海燕,王迎新,吴国华,董杰,郭兴伍.先进镁合金材料及其在航空航天领域中的应用[J].航天器环境工程.2011(02):103-109.
    [26]曾小勤,王渠东,吕宜振,丁文江,朱燕萍.镁合金应用新进展[J].铸造.1998(11):41-45.
    [27]李晓敏.压铸镁合金在电子产业中的应用及其发展前景[J].轻金属.2003(7):37-38.
    [28]唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程.2007,30(2):69-72.
    [29]刘静安,盛春磊.镁及镁合金的应用及市场发展前景[J].有色金属加工.2007(02):1-6.
    [30]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报.2003,13(2):277-288.
    [31]李德辉,董杰,曾小勤,卢晨,丁文江.高性能稀土镁合金研究进展[J].材料导报.2005,19(8):51-54.
    [32]彭建,吕滨江,潘复生,张丁非.高塑性Mg-Zn系稀土镁合金的研究进展[J].热加工工艺.2010,39(18):15-19.
    [33]徐光宪.稀土[M].冶金工业出版社,1995.
    [34] S.-Q. Luo, A.-T. Tang, F.-S. Pan, K. Song, W.-Q. Wang. Effect of Mole Ratio of Y to Zn onPhase Constituent of Mg-Zn-Zr-Y Alloys[J]. Transactions of Nonferrous Metals Society ofChina.2011,21(4):795-800.
    [35]郑明毅,吴昆,乔晓光,李淑波,胡小石.镁系准晶与高性能镁合金[J].材料科学与工艺.2004,12(6):666-671.
    [36] R.B. Figueiredo, T.G. Langdon. Influence of Rolling Direction on Flow and Cavitation in aSuperplastic Magnesium Alloy Processed by Equal-Channel Angular Pressing[J]. MaterialsScience and Engineering: A.2012,556(0):211-220.
    [37] M. Greger, R. Kocich. Superplasticity Properties of Magnesium Alloys[M]. Recent Advancesin Mechatronics. Springer Berlin Heidelberg,2007:421-425.
    [38] O.B. Kulyasova, R.K. Islamgaliev, A.R. Kil’mametov, R.Z. Valiev. Superplastic Behavior ofMagnesium-Based Mg-10wt%Gd Alloy after Severe Plastic Deformation by Torsion[J]. ThePhysics of Metals and Metallography.2006,101(6):585-590.
    [39] M. Mabuchi, K. Higashi. High-Strain-Rate Superplasticity in Magnesium Matrix CompositesContaining Mg2Si Particles[J]. Philosophical Magazine A.1996,74(4):887-905.
    [40] Z. Qu, X. Liu, R. Wu, M. Zhang. The Superplastic Property of the as-Extruded Mg–8LiAlloy[J]. Materials Science and Engineering: A.2010,527(13–14):3284-3287.
    [41] L.-Y. Wang, M.-J. Song, R.-C. Liu. Superplasticity and Superplastic Instability of AZ31BMagnesium Alloy Sheet[J]. Transactions of Nonferrous Metals Society of China.2006,16(2):327-332.
    [42] S.W. Xu, M.Y. Zheng, S. Kamado, K. Wu. The Microstructural Evolution and SuperplasticBehavior at Low Temperatures of Mg–5.00Zn–0.92Y–0.16Zr (wt.%) Alloys after HotExtrusion and Ecap Process[J]. Materials Science and Engineering: A.2012,549(0):60-68.
    [43]曹磊,丁汉林,刘六法.镁合金超塑性研究[J].轻合金加工技术.2005(10):8-12.
    [44]王齐伟,左秀荣,黄晓辉.镁合金超塑性的研究现状及发展趋势[J].世界有色金属.2008(07):54-55.
    [45]尉胤红,王渠东,刘满平,丁文江.镁合金超塑性的研究现状及发展趋势[J].材料导报.2002(09):20-23.
    [46]吴立鸿,王盼,关绍康.镁合金超塑性及其成形技术进展[J].轻合金加工技术.2009(02):10-13.
    [47]闫蕴琪,张廷杰,邓炬,周廉.镁合金超塑性研究现状与进展[J].金属热处理.2003(10):1-5.
    [48] E. Cerri, E. Evangelista, H.J. McQueen. Overview of the High Temperature SubstructureDevelopment in Al-Mg Alloys[J]. High Temperature Materials and Processes,1999(18):227-240.
    [49] T.J. Holmquist, D.W. Templeton, K.D. Bishnoi. Constitutive Modeling of Aluminum Nitridefor Large Strain, High-Strain Rate, and High-Pressure Applications[J]. International Journal ofImpact Engineering.2001,25(3):211-231.
    [50] H. Zhao. A Constitutive Model for Metals over a Large Range of Strain Rates Identificationfor Mild-Steel and Aluminium Sheets[J]. Materials Science and Engineering: A.1997,230(1–2):95-99.
    [51]黄长清,刁金鹏,邓华.铝合金热变形的本构模型研究[J].中南大学学报(自然科学版).2011,42(12):3702-3708.
    [52]权国政,陈涛,石彧,王熠昕,张艳伟.退火20MnNiMo合金高温流变行为的一种本构描述[J].材料热处理学报.2012,33(7):147-152,158.
    [53] P. Ludwik. Elemente Der Technologischen Mechanik[M]. J. Springer,1909.
    [54] J.H. Hollomon. Tensile Deformation[J]. AIME TRANS.1945,12(4):1-22.
    [55] H.W. Swift. Plastic Instability under Plane Stress[J]. Journal of the Mechanics and Physics ofSolids.1952,1(1):1-18.
    [56] H.J. Kleemola, M.A. Nieminen. On the Strain-Hardening Parameters of Metals[J].Metallurgical Transactions.1974,5(8):1863-1866.
    [57] E. Voce. The Relationship between Stress and Strain for Homogeneous Deformation[J]. J InstMet.1948,74:537-562.
    [58] D.C. Ludwigson. Modified Stress-Strain Relation for Fcc Metals and Alloys[J]. MetallurgicalTransactions.1971,2(10):2825-2828.
    [59] H. Mecking, U.F. Kocks. Kinetics of Flow and Strain-Hardening[J]. Acta Metallurgica.1981,29(11):1865-1875.
    [60] Y. Estrin, Y. Brechet, H. Braasch. A Dislocation Density Based Constitutive Model for CyclicDeformation[J]. Journal of Engineering Materials and Technology.1996,118(4):441-447.
    [61] Y. Estrin, H. Mecking. A Unified Phenomenological Description of Work Hardening andCreep Based on One-Parameter Models[J]. Acta Metallurgica.1984,32(1):57-70.
    [62] A. Laasraoui, J.J. Jonas. Recrystallization of Austenite after Deformation at HighTemperatures and Strain Rates-Analysis and Modeling[M]. Warrendale, PA, ETATS-UNIS:Metallurgical Society of AIME,1991.
    [63] A. Laasraoui, J.J. Jonas. Prediction of Steel Flow Stresses at High Temperatures and StrainRates[J]. Metallurgical Transactions A.1991,22(7):1545-1558.
    [64] C. Sellars. Computer Modelling of Hot-Working Processes[J]. Materials Science andTechnology.1985,1(4):325-332.
    [65] C.M. Sellars. The Kinetics of Softening Processes During Hot Working of Austenite[J].Czechoslovak Journal of Physics B.1985,35(3):239-248.
    [66] Y.-J. Qin, Q.-L. Pan, Y.-B. He, W.-B. Li, X.-Y. Liu, X. Fan. Modeling of Flow Stress forMagnesium Alloy During Hot Deformation[J]. Materials Science and Engineering: A.2010,527(10–11):2790-2797.
    [67] B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, R.A.Gandhi. Flow Stress Modeling of AZ91Magnesium Alloys at Elevated Temperature[J].Journal of Alloys and Compounds.2011,509(15):4992-4998.
    [68] Z.Q. Sheng, R. Shivpuri. Modeling Flow Stress of Magnesium Alloys at ElevatedTemperature[J]. Materials Science and Engineering: A.2006,419(1–2):202-208.
    [69] H. Takuda, H. Fujimoto, N. Hatta. Modelling on Flow Stress of Mg–Al–Zn Alloys at ElevatedTemperatures[J]. Journal of Materials Processing Technology.1998,80–81(0):513-516.
    [70] H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa. Modelling of Formula for Flow Stress ofa Magnesium Alloy AZ31Sheet at Elevated Temperatures[J]. Journal of Materials ProcessingTechnology.2005,164–165(0):1258-1262.
    [71]李慧中,王海军,刘楚明,刘洪挺,郭菲菲,梁霄鹏. Mg-10Gd-4.8Y-2Zn-0.6Zr合金本构方程模型及加工图[J].材料热处理学报.2010,31(7):88-93.
    [72]彭建,童小山,尚守亮,潘复生. Mg-6Zn-1Mn镁合金的热压缩变形行为及加工图[J].稀有金属材料与工程.2013,42(8):1627-1631.
    [73]夏长清,武文花,吴安如,王银娜. Mg-Nd-Zn-Zr稀土镁合金的热变形行为[J].中国有色金属学报.2004,14(11):1810-1816.
    [74] H. YU, H.-S. YU, Y.-M. KIM, B.-S. YOU, G.-H. MIN. Hot Deformation Behavior andProcessing Maps of Mg–Zn–Cu–Zr Magnesium Alloy[J].2013,23(3):756-764.
    [75]夏长清,武文花,吴安如,王银娜. Mg-Nd-Zn-Zr稀土镁合金的热变形行为[J].中国有色金属学报.2004,14(11):1810-1816.
    [76] N. Chetty, M. Weinert. Stacking Faults in Magnesium[J]. Physical Review B.1997,56(17):10844-10851.
    [77] M. Muzyk, Z. Pakiela, K.J. Kurzydlowski. Generalized Stacking Fault Energy in MagnesiumAlloys: Density Functional Theory Calculations[J]. Scripta Materialia.2012,66(5):219-222.
    [78] S. Sandl bes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer,D. Raabe. The Relation between Ductility and Stacking Fault Energies in Mg and Mg–YAlloys[J]. Acta Materialia.2012,60(6–7):3011-3021.
    [79] J. Zhang, Y. Dou, G. Liu, Z. Guo. First-Principles Study of Stacking Fault Energies inMg-Based Binary Alloys[J]. Computational Materials Science.2013,79(0):564-569.
    [80] J. Liu, Z. Cui, C. Li. Modelling of Flow Stress Characterizing Dynamic Recrystallization forMagnesium Alloy AZ31B[J]. Computational Materials Science.2008,41(3):375-382.
    [81] C. Sellars. Modelling Microstructural Development During Hot Rolling[J]. Materials Scienceand Technology.1990,6(11):1072-1081.
    [82] C. Sellars, J. Whiteman. Recrystallization and Grain Growth in Hot Rolling[J]. Metal Science.1979,13(3-4):187-194.
    [83] C.M. Sellars, J.A. Whiteman. Recrystallization and Grain Growth in Hot Rolling[M]. MetalsSociety,1979.
    [84] H. McQueen, S. Yue, N. Ryan, E. Fry. Hot Working Characteristics of Steels in AusteniticState[J]. Journal of Materials Processing Technology.1995,53(1):293-310.
    [85]郭海龙,孙志超,杨合.挤压态7075铝合金再结晶经验模型及应用[J].中国有色金属学报.2013(6):1507-1515.
    [86] C. Devadas, I.V. Samarasekera, E.B. Hawbolt. The Thermal and Metallurgical State of SteelStrip During Hot Rolling: Part Iii. Microstructural Evolution[J]. Metallurgical Transactions A.1991,22(2):335-349.
    [87]刘娟,李居强,崔振山,阮立群.新的单参数动态再结晶动力学建模及晶粒尺寸预测[J].金属学报.2012(12):1510-1519.
    [88] S.-I. Kim, Y.-C. Yoo. Dynamic Recrystallization Behavior of AISI304Stainless Steel[J].Materials Science and Engineering: A.2001,311(1–2):108-113.
    [89] R. Kopp, K. Karnhausen, M. De Souza. Numerical Simulation Method for DesigningThermomechanical Treatment Illustrated by Bar Rolling[J]. Scand J Metallurgy.1991,20(6):351--363.
    [90] S. Serajzadeh, A. Karimi Taheri. Prediction of Flow Stress at Hot Working Condition[J].Mechanics Research Communications.2003,30(1):87-93.
    [91]曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.加工图理论研究进展[J].稀有金属材料与工程.2006,35(5):673-677.
    [92] R. Raj. Development of a Processing Map for Use in Warm-Forming and Hot-FormingProcesses[J]. Metallurgical Transactions A.1981,12(6):1089-1097.
    [93] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R.Barker. Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242[J].Metallurgical Transactions A.1984,15(10):1883-1892.
    [94] H.J. Frost, F. Ashby. Deformation-Mechanism Maps: The Plasticity and Creep of Metals andCeramics[M]. Pergamon Press,1982.
    [95] H. Ziegler, E.T. Hochschule. Some Extremum Principles in Irreversible Thermodynamics,with Application to Continuum Mechanics[M]. Swiss Federal Institute of Technology,1962.
    [96] J.K. Chakravartty, Y.V.R.K. Prasad, M.K. Asundi. Processing Map for Hot Working ofAlpha-Zirconium[J]. Metallurgical Transactions A.1991,22(4):829-836.
    [97] D. Padmavardhani, Y.V.R.K. Prasad. Characterization of Hot Deformation Behavior ofBrasses Using Processing Maps: Part I. Α Brass[J]. Metallurgical Transactions A.1991,22(12):2985-2992.
    [98] N. Ravichandran, Y.V.R.K. Prasad. Dynamic Recrystallization During Hot Deformation ofAluminum: A Study Using Processing Maps[J]. Metallurgical Transactions A.1991,22(10):2339-2348.
    [99]曾卫东,徐斌,何德华,梁晓波,李世琼,张建伟,周义刚.应用加工图理论研究Ti2AlNb基合金的高温变形特性[J].稀有金属材料与工程.2007,36(4):592-596.
    [100] N. Srinivasan, Y.V.R.K. Prasad, P. Rama Rao. Hot Deformation Behaviour of Mg–3AlAlloy—a Study Using Processing Map[J]. Materials Science and Engineering: A.2008,476(1–2):146-156.
    [101] H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, Q.D. Wang. Hot WorkabilityCharacteristics of Magnesium Alloy AZ80—A Study Using Processing Map[J]. MaterialsScience and Engineering: A.2010,527(7–8):2022-2026.
    [102] S.V.S.N. Murty, B.N. Rao. On the Development of Instability Criteria During Hotworkingwith Reference to in718[J]. Materials Science and Engineering: A.1998,254(1–2):76-82.
    [103] H.L. Gegel. ASM Series in Metal Processing[M]. American Society for metals,1983.
    [104] D.K. Kondepudi, I. Prigogine. Modern Thermodynamics: From Heat Engines to DissipativeStructures[M]. John Wiley,1998.
    [105] F. Montheillet, J.J. Jonas, K.W. Neale. Modeling of Dynamic Material Behavior: A CriticalEvaluation of the Dissipator Power Co-Content Approach[J]. Metallurgical and MaterialsTransactions A.1996,27(1):232-235.
    [106]黄晓艳,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报.2003,2(4):300-306.
    [107] J. Chen, Z. Wang, S. Lu. Effects of Electric Parameters on Microstructure and Properties ofMao Coating Fabricated on ZK60Mg Alloy in Dual Electrolyte[J]. Rare Metals.2012,31(2):172-177.
    [108] K.J. Kim, S.T. Won. Effect of Structural Variables on Automotive Body Bumper ImpactBeam[J]. International Journal of Automotive Technology.2008,9(6):713-717.
    [109] M.-K. Shin, K.-T. Park, G.-J. Park. Design of the Active Hood Lift System Using OrthogonalArrays[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering.2008,222(5):705-717.
    [110] G. Lu, T. Yu. Energy Absorption of Structures and Materials[M]. Cambridge,2003.
    [111] A. Luo, J. Renaud, I. Nakatsugawa, J. Plourde. Magnesium Castings for AutomotiveApplications[J]. JOM.1995,47(7):28-31.
    [112] E. Abe, Y. Kawamura, K. Hayashi, A. Inoue. Long-Period Ordered Structure in aHigh-Strength Nanocrystalline Mg-1at%Zn-2at%Y Alloy Studied by Atomic-ResolutionZ-Contrast STEM[J]. Acta Materialia.2002,50(15):3845-3857.
    [113] X. Fang, D. Yi, W. Luo, B. Wang, X. Zhang, F. Zheng. Effects of Yttrium on Recrystallizationand Grain Growth of Mg-4.9Zn-0.7Zr Alloy[J]. Journal of Rare Earths.2008,26(3):392-397.
    [114] Q.-C. Le, Z.-Q. Zhang, Z.-W. Shao, J.-Z. Cui, Y. Xie. Microstructures and MechanicalProperties of Mg-2%Zn-0.4%Re Alloys[J]. Transactions of Nonferrous Metals Society ofChina.2010,20, Supplement2(0): s352-s356.
    [115] M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida. Interaction between Long PeriodStacking Order Phase and Deformation Twin in Rapidly Solidified Mg97Zn1Y2Alloy[J].Materials Science and Engineering: A.2004,386(1-2):447-452.
    [116]彭建,吕滨江,胡耀波,潘复生.稀土Y对Mg-2.0Zn-0.3Zr镁合金铸态组织和力学性能的影响.稀有金属材料与工程[J].2010,39(4):672-677.
    [117] D.Y. Maeng, T.S. Kim, J.H. Lee, S.J. Hong, S.K. Seo, B.S. Chun. Microstructure and Strengthof Rapidly Solidified and Extruded Mg-Zn Alloys[J]. Scripta Materialia.2000,43(5):385-389.
    [118] F. Lu, A. Ma, J. Jiang, D. Yang, Q. Zhou. Review on Long-Period Stacking-Ordered Structuresin Mg-Zn-Re Alloys[J]. Rare Metals.2012,31(3):303-310.
    [119] Y. Zhang, X. Zeng, L. Liu, C. Lu, H. Zhou, Q. Li, Y. Zhu. Effects of Yttrium onMicrostructure and Mechanical Properties of Hot-Extruded Mg–Zn–Y–Zr Alloys[J]. MaterialsScience and Engineering: A.2004,373(1-2):320-327.
    [120] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E.King, T.R. McNelley, H.J. McQueen, A.D. Rollett. Current Issues in Recrystallization: AReview[J]. Materials Today.1998,1(2):14-15.
    [121] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi. TheActivity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature inFine-Grained AZ31B Magnesium Alloys[J]. Acta Materialia.2003,51(7):2055-2065.
    [122] M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida. Variation of Long-Period StackingOrder Structures in Rapidly Solidified Mg97Zn1Y2Alloy[J]. Materials Science andEngineering: A.2005,393(1-2):269-274.
    [123] Z.P. Luo, S.Q. Zhang. High-Resolution Electron Microscopy on the X-Mg12zny Phase in aHigh Strength Mg-Zn-Zr-Y Magnesium Alloy[J]. Journal of Materials Science Letters.2000,19(9):813-815.
    [124] D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, E.H. Han. Effect of W-Phase on the MechanicalProperties of as-Cast Mg–Zn–Y–Zr Alloys[J]. Journal of Alloys and Compounds.2008,461(1-2):248-252.
    [125] A. Datta, U.V. Waghmare, U. Ramamurty. Structure and Stacking Faults in Layered Mg–Zn–YAlloys: A First-Principles Study[J]. Acta Materialia.2008,56(11):2531-2539.
    [126] T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi. Long Period Stacking Structures Observed inMg97Zn1Y2Alloy[J]. Scripta Materialia.2004,51(2):107-111.
    [127] K. Hagihara, N. Yokotani, Y. Umakoshi. Plastic Deformation Behavior of Mg12YZn with18rLong-Period Stacking Ordered Structure[J]. Intermetallics.2010,18(2):267-276.
    [128] J. Gordon. Structures: Or Why Things Don't Fall Down[M]. Da Capo Press, Incorporated,2009.
    [129] K.U. Kainer. Magnesium Alloys and Technology[M]. Wiley-VCH,2003.
    [130] K.U. Kainer. Magnesium Alloys and Technologies[M]. Wiley,2006.
    [131] K.U. Kainer. Magnesium[M]. Wiley,2010.
    [132] H. Watanabe, T. Mukai, M. Mabuchi, K. Higashi. High-Strain-Rate Superplasticity at LowTemperature in a ZK61Magnesium Alloy Produced by Powder Metallurgy[J]. ScriptaMaterialia.1999,41(2):209-213.
    [133] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The Influence of Element Y on the Mechanical Propertiesof the as-Extruded Mg–Zn–Y–Zr Alloys[J]. Journal of Alloys and Compounds.2006,426(1–2):155-161.
    [134] Y. Zhang, X. Zeng, L. Liu, C. Lu, H. Zhou, Q. Li, Y. Zhu. Effects of Yttrium onMicrostructure and Mechanical Properties of Hot-Extruded Mg–Zn–Y–Zr Alloys[J]. MaterialsScience and Engineering: A.2004,373(1–2):320-327
    [135]F.S. Pierce, S.J. Poon, Q. Guo. Electron Localization in Metallic Quasicrystals[J]. Science.1993,261(5122):737-739.
    [136] S. Takeuchi, T. Fujiwara. Proceedings of the6th International Conference on Quasicrystals:Yamada Conference Xlvii: Tokyo, Japan,26-30May1997[M]. World Scientific,1998.
    [137]D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The Strengthening Effect of Icosahedral Phase onas-Extruded Mg–Li Alloys[J]. Scripta Materialia.2007,57(3):285-288.
    [138] D.H. Bae, S.H. Kim, D.H. Kim, W.T. Kim. Deformation Behavior of Mg–Zn–Y AlloysReinforced by Icosahedral Quasicrystalline Particles[J]. Acta Materialia.2002,50(9):2343-2356.
    [139] D.H. Bae, M.H. Lee, K.T. Kim, W.T. Kim, D.H. Kim. Application of Quasicrystalline Particlesas a Strengthening Phase in Mg–Zn–Y Alloys. Journal of Alloys and Compounds.2002,342(1–2):445-450.
    [140] E.S. Park, S. Yi, J.B. Ok, D.H. Bae, W.T. Kim, D.H. Kim. Solidification and MicrostructureControl of Mg-Rich Alloys in the Mg-Zn-Y Ternary Systemya[C]. MRS Proceedings,Cambridge University Press,2000,643: K2-5.
    [141] D.K. Xu, E.H. Han. Effects of Icosahedral Phase Formation on the Microstructure andMechanical Improvement of Mg Alloys: A Review[J]. Progress in Natural Science: MaterialsInternational.2012,22(5):364-385.
    [142] J.Y. Lee, D.H. Kim, H.K. Lim, D.H. Kim. Effects of Zn/Y Ratio on Microstructure andMechanical Properties of Mg-Zn-Y Alloys[J]. Materials Letters.2005,59(29–30):3801-3805.
    [143] A. Singh, M. Watanabe, A. Kato, A.P. Tsai. Microstructure and Strength of QuasicrystalContaining Extruded Mg–Zn–Y Alloys for Elevated Temperature Application[J]. MaterialsScience and Engineering: A.2004,385(1–2):382-396.
    [144]朱世杰,杨卿,白小波,王利国,关绍康.亚快速凝固Mg7Zn3Y(-Zr)合金的组织演化及凝固动力学[J].稀有金属材料与工程.2008(07):1157-1162.
    [145] S.-S. Li, B. Tang, D.-B. Zeng. Effects and Mechanism of Ca on Refinement of AZ91DAlloy[J]. Journal of Alloys and Compounds.2007,437(1–2):317-321.
    [146]史菲,郭学峰,张忠明. Y对普通凝固Mg-Zn-Y系合金组织及准晶相形成的影响[J].稀有金属材料与工程.2005(11):50-53.
    [147] J.Y. Lee, H.K. Lim, D.H. Kim, W.T. Kim, D.H. Kim. Effect of Volume Fraction of Qusicrystalon the Mechanical Properties of Quasicrystal-Reinforced Mg–Zn–Y Alloys[J]. MaterialsScience and Engineering: A.2007,449–451(0):987-990.
    [148]冯娟妮,郭学锋,徐春杰,张忠明. Mg-Zn-Y系合金的铸态组织及其相变点[J].中国稀土学报.2006,24(1):86-90.
    [149] F. Hehmann, F. Sommer, B. Predel. Extension of Solid Solubility in Magnesium by RapidSolidification[J]. Materials Science and Engineering: A.1990,125(2):249-265.
    [150]刘全坤.材料成形基本原理[M].机械工业出版社,2005.
    [151]李敏,王宏伟,朱兆军,魏尊杰.添加重熔料及稀土钇对ZL205A合金铸态组织、热裂性能及凝固特性的影响[J].稀有金属材料与工程.2010,39(z1):5-10.
    [152]S.E. Ion, F.J. Humphreys, S.H. White. Dynamic Recrystallisation and the Development ofMicrostructure During the High Temperature Deformation of Magnesium[J]. ActaMetallurgica.1982,30(10):1909-1919.
    [153] Y.-Z. Wu, H.-G. Yan, J.-H. Chen, S.-Q. Zhu, B. Su, P.-L. Zeng. Hot Deformation Behavior andMicrostructure Evolution of ZK21Magnesium Alloy[J]. Materials Science and Engineering: A.2010,527(16–17):3670-3675.
    [154]王宏伟,易丹青,王斌,蔡金伶,钱锋,陈缇萦. Mg-6.3Zn-0.7Zr-0.9Y-0.3Nd镁合金的高温塑性变形行为的热压缩模拟[J].中国有色金属学报.2010(03):378-384.
    [155] A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of Plastic Deformation and DynamicRecrystallization in Magnesium Alloy ZK60[J]. Acta Materialia.2001,49(7):1199-1207.
    [156] G.J. Richardson, C.M. Sellars, W.J.M. Tegart. Recrystallization During Creep of Nickel[J].Acta Metallurgica.1966,14(10):1225-1236.
    [157] G.-Z. Quan, Y. Shi, Y.-X. Wang, B.-S. Kang, T.-W. Ku, W.-J. Song. Constitutive Modeling forthe Dynamic Recrystallization Evolution of AZ80Magnesium Alloy Based on Stress–StrainData[J]. Materials Science and Engineering: A.2011,528(28):8051-8059.
    [58] G.-Z. Quan, G.-S. Li, T. Chen, Y.-X. Wang, Y.-W. Zhang, J. Zhou. Dynamic RecrystallizationKinetics of42CrMo Steel During Compression at Different Temperatures and Strain Rates[J].Materials Science and Engineering: A.2011,528(13–14):4643-4651.
    [159] C.M. Sellars, J.A. Whiteman. Recrystallization and Grain Growth in Hot Rolling[J]. MetalScience.1979,13(3-4):187-194.
    [160] H.Z. Li, H.J. Wang, Z. Li, C.M. Liu, H.T. Liu. Flow Behavior and Processing Map of as-CastMg–10Gd–4.8Y–2Zn–0.6Zr Alloy[J]. Materials Science and Engineering: A.2010,528(1):154-160.
    [161] Z.H. Huang, S.M. Liang, R.S. Chen, E.H. Han. Solidification Pathways and ConstituentPhases of Mg–Zn–Y–Zr Alloys[J]. Journal of Alloys and Compounds.2009,468(1–2):170-178.
    [162] J.Y. Lee, D.H. Kim, H.K. Lim, D.H. Kim. Effects of Z/Y Ratio on Microstructure andMechanical Properties of Mg-Zn-Y Alloys[J]. Materials Letters.2005,59(29–30):3801-3805.
    [163] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. Effect of Microstructure and Texture on the MechanicalProperties of the as-Extruded Mg–Zn–Y–Zr Alloys[J]. Materials Science and Engineering: A.2007,443(1–2):248-256.
    [164] D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, E.H. Han. Effect of Y Concentration on theMicrostructure and Mechanical Properties of as-Cast Mg–Zn–Y–Zr Alloys[J]. Journal ofAlloys and Compounds.2007,432(1–2):129-134.
    [165] D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, E.H. Han. Effect of W-Phase on the MechanicalProperties of as-Cast Mg–Zn–Y–Zr Alloys[J]. Journal of Alloys and Compounds.2008,461(1–2):248-252.
    [166] F. Garofalo. Fundamentals of Creep and Creep-Rupture in Metals[M]. Macmillan,1965.
    [167] J. Weertman. Theory of Steady-State Creep Based on Dislocation Climb[J]. Journal of AppliedPhysics.1955,26(10):1213-1217.
    [168] E.I. Poliak, J.J. Jonas. A One-Parameter Approach to Determining the Critical Conditions forthe Initiation of Dynamic Recrystallization[J]. Acta Materialia.1996,44(1):127-136.
    [169] Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang. Plastic Deformation and DynamicRecrystallization Behaviors of Mg–5Gd–4Y–0.5Zn–0.5Zr Alloy[J]. Materials Science andEngineering: A.2008,485(1–2):487-491.
    [170]史国栋,乔军,何敏,张庆丰,张永彬,陈敏.铸轧AZ31镁合金在高温拉伸中的动态再结晶行为[J].中国有色金属学报.2013(7):1796-1804.
    [171]梁文杰,潘清林,何运斌.含钪Al-Cu-Li-Zr合金的热变形行为及组织演化[J].中国有色金属学报.2011,21(5):988-994.
    [172] S.W. Xu, S. Kamado, T. Honma. Recrystallization Mechanism and the Relationship betweenGrain Size and Zener–Hollomon Parameter of Mg–Al–Zn–Ca Alloys During HotCompression[J]. Scripta Materialia.2010,63(3):293-296.
    [173] S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima. Recrystallization Mechanism ofas-Cast AZ91Magnesium Alloy During Hot Compressive Deformation[J]. Materials Scienceand Engineering: A.2009,527(1–2):52-60.
    [174] M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva. Twinning, Dynamic Recoveryand Recrystallization in Hot Worked Mg–Al–Zn Alloy[J]. Materials Science and Engineering:A.2002,337(1–2):121-133.
    [175] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto. Rapidly Solidified Powder MetallurgyMg97Zn1Y2alloys with Excellent Tensile Yield Strength above600MPa[J]. MaterialsTransactions.2001,42:1171-1174.
    [176] Y.M. Zhu, A.J. Morton, J.F. Nie. The18R and14H Long-Period Stacking Ordered Structuresin Mg–Y–Zn Alloys[J]. Acta Materialia.2010,58(8):2936-2947.
    [177] Y.M. Zhu, A.J. Morton, J.F. Nie. Growth and Transformation Mechanisms of18R and14H inMg–Y–Zn Alloys[J]. Acta Materialia.2012,60(19):6562-6572.
    [178] G. Garcés, M. Maeso, I. Todd, P. Pérez, P. Adeva. Deformation Behaviour in RapidlySolidified Mg97Y2Zn (at.%) Alloy[J]. Journal of Alloys and Compounds.2007,432(1–2):L10-L14.
    [179] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi.Plastic Deformation Behavior of Mg97Zn1Y2Extruded Alloys[J]. Transactions of NonferrousMetals Society of China.2010,20(7):1259-1268.
    [180] T. Morikawa, K. Kaneko, K. Higashida, D. Kinoshita, M. Takenaka, Y. Kawamura. TheFine-Grained Structure in Magnesium Alloy Containing Long-Period Stacking Order Phase[J].Materials Transactions.2008,49(6):1294-1297.
    [181] L. Li, J. Zhou, J. Duszczyk. Determination of a Constitutive Relationship for AZ31BMagnesium Alloy and Validation through Comparison between Simulated and RealExtrusion[J]. Journal of Materials Processing Technology.2006,172(3):372-380.
    [182] C. Roucoules, S. Yue, J.J. Jonas. Effect of Alloying Elements on MetadynamicRecrystallization in Hsla Steels[J]. Metallurgical and Materials Transactions A-physicalMetallurgy and Materials Science.1995,26(1):181-190.
    [183] C.M. Sellars. Modelling Microstructural Development During Hot Rolling[J]. MaterialsScience and Technology.1990,6(11):1072-1081.
    [184] E.I. Poliak, J.J. Jonas. A One-Parmenter Approach to Determining the Critical Conditions forthe Initiation of Dynamic Recrystallization[J]. Acta Materialia.1996,44(1):127-136.
    [185] S.W. Xu, M.Y. Zheng, S. Kamado, K. Wu, G.J. Wang, X.Y. Lv. Dynamic MicrostructuralChanges During Hot Extrusion and Mechanical Properties of a Mg–5.0Zn–0.9Y–0.16Zr (wt.%)Alloy[J]. Materials Science and Engineering: A.2011,528(12):4055-4067.
    [186] Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu, J. Hjelen. Network-ShapedFine-Grained Microstructure and High Ductility of Magnesium Alloy Fabricated by CyclicExtrusion Compression[J]. Scripta Materialia.2008,58(4):311-314.
    [187] M.T. Pérez-Prado, J.A. del Valle, J.M. Contreras, O.A. Ruano. Microstructural EvolutionDuring Large Strain Hot Rolling of an AM60Mg Alloy[J]. Scripta Materialia.2004,50(5):661-665.
    [188] Y. Chino, M. Mabuchi, S. Hagiwara, H. Iwasaki, A. Yamamoto, H. Tsubakino. NovelEquilibrium Two Phase Mg Alloy with the Long-Period Ordered Structure[J]. ScriptaMaterialia.2004,51(7):711-714.
    [189] M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura. Formation of14h LongPeriod Stacking Ordered Structure and Profuse Stacking Faults in Mg–Zn–Gd Alloys DuringIsothermal Aging at High Temperature[J]. Acta Materialia.2007,55(20):6798-6805.
    [190] X.H. Shao, Z.Q. Yang, X.L. Ma. Strengthening and Toughening Mechanisms in Mg–Zn–YAlloy with a Long Period Stacking Ordered Structure[J]. Acta Materialia.2010,58(14):4760-4771.
    [191] P. Cotterill, P.R. Mould. Recrystallization and Grain Growth in Metals[M]. Surrey UniversityPress,1976.
    [192]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].冶金工业出版社,1994.
    [193] Y.V.R.K. Prasad, K.P. Rao, N. Hort, K.U. Kainer. Hot Working Parameters and Mechanisms inas-Cast Mg–3Sn–1Ca Alloy[J]. Materials Letters.2008,62(26):4207-4209.
    [194] G. Bi, D. Fang, L. Zhao, J. Lian, Q. Jiang, Z. Jiang. An Elevated Temperature Mg–Dy–ZnAlloy with Long Period Stacking Ordered Phase by Extrusion[J]. Materials Science andEngineering: A.2011,528(10–11):3609-3614.
    [195] G. Bi, D. Fang, L. Zhao, Q. Zhang, J. Lian, Q. Jiang, Z. Jiang. Double-Peak Ageing Behaviorof Mg–2Dy–0.5Zn Alloy[J]. Journal of Alloys and Compounds.2011,509(32):8268-8275.
    [196] Y. Kawamura, M. Yamasaki. Formation and Mechanical Properties of Mg97Zn1RE2Alloyswith Long-Period Stacking Ordered Structure[J]. Materials Transactions.2007,48(11):2986-2992.
    [197] E. O orbe, G. Garcés, P. Pérez, P. Adeva. Effect of the Lpso Volume Fraction on theMicrostructure and Mechanical Properties of Mg–Y2x–Znx Alloys[J]. Journal of MaterialsScience.2012,47(2):1085-1093.
    [198] Y.J. Wu, X.Q. Zeng, D.L. Lin, L.M. Peng, W.J. Ding. The Microstructure Evolution withLamellar14H-Type LPSO Structure in an Mg96.5Gd2.5Zn1Alloy During Solid Solution HeatTreatment at773K[J]. Journal of Alloys and Compounds.2009,477(1–2):193-197.
    [199] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura. Mechanical Properties of Warm-ExtrudedMg–Zn–Gd Alloy with Coherent14H Long Periodic Stacking Ordered Structure Precipitate[J].Scripta Materialia.2005,53(7):799-803.
    [200] D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, J. Zheng. Effects of Heat Treatments onMicrostructure and Mechanical Properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt.%) Alloy[J].Journal of Alloys and Compounds.2011,509(5):1696-1704.
    [201] Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-ishi, K. Hono, J.F. Nie. The Building Block ofLong-Period Structures in Mg–Re–Zn Alloys[J]. Scripta Materialia.2009,60(11):980-983.
    [202] K. Hagihara, Y. Fukusumi, M. Yamasaki, T. Nakano, Y. Kawamura. Non-Basal Slip SystemsOperative in Mg12Zny Long-Period Stacking Ordered (LPSO) Phase with18R and14HStructures[J]. Materials Transactions.2013,54(5):693-697.
    [203] K. Hagihara, Y. Sugino, Y. Fukusumi, Y. Umakoshi, T. Nakano. Plastic Deformation Behaviorof Mg12ZnY LPSO-Phase with14H-Typed Structure[J]. Materials Transactions.2011,52(6):1096-1103.
    [204] N.V. Ravi Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, M. Suéry. Grain Refinement inAZ91Magnesium Alloy During Thermomechanical Processing[J]. Materials Science andEngineering: A.2003,359(1–2):150-157.
    [205] J.C. Tan, M.J. Tan. Dynamic Continuous Recrystallization Characteristics in Two StageDeformation of Mg–3Al–1Zn Alloy Sheet[J]. Materials Science and Engineering: A.2003,339(1–2):124-132.
    [206] H. Liu, F. Xue, J. Bai, Y. Sun. Effect of Heat Treatments on the Microstructure andMechanical Properties of an Extruded Mg95.5Y3Zn1.5Alloy[J]. Materials Science andEngineering: A.2013,585(0):261-267.
    [207] F.-S. Pan, S.-Q. Luo, A.-T. Tang, J. Peng, Y. Lu. Influence of Stacking Fault Energy onFormation of Long Period Stacking Ordered Structures in Mg–Zn–Y–Zr Alloys[J]. Progress inNatural Science: Materials International.2011,21(6):485-490.
    [208] J. Zhang, C. Chen, Z. Que, W. Cheng, J. Xu, J. Kang.18R and14H Long-Period StackingOrdered Structures in the Mg93.96Zn2Y4Sr0.04Alloy and the Modification Effect of Sr onX-Phase[J]. Materials Science and Engineering: A.2012,552(0):81-88.
    [209] T.-W. Fan, B.-Y. Tang, L.-M. Peng, W.-J. Ding. First-Principles Study of Long-PeriodStacking Ordered-Like Multi-Stacking Fault Structures in Pure Magnesium[J]. ScriptaMaterialia.2011,64(10):942-945.
    [210] M. Suzuki, T. Kimura, J. Koike, K. Maruyama. Strengthening Effect of Zn in Heat ResistantMg–Y–Zn Solid Solution Alloys[J]. Scripta Materialia.2003,48(8):997-1002.
    [211] M. Suzuki, T. Kimura, J. Koike, K. Maruyama. Effects of Zinc on Creep Strength andDeformation Substructures in Mg–Y Alloy[J]. Materials Science and Engineering: A.2004,387–389(0):706-709.
    [212] B.-J. Lv, J. Peng, Y. Peng, A.-T. Tang, F.-S. Pan. The Effect of Lpso Phase on Hot DeformationBehavior and Dynamic Recrystallization Evolution of Mg–2.0Zn–0.3Zr–5.8Y Alloy[J].Materials Science and Engineering: A.2013,579(0):209-216.
    [213] H. Huang, G. Yuan, C. Chen, W. Ding, Z. Wang. Excellent Mechanical Properties of anUltrafine-Grained Quasicrystalline Strengthened Magnesium Alloy with Multi-ModalMicrostructure[J]. Materials Letters.2013,107(0):181-184.
    [214] C. Li, D. Li, V. Solomon, M. Bauer, T. McCauley, S. Berrier. Effect of Mechanical Processingon the Stability of Metastable Icosahedral Quasicrystalline Nanoparticles in Zirconium andHafnium Based Metallic Glasses[J]. Journal of Non-Crystalline Solids.2013,381(0):68-72.
    [215] T. Moskalewicz, M. Kot, B. Wendler. Microstructure Development and Properties of theAlcufe Quasicrystalline Coating on near-Α Titanium Alloy[J]. Applied Surface Science.2011,258(2):848-859.
    [216] W. Ohashi, F. Spaepen. Stable Ga–Mg–Zn Quasi-Periodic Crystals with PentagonalDodecahedral Solidification Morphology[J]. Nature.1987,330(6148):555-556.
    [217] P. Ramachandrarao, G.V.S. Sastry. A Basis for the Synthesis of Quasicrystals[J]. Pramana.1985,25(2): L225-L230.
    [218] G.V.S. Sastry, P. Ramachandrarao. A Study of the Icosahedral Phase: Mg32(Al, Zn)49[J].Journal of Materials Research.1986,1(02):247-250.
    [219] G.V.S. Sastry, V.V. Rao, P. Ramachandrarao, T.R. Anantharaman. A New Quasi-CrystallinePhase in Rapidly Solidified Mg4CuAl6[J]. Scripta Metallurgica.1986,20(2):191-193.
    [220] K. Stan, L. Lityńska-Dobrzyńska, J.L. Lábár, A. Góral. Effect of Mo on Stability ofQuasicrystalline Phase in Al–Mn–Fe Alloy[J]. Journal of Alloys and Compounds.2014,586,Supplement1(0): S395-S399.
    [221] A.P. Tsai, A. Inoue, T. Masumoto. Chemical Effects on Periodicity and Structure of DecagonalPhases in Al-Ni-and Al-Co-Based Alloys[J]. Philosophical Magazine Letters.1995,71(2):161-167.
    [222]史菲,郭学锋,张忠明.普通凝固Mg-Zn-Y合金中的准晶相[J].中国有色金属学报.2004,14(1):112-116.
    [223] A. Langsdorf, W. Assmus. Growth of Large Single Grains of the Icosahedral QuasicrystalZnMgY[J]. Journal of Crystal Growth.1998,192(1–2):152-156.
    [224] A. Langsdorf, F. Ritter, W. Assmus. Determination of the Primary Solidification Area of theIcosahedral Phase in the Ternary Phase Diagram of Zn-Mg-Y[J]. Philosophical MagazineLetters.1997,75(6):381-388.
    [225] D.H. Bae, Y. Kim, I.J. Kim. Thermally Stable Quasicrystalline Phase in a SuperplasticMg–Zn–Y–Zr Alloy[J]. Materials Letters.2006,60(17–18):2190-2193.
    [226] I.J. Kim, D.H. Bae, D.H. Kim. Precipitates in a Mg–Zn–Y Alloy Reinforced by an IcosahedralQuasicrystalline Phase[J]. Materials Science and Engineering: A.2003,359(1–2):313-318.
    [227] Z.P. Luo, S.Q. Zhang, Y.L. Tang, D.S. Zhao. On the Stable Quasicrystals in Slowly CooledMg-Zn-Y Alloys[J]. Scripta Metallurgica et Materialia.1995,32(9):1411-1416.
    [228] A. Müller, G. Garcés, P. Pérez, P. Adeva. Grain Refinement of Mg–Zn–Y Alloy Reinforced byan Icosahedral Quasicrystalline Phase by Severe Hot Rolling[J]. Journal of Alloys andCompounds.2007,443(1–2): L1-L5.
    [229] A. Singh, M. Nakamura, M. Watanabe, A. Kato, A.P. Tsai. Quasicrystal StrengthenedMg–Zn–Y Alloys by Extrusion[J]. Scripta Materialia.2003,49(5):417-422.
    [230] T. Yali, Z. Dongshan, L. Zhiping, S. Ningfu, Z. Shaoqing. A New Quasicrystalline Phase inMgZnYZr Cast Ingot[J]. Materials Letters.1993,18(3):148-150.
    [231] D. Zhao, Y. Tang, Z. Luo, N. Shen, R. Wang, S. Zhang. The Face-Centered IcosahedralQuasicrystalline Phase in Mg-Zn-Y-Zr Alloys[J]. Materials Letters.1995,23(4–6):277-281.
    [232] T.J. Sato, E. Abe, A.P. Tsai. Decagonal Quasicrystals in the Zn–Mg–R Alloys (R=Rare-Earthand Y)[J]. Materials Science and Engineering: A.2001,304–306(0):867-870.
    [233] Y. Zhang, S. Yu, Y. Song, X. Zhu. Microstructures and Mechanical Properties of QuasicrystalReinforced Mg Matrix Composites[J]. Journal of Alloys and Compounds.2008,464(1–2):575-579.
    [234] M.A. Jabbari Taleghani, E.M. Ruiz Navas, M. Salehi, J.M. Torralba. Hot DeformationBehaviour and Flow Stress Prediction of7075Aluminium Alloy Powder Compacts DuringCompression at Elevated Temperatures[J]. Materials Science and Engineering A.2012,534:624-631.
    [235] C. Sellars, MCTEGART, W. McTegart. On the Mechanism of Hot Deformation[J]. ActaMetallurgica.1966,14(9):1136-1138.
    [236] B.-J. Lv, J. Peng, D.-W. Shi, A.-T. Tang, F.-S. Pan. Constitutive Modeling of DynamicRecrystallization Kinetics and Processing Maps of Mg–2.0Zn–0.3Zr Alloy Based on TrueStress–Strain Curves[J]. Materials Science and Engineering: A.2013,560:727-733.
    [237] B.-J. Lv, J. Peng, Y.-J. Wang, X.-Q. An, L.-P. Zhong, A.-T. Tang, F.-S. Pan. DynamicRecrystallization Behavior and Hot Workability of Mg–2.0Zn–0.3Zr–0.9Y Alloy by Using HotCompression Test[J]. Materials&Design.2014,53(0):357-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700