用户名: 密码: 验证码:
Al_2O_3-W-Cr金属陶瓷挤压模具的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对白铜挤压成形模的要求,从提高模具材料的使用寿命出发,选用具有高硬度、耐磨损、耐高温、抗腐蚀、原料分布广泛的Al2O3为基体,采用热压烧结法制备了Al2O3-W-Cr复合陶瓷模具材料,研究了其力学性能、微观结构、强韧化机理、抗热震性能以及摩擦磨损行为,并利用有限元对Al2O3-W-Cr复合陶瓷材料挤压模具的工作状况进行分析,探讨陶瓷模具工作条件下的应力场和温度场的分布规律,得出如下结论:
     (1)研制的2种Al2O3-W-Cr(W%=19vol%,Cr%=19 vol%),(W%=15vol%,Cr%=15 vol%)复合陶瓷模具材料其抗弯强度分别为800 MPa和560 MPa,断裂韧性为9MPa·m1/2和13 MPa·m1/2。W和Cr金属粒子的加入极大改善了两种材料的抗热震性能,两种材料表现为热震断裂和热震损伤的混合模式,1号模具材料的临界热震温差AT为480℃,2号模具材料的临界热震温差△T为680℃。2号模具材料的抗热震参数R、和RⅣ均高于1号模具材料,分别为165℃,347×106μm与337℃,1256×106μm。
     (2)两种材料具有相似的磨损行为,摩擦系数随法向载荷的增大而降低、随摩擦时间的延长而升高,变化趋势均越来越缓慢;磨损过程是磨粒磨损、粘着磨损、疲劳磨损共同作用的过程。2号材料具有比1号材料更优良的抗磨性能。
     (3)采用Gleeble-1500热模拟试验机进行压缩试验,建立了Al2O3-W-Cr金属陶瓷的应力-应变本构方程为
     (4)利用有限元软件Deform-3D模拟了铜管挤压凹模的工作状况,对其应力场和温度场进行分析,挤压过程中应力场和温度场呈不均匀分布,越靠近模口处,温度越高,应力越大,模具外部应力值和温度都低于内部;模具表面和模口处容易产生磨损与失效,甚至在纵向开裂;针对这一失效特点,提出相应的改善方法。
For the requirement of ceramic materials as the forming dies, composite ceramic die materials with high mechanical properties were fabricated with composite method by selecting alumina ceramics matrix which has excellent hardness, wear-resistance, high-temperature resistance, corrosion resistance and wide range raw materials. The strengthening and toughening mechanisms, microstructure, mechanical properties, friction and wear properties as well as thermal shock resistance of the ceramic die materials were investigated. To provide technical basis for the application of ceramic materials the working conditions of extrusion die were studied by the use of FEM. The results are as following:
     (1) The flexural strength and fracture toughness of the two composite ceramic materials are 800MPa,9MPa·m1/2 and560MPa,13 MPa·m1/2 respectively. The addition of metal particles W, Cr greatly improved the thermal shock resistance of the mold material, performed the mix mode of thermal shock facture and thermal shock damage. The critical thermal shock temperature of the two samples are 480℃and 680℃, respectively. The thermal shock parameter R, and RⅣof sample 2 were higher than sample 1, and R, and RⅣwere 165℃,347×106μm; 337℃,1256×106μm respectively.
     (2) Fracture toughness enhancement and optimization of structure lead to the improvement of wear resistance of Al2O3 mold material. The two materials proved the same trend, the friction coefficient decreases with the increases of load and increased with the increases of time; main friction mechanism were abrasive wear, adhesive wear, fatigue wear.
     (3) The high temperature deformation of Al2O3-W-Cr cermet was investigated by the high-temperature thermal simulation experiment; the stress-strain equation of Al2O3-W-Cr cermet was established as follows:
     (4) The stress status of the extrusion ceramic die for cup was analyzed by means of the Deform-3D FEM software, stress and temperature field were distributed uneven, mold withstand large tensile stress and high temperature, easy to failure in the mold surface. From mold design and mold making, provide improvements.
引文
[1]徐中行,刘文化.为模具行业提供高速加工应用方案.制造技术与机床[J].2008,(8):139
    [2]杨学锋,邓建新,姚淑卿.Al2O3/TiC复合陶瓷拉丝模材料的摩擦磨损性[J].硅酸盐学报,2005,33(12):1522-1526
    [3]许煜汾,蒋贤俊.ZTA精密陶瓷拉丝模拉制钨丝的研究[J].合肥工业大学学报(自然科学版),1996,19(4):29~34
    [4]尹龙卫,李凤照,刘援朝,等.TZP-TiC-Al2O3陶瓷复合材料在模具中的应用[J].粉末冶金技术,1997,15(4):274~277
    [5]刘军,周飞.热挤压模用陶瓷材料的性能与应用研究[J].稀有金属材料与工程,2003,32(3):232~235
    [6]刘军,佘正国,罗启富.Sialon陶瓷热挤压模的应用研究[J].机械工程材料1995,6(3):57~58
    [7]罗军明,杨刚,万润根,等.3Y-TZP-Al2O3陶瓷拉拔模材料及应用研究[J].金刚石与磨料磨具工程,2002,(2):41~43
    [8]杨刚,艾云龙,罗军明,等.TZP陶瓷拉丝模的开发与应用[J].模具工业,2001,(9):36~39
    [9]沈辉,易佑宁.PSZ陶瓷热挤压模的制备及应用研究[J].江苏陶瓷,1996,29(2):10~12
    [10]梁金生,梁广川.反应烧结氮化硅陶瓷模具材料的研究[J].中国陶瓷工业,2000,7(3):109~118
    [11]许崇海,孙德明.模具用Ti(C,N)/Al2O3陶瓷材料的微观结构与力学性能[J].粉末冶金技术,2005,23(4):243~247
    [12]孙德明,刘立红,刘玉婷,等.Al2O3/Cr3C2/(W,Ti)C陶瓷模具材料研究[J].粉末冶金技术,2005,23(5):343~346
    [13]王匀,刘全坤.纳米技术在模具行业中发展与应用[J].模具技术,2002,(6):3-5,16
    [14]郭成,朱维斗,金志浩.梯度功能材料在模具中的应用展望[J].塑性工程学报,1995,2(2):18-26
    [15]王雷刚,刘全坤.陶瓷-钢组合挤压凹模的优化设计[J].锻压机械,1997,32(3):38~41
    [16]Kelley I B et al. Proceedings of the 6th International Aluminum Extrusion Technology Seminar[C], Chicago, IL,1996:239.
    [17]王雷刚,黄瑶,刘全坤,等.复合陶瓷强化挤压模具钢抗磨减摩研究[J].润滑与密封,2002,(5):39-40.
    [18]铃木弘茂主编.工程陶瓷.北京:科学出版社,1989.15-27.
    [19]申玉芳,芦令超,程新,常钧,刘福田.Al2O3基纳米复相陶瓷的研究进展.济南大学学报.2002,16(1):105~107.
    [20]Chen R Z, Tuan W H. The preparation of Al2O3/Ni nanocomposites by pressureless[J]. Key Engeering Materials.1999,161-163:415.
    [21]Sun Xudong, Yeomans J A. Microstructure and fracture toughness of nickel particle toughened alumina matrix composites[J]. J of Mater Sci.1996,31:875~ 880.
    [22]Faber K T. Properties an design of ingterface for ceramic-based composites [J]. Amu Rer Mater Sc.1997,27:499.
    [23]邓建新,艾兴.SiC晶须增韧Al2O3陶瓷组成优化及其断裂行为的研究[J].材料科学与工程,1994,13(1):33-40.
    [24]邓建新,赵军,艾兴.晶须增韧陶瓷材料的超声波加工[[J].材料导报,2000,14(10):370~372.
    [25]邓建新,李兆前,艾兴. Al2O3/SiCW陶瓷刀具材料中晶须的取向对其力学和切削性能的影响[J].硅酸盐学报,1995,23(2):141-146.
    [26]张长瑞,郝元凯.陶瓷基复合材料原理、工艺、性能与设计(M).长沙:国防科技出版社,2001.
    [27]Pernilla Pettersson, Mats Johnsson. Thermal shock properties of alumina reinforced with Ti(C, N) whiskers[J]. J Eur Ceram Soc,2003,23(2):309~ 313.
    [28]Deng Jianxin, Ai Xing. Effect of whisker orientation on the friction and wear behavior of Al2O3/TiB2/SiCW composites in sliding wear tests and in machining processes[J]. Wear,1996,195:178~185.
    [29]邓建新,艾兴.Al2O3/TiB2/SiCW三元复合材料的力学性能及显微结构[[J].复合材料学报,1996,13(3):27-32.
    [30]陈志刚,刘苏,刘军,等. Al2O3/TiB2/ZrO2:复合陶瓷刀具应用研究田.江苏陶瓷,2001,34(2):7-8.
    [31]Yongqing Fu, Y W Gu, Hejun Du. SiC whisker toughened Al2O3-(W, Ti)C ceramic matrix composites[J]. Scripta Mater,2001,44(1):111~116.
    [32]李荣久.陶瓷-金属[M].北京:冶金工业出版社,1995.84~91,118~123.
    [33]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性[J].材料科学与工程,1997, 15(3):6~10.
    [34]张雄飞,王达健,陈书荣,等.液态铝与陶瓷的润湿性改变机理[J].粉末冶金技术,2003,21(1):42~45.
    [35]李海林,邬柱,王正东.铬粒弥散增韧氧化铝复合材料的研究.无机材料学报.1995,10(3):313.
    [36]Tohru Sekino, Koichi Niihara. Fabrication and Mechanical Properties of Fine-Tungsten-Dispersed Alumina-Based Composites. Journal of Materials Science. Vol32, No15, (1997):3943~3949.
    [37]W D Kingery. Metal-ceramic interaction:absolute measurement of metal-ceramic interfacial energy and interfacial absorption of silicon from iron-silicon alloys[J]. Ibid,1954,37:42~45.
    [38]D P H Hasselman. Thermal shock by radiation heating[J]. Ibid,1963,46: 229~234.
    [39]W D Kingery. Factors affecting thermal stress resistance of ceramic materials[J]. J Am Ceram Soc,1955,38:3~15.
    [40]D P H Hasselman. Elastic energy of fracture and surface energy as design criteria for thermal shock(J]. Ibid,1963,46:535~540.
    [41]D P H Hasselman. Theory of thermal shock resistance of semitransparent ceramics under radiation heating[J]. Ibid,1966,49:103~106.
    [42]D P H Hasselman. Approximate theory of thermal stress resistance of brittle ceramics involving creep [J]. Ibid,1969,52:454~457.
    [43]D P H Hasselman. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J]. J Am ceram Soc,1969,52:600~604.
    [44]T K Gupta. Strength degradation and crack propagation in thermally shocked alumina[J]. J Am Ceram Soc,1972,55(5):249~253.
    [45]汪霖.氧化铝陶瓷抗热震性研究[D].上海:中国科学院上海硅酸盐研究所,2001
    [46]T N Tiegs, P F Becher. Thermal shock behavior of alumina-SiC whisker composite [J]. J Am Ceram Soc,1987,70(5):109~111
    [47]Lin Wang, Jianlin Shi, Jianhua Gao, et al. Influence of tungsten carbide particles on resistance of alumina matrix ceramic to thermal shock [J]. J Eur Ceram Soc,2001,21(3):1213~1217.
    [48]Pernilla Pettersson, Mats Johnsson. Thermal shock properties of alumina reinforced with Ti(C, N) whiskers [J]. J Eur Ceram Soc,2003,23(2):309~ 313.
    [49]Santi Maensiri, Steve G. Roberts. Thermal shock resistance of sintered alumina/silicon carbide nanocomposites evaluated by indentation techniques [J]. J Am Ceram Soc,2002,85(8):1971-1978.
    [50]Rafael Uribe, Carmen Baudin. Influence of a dispersion of aluminum titanate particles of controlled size on the thermal shock resistance of alumina [J]. J Am Ceram Soc,2003,86(5):846~850.
    [51]吕珺,郑治祥,金志浩.氧化铝基陶瓷复合材料的阻力曲线行为及其抗热震性能[J].复合材料学报,2001,18(4):76~81.
    [52]吕珺,郑治祥,金志浩等.晶须及颗粒增韧氧化铝基陶瓷复合材料的抗热震性能[J].材料工程,2000,(12):15~18.
    [53]李嘉,尹衍升,龚红宇等.Fe3A1(p)A1203陶瓷基复合材料的抗热震性能[J].无机材料学报,2005,20(2):407~412.
    [54]陈雪梅,罗启富,Si3N4/3Cr2W8V钢摩擦副滑动摩擦磨损性能[J].江苏理工大学学报,1996,7(4):61~64.
    [55]Lawn B R. A Model for the wear of brittle solids under fixed abrasive conditions [J]. Wear,1975,32(2):P369-372.
    [56]Koji Kato, Koshi Adachi. Wear of advanced ceramics [J]. Wear 253(2002)1097~1104.
    [57]邓建新,艾兴,赵军等.Al2O3—TiB2一SiCW复合陶瓷材料摩擦磨损特性的试验研究[J].摩擦学学报,1997,17(4):289-294.
    [58]姚淑卿,邢书明,邓建新. A1203基陶瓷刀具材料摩擦磨损特性及其有限元分析[J].摩擦学学报,2006,26(6):567~569.
    [59]黄瑶,王雷刚,刘全坤等.模具钢、复合陶瓷强化模具钢和结构陶瓷高温摩擦学性能比较[J].润滑与密封,2002,(6):22~23.
    [60]孙德明.Al2O3/Cr3C2多元复合陶瓷材料的制备、性能及应用研究[D].济南:山东大学,2006.
    [61]刘方兴,刘茜.Sialon陶瓷干摩擦磨损特性初探[J].硅酸盐学报,1989,17(1):24~30.
    [62]MV斯温.陶瓷的结构与性能[M].北京:科学出版社,1998.
    [63]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992.
    [64]童幸生.陶瓷摩擦副磨损机理的研究[J].华南理工大学学报(自然科学版),2001,29(4):94~97.
    [65]曾杰.无润滑条件下氧化铝基陶瓷材料与钢结硬质合金GT35的磨损特性对比[J].硬质合金,2004,21(2):89~93.
    [66]陈晓虎.材料转移层对Al2O3基自润滑陶瓷/铸铁摩擦副摩擦的影响[J].陶瓷科学与艺术,2002,(3):5~7.
    [67]宋显辉,陈立耀.工程陶瓷疲劳裂纹扩展的实验研究[J].硅酸盐通报,1997,16(4):70~74.
    [68]李海燕,聂景旭..粘塑性损伤统一本构模型中材料常数的一种确定方法[J].航空动力学报,2003,18(3):388.
    [69]杨晓光,耿瑞.粘塑性材料结构的有限元分析方法[J].航空动力学报,1998,13(4):380.
    [70]潘洪平.半固态合金触变成形的实验研究[博士后研究报告].北京:北京有色金属研究总院,2002:20.
    [71]Huber N, Tsakmakis C. A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery [J]. Comput Methods Appl Mechd Eng,2001,192:353.
    [72]曲在纲,黄月初.粉末冶金摩擦材料[M].北京:冶金工业出版社,2005.1:3~5,17~18.
    [73]姜广军.反应熔体浸渗法制备C/SiC摩阻材料的结构与性能[D].西安:西北工业大学,2005.
    [74]李敦舫.碳化硅和氧化铝基陶瓷材料的摩擦磨损特性研究[D].昆明:昆明理工大学,2003.
    [75]S. Jiao, M. L. Jenkins, R. W. Davidge, Acta Mater.45(1997)149~ 156.
    [76]P. F. Becher, J. Am. Ceram. Soc.74(1991)255~269.
    [77]Lin Wang, Jianlin Shi, Jianhua Gao, etal. Influence of tungsten carbide particles on resistance of alumina matrix ceramic to thermal shock [J]. J Eur Ceram Soc.2001.21(3):1213~1217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700