用户名: 密码: 验证码:
偶氮配体构筑金属配合物的结构与固态荧光性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮化合物由于具有很好的荧光性能一直受到人们的青睐,但是由于偶氮键在较低温度下就会断裂而大大影响了它的应用。本研究通过采用溶剂(水)热合成法,选用3种含偶氮基衍生物的配体与I/IIB族金属离子配位合成了16种新型配位聚合物。通过元素分析、单晶X-射线衍射、红外光谱分析和粉末X-射线衍射对晶体结构进行了表征,对配位聚合物的热稳定性和荧光性质进行了测量、理论计算及分析。研究了这些配合物的合成条件、配体的配位模式、氢键和π-π堆积相互作用等因素对偶氮金属配位聚合物性能的影响,目的在于合成能够在较高温度下仍能稳定存在的偶氮类配合物,并通过金属与配体的相互作用将所合成的配合物发射光谱相对于配体向可见光方向移动,从而为偶氮类化合物的实际应用提供更广的应用前景。
     采用4-[(8-羟基-5-喹啉)偶氮]-苯磺酸(H2L1)为配体,与金属Cu、Cd和Zn离子合成10个配合物:[Cu(L1)(en)]·0.5H2O (1),[Cu(L1)2][Cu(en)2]·2H2O (2),[Zn(L1)(H2O)4](3),{[Cd(L1)(en)]·EtOH}n (4),{[Cd(L1)(H2O)2]·H2O}n (5),{[Cd2(L1)2(en)2(H2O)2]·3H2O}n (6),{[Cd(L1)(en)]·DMF}n (7),[Zn3(L1)2(OH)2(H2O)6]n (8),[Zn(L1)(H2O)]n (9)和[Zn(M1)2](10)。配合物1、2、3、10为零维结构,配合物4和5为一维梯形链状结构,配合物6为一维zig-zag链状结构,配合物7和8为一维双金属链状结构,配合物9为三维结构,配合物1~8和10通过氢键和π-π堆积相互作用均连接形成了三维的超分子网络结构。讨论了配体的配位模式对所形成的配合物结构的影响。从结构描述可知,磺酸基团的配位情况对配合物的空间构型起着重要作用。配合物10是由于配体在碱性条件下发生硝基化原位反应而获得的。配合物1~9的热稳定性相对于配体H2L1具有明显的提高。配合物1~2的荧光性质主要来自于配体对金属的电荷转移,与H2L1配体相比发生了较大的蓝移,呈现紫色荧光。并且,配体H2L1与二价铜离子作用会有特殊的显色反应,提供了一种荧光灵敏、肉眼可见、简便型检测铜离子的有效方法。配合物3~9的荧光性质主要来自于配体内电荷的转移。配合物1~9的荧光数据表明,配合物相对于H2L1配体的发射光谱略倾向于蓝移。对配合物1、2、3和10进行了荧光性质的理论计算。
     采用4-[(8-羟基-5-喹啉)偶氮]-苯甲酸(H2L2)为配体,与金属Zn和Cd离子合成2个配合物:[Zn(L2)(H2O)2]n (11)和{[Cd(L2)(H2O)]·H2O}n (12)。配合物11为一维zig-zag链状结构,配合物12为二维层状结构,配合物11~12通过氢键和π-π堆积相互作用均连接形成了三维的超分子网络结构。讨论了配体的配位模式对所形成的配合物结构的影响。配合物11~12的热稳定性相对于配体H2L2具有明显的提高。配合物11~12的发射光谱相对于配体H2L2几乎没有发生改变,配合物的荧光性质主要来自于配体内的电荷转移。
     采用偶氮苯-4,4'-二羧酸(H2L3)为配体,与金属Cd、Cu和Ag离子合成4种配合物:{[Cd2(L3)2(en)2]·DMF}n (13),[Cu(L3)(en)]n (14),{[Cu(L3)(phen)(H2O)]·DMA}n (15)和[Ag(L3)0.5]n (16)。配合物13~15为一维zig-zag链状结构,通过氢键和π-π堆积相互作用连接形成了三维的超分子网络结构,配合物16为三维结构。讨论了辅助配体乙二胺或1,10-邻菲罗啉对所形成的配合物结构的影响。配合物13~15的热稳定性相对于配体H2L3具有明显的提高。配合物13~15的发射光谱相对于配体H2L3均发生了较大红移,呈现蓝色荧光,荧光性质主要来自于配体对金属的电荷转移。
Azo compounds with good fluorescent properties have been attracting much attention in past decades. Due to their relatively low thermal stability, the application of azo compounds is limited. In this work, sixteen sorts of novel coordination polymers by solvothermal (hydrothermal) method have been prepared by reacting three types of azo-containing derivatives as the ligands with I/IIB metal ion. The structures of crystals were characterized by elemental analysis, single-crystal X-ray diffraction, infrared (IR) spectra and powder X-ray diffractions (PXRD). Thermal stability and fluorescent performance of coordination polymers were measured, calculated and analyzed. The synthetic conditions, the coordination model of ligand, hydrogen bonding and π-π stacking interactions were discussed to reveal the effects on azo coordination polymers applications in order to obtain stable azo compounds under high temperature. The emission spectra of coordination polymers move to the direction of visible light caused by the interaction of metals and ligands, which provides a wider application prospect for the practical application of azo compounds.
     4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid (H2L1) as ligand reacts with Cu, Cd and Zn to synthesize ten sorts of novel coordination polymers:[Cu(L1)(en)]·0.5H2O (1),[Cu(L1)2][Cu(en)2]·2H2O (2),[Zn(L1)(H2O)4](3),{[Cd(L1)(en)]·EtOH}n (4),{[Cd(L1)(H2O)2]·H2O}n (5),{[Cd2(L1)2(en)2(H2O)2]·3H2O}n (6),{[Cd(L1)(en)]·DMF}n (7),[Zn3(L1)2(OH)2(H2O)6]n (8),[Zn(L1)(H2O)]n (9) and [Zn(M1)2](10). Compounds1,2,3and10exhibit zero-dimensional (0D) structure. Compounds4and5display infinite one-dimensional (1D) ladder-shaped chain structures. Compound6is1D zig-zag chain structure. Compounds7and8exhibit infinite1D double-metal chain structures. Compound9is a three-dimensional (3D) structure. Compounds1~8and10are further connected through hydrogen bonding and π-π interactions into3D supramolecular networks. The coordination model of ligand was discussed the effect of compound structure. From the description of the structure, the coordination model of sulfonate groups plays an important role in the structure of coordination compounds. Compound10was synthesized under the alkaline condition, which ligand was in situ reaction. The thermal stabilities of compounds1~9have an obvious enhancement with respect to H2L1ligand. The fluorescent properties of compounds1~2mainly come from the ligand-to-metal charge transfer, which have blue shift to H2L1ligand, showing violet fluorescence. The reaction between H2L1ligand and copper(II) ion leads to a sensitive fluorescent, visible to the naked eye and simple effective method of the detection of copper ion. The fluorescent properties of compounds3~9mainly come from the ligand-to-ligand charge transfer. The fluorescent data of compounds1~9indicate that the emission spectra of coordination compounds slightly inclined to blue shift to the H2L1ligand. The theoretical calculation of fluorescent spectra of compounds1,2,3and10were performed.
     4-[(8-hydroxy-5-quinolinyl)azo]-benzoic acid (H2L2) as ligand reacts with Zn and Cd to synthesize two sorts of novel coordination polymers:[Zn(L2)(H2O)2]n (11) and {[Cd(L2)(H2O)]·H2O}n (12). Compound11exhibits1D zig-zag chain structure. Compound12is two-dimensional (2D) layer structure. Compounds11~12are further connected through hydrogen bonding and π-π interactions into3D supramolecular networks. The coordination model of ligand was studied to reveal the effect on compound structure. The thermal satbility properties of compounds11~12have an obvious enhancement to H2L2ligand. The emission spectra of compounds11~12have scarcely change to H2L2ligand. The fluorescent properties of compounds11~12mainly come from the charge transfer from ligand to ligand.
     Azobenzene-4,4'-dicarboxylate (H2L3) as ligand reacts with Cd, Cu and Ag to synthesize four sorts of novel coordination polymers:{[Cd2(L3)2(en)2]·DMF}n (13),[Cu(L3)(en)]n (14),{[Cu(L3)(phen)(H2O)]·DMA}n (15) and [Ag(L3)0.5]n (16). Compounds13~15exhibit1D zig-zag chain structures, which are further connected through hydrogen bonding and π-π interactions into3D supramolecular networks. Compound16is3D structure. Ethylenediamine and1,10-phenanthroline as auxiliary ligands were studied to reveal the effect on compound structure. The thermal stability properties of compounds13~15have an obvious enhancement to H2L3ligand. The fluorescent properties of compounds13~15mainly come from the charge transfer from ligand to metal, which have red shift with respect to H2L3ligand, showing blue fluorescence.
引文
[1] Xu J, Cheng J, Su W, et al. Effect of Lanthanide Contraction on CrystalStructures of Three-Dimensional Lanthanide Based Metal-OrganicFrameworks with Thiophene-2,5-Dicarboxylate and Oxalate[J]. Cryst GrowthDes,2011,11:2294–2301.
    [2] Banerjee R, Phan A, Wang B, et al. High-Throughput Synthesis of ZeoliticImidazolate Frameworks and Application to CO2Capture[J]. Science,2008,319:939–943.
    [3] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic Triblock and Star DiblockCopolymer and Oligomeric Surfactant Syntheses of Highly Ordered,Hydrothermally Stable, Mesoporous Silica Structures[J]. J Am Chem Soc,1998,120:6024–6036.
    [4] Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, et al. In2(OH)3(BDC)1.5(BDC=1,4-Benzendicarboxylate): An In(III) Supramolecular3D Framework withCatalytic Activity[J]. Inorg Chem,2002,41(9):2429–2432.
    [5] Banerjee R, Furukawa H, Britt D, et al. Control of Pore Size and Functionality inIsoreticular Zeolitic Imidazolate Frameworks and Their Carbon DioxideSelective Capture Properties[J]. J Am Chem Soc,2009,131:3875–3877.
    [6] Deng H, Doonan C J, Furukawa H, et al. Multiple Functional Groups of VaryingRatios in Metal-Organic Frameworks[J]. Science,2010,327:846–850.
    [7] Ma S, Eckert J, Forster P M, et al. Further Investigation of the Effect ofFramework Catenation on Hydrogen Uptake in Metal-Organic Frameworks[J].J Am Chem Soc,2008,130:15896–15902.
    [8]王书靖.新型共轭噻吩二羧酸类有机桥连配体构建的金属有机配位聚合物的结构以及性质研究[D].合肥:中国科学技术大学学位论文,2009:50–52.
    [9] Withersby M A, Blake A J, Champness N R, et al. Assembly of aThree-Dimensional Polyknotted Coordination Polymer[J]. J Am Chem Soc,2000,122:4044–4046.
    [10] Long J R, Bloch E D, Britt D, et al. Metal Insertion in a Micro PorousMetal-Organic Framework Lined with2,2'-bipyridine[J]. J Am Chem Soc,2010,132:14382–14384.
    [11] Macdonald J C, Dorrestein P C, Pilley M M, et el. Design of LayeredCrystalline Materials Using Coordination Chemistry and Hydrogen Bonds[J]. JAm Chem Soc,2000,122:11692–11702.
    [12]孙福兴.新型多孔金属有机羧酸骨架化合物的设计合成,结构与性质[D].长春:吉林大学学位论文,2010:2–3.
    [13] Eddaoudi M, Moler D B, Li H, et el. Modular Chemistry: Secondary BuildingUnits as a Basis for the Design of Highly Porous and Robust Metal-OrganicCarboxylate Frameworks[J]. Acc Chem Res,2001,34:319–330.
    [14] Mori W, Takamizawa S, Kato C N, et al. Molecular-Level Design of EfficientMicroporous Materials Containing Metal Carboxylates[J]. Mesoporous Mater,2004,73:31–46.
    [15] Yu X Y, Cui X B, Zhang X, et al. A Novel3D Cadmium Coordination PolymerConstructed from Hydrazine and Benzene-1,2,4,5-Tetracarboxylic Acid:Synthesis, Structure and Fluorescent Property[J]. Inorg Chem Commun,2011,14:848–851.
    [16] Zaleski C M, Depperman E C, Samara C D, et al. MetallacryptateSingle-Molecule Magnets: Effect of Lower Molecular Symmetry on BlockingTemperature[J]. J Am Chem Soc,2005,127:12862–12872.
    [17] Férey G, Serre C, Mellot-Draznieks C, et al. A Hybrid Solid with Giant PoresPrepared by a Combination of Targeted Chemistry, Simulation, and PowderDiffraction[J]. Angew Chem Int Ed,2004,43:6296–6301.
    [18] Kl ui W, Mocigemba N, Weber-Schuster A, et el. A Novel OrganometallicTris-Phosphonic Acid that Dissolves Glass to Form a Six-Coordinate SiliconComplex[J]. Chem Eur J,2002,3:2335–2340.
    [19] Wang X, Bao X, Xu P, et al. From Discrete Molecule to One-Dimension Chain:Two New Nitronyl Nitroxide-Lanthanide Complexes Exhibiting SlowMagnetic Relaxation[J]. Eur J Inorg Chem,2011,3586–3591.
    [20] Matsudal R, Kitaural R, Kitagawa S, et al. Highly Controlled AcetyleneAccommodation in a Metal-Organic Microporous Material[J]. Nature,2005,436:238–241.
    [21] Prior T J, Bradshaw D, Teat S J, et al. Designed Layer Assembly: aThree-Dimensional Framework with74%Extra-Framework Volume byConnection of Infinite Two-Dimensional Sheets[J]. Chem Commun,2003,4:500–501.
    [22]薛铭.新型金属有机配位聚合物的设计合成、结构与性能研究[D].长春:吉林大学学位论文,2008:4–5.
    [23] Murray L J, Dinc M, Long J R. Hydrogen Storage in Metal-OrganicFrameworks[J]. Chem Soc Rev,2009,38:1294–1314.
    [24] Cheng X N, Xue W, Lin J B, et al. Porous Ionic/Molecular Crystal Composedof Highly Symmetric Magnetic Clusters[J]. Chem Commun,2010,46:246–248.
    [25] Zhu X F, Zhang H, Zhou Y H, et al. Hydrothermal Synthesis, Crystal Structure,and Magnetic Properties of Two New Coordination Polymers [Ni(IHQS)(4,4'-bipy)0.5(H2O)2]n and [Cu(IHQS)(4,4'-bipy)0.5H2O]n[J]. Z Anorg AllgChem,2010,636:457–461.
    [26] Feng X, Wang L Y, Wang J G, et el. A Unique Example of a3D FrameworkBased on the Binuclear Dysprosium(III) Azobenzene-3,5,4'-Tricarboxylatewith3,6-connected Topology Showing Ferromagnetic Properties[J].CrystEngComm,2010,12:3476–3482.
    [27] Nonat A M, Allain C, Faulkner S, et al. Mixed d-f3Coordination ComplexesPossessing Improved Near-Infrared (NIR) Lanthanide Luminescent Propertiesin Aqueous Solution[J]. Inorg Chem,2010,49(18):8449–8456.
    [28] Feng X, Wang J, Liu B, et al. From Two-Dimensional Double DeckerArchitecture to Three-Dimensional pcu Framework with One-DimensionalTube: Syntheses, Structures, Luminescence, and Magnetic Studies[J]. CrystGrowth Des,2012,12:927938.
    [29]张艳娇.含氮氧杂原子芳香配体d10族金属配合物的构筑[D].哈尔滨:哈尔滨工业大学学位论文,2010:1–2.
    [30] Zhang Z H, Song Y, Okamura T, et al. Syntheses, Structures, Near-Infrared andVisible Luminescence, and Magnetic Properties of Lanthanide-OrganicFrameworks with an Imidazole-Containing Flexible Ligand[J]. Inorg Chem,2006,45(7):2896–2902.
    [31] Wang X, Yang Y L, Wang P, et al. High Efficiency Co-Sensitized Solar CellBased on Luminescent Lanthanide Complexes with Pyridine-2,6-DicarboxylicAcid Ligands[J]. Dalton Trans,2012,41:10619–10625.
    [32] Camerel F, Barberá J, Otsuki J, et al. Solution-Processable Liquid Crystals ofLuminescent Aluminum(8-Hydroxyquinoline-5-Sulfonato) Complexes[J]. AdvMater,2008,20:3462–3467.
    [33] Tong M L, Hu S, Wang J, et el. Supramolecular Isomerism in CadmiumHydroxide Phases. Temperature-Dependent Synthesis and Structure ofPhotoluminescent Coordination Polymers of Α-and Β-Cd2(OH)2(2,4-Pyda)[J].Cryst Growth Des,2005,5:837–839.
    [34]金钊.新型金属有机骨架化合物的设计合成及性质表征[D].长春:吉林大学学位论文,2010:2–3.
    [35] Férey G, Mellot-Draznieks C, Millange F, et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science,2005,309:2040–2042.
    [36] Rowsell J L C, Yaghi O M. Strategies for Hydrogen Storage in Metal-OrganicFrameworks[J]. Angew Chem Int Ed,2005,44:4670–4679.
    [37] Murray L J, Dinc M, Long J R. Hydrogen Storage in Metal-OrganicFrameworks[J]. Chem Soc Rev,2009,38:1294–1314.
    [38] Rowsell J L C, Yaghi O M. Effects of Functionalization, Catenation, andVariation of the Metal Oxide and Organic Linking Units on the Low-PressureHydrogen Adsorption Properties of Metal-Organic Frameworks[J]. J Am ChemSoc,2006,128:1304–1315.
    [39] Lee E, Kim Y, Jung Y, et al. A Coordination Polymer of Cobalt(II)-Glutarate:Two-Dimensional Interlocking Structure by Dicarboxylate Ligands with TwoDifferent Conformations[J]. Inorg Chem,2002,41:501–506.
    [40] Han Z X, Wang J J, Hu H M, et al. Effects of the Size of Aromatic ChelateLigands and d10Metal Ions on the Structures of Dicarboxylate Complexes:From Dinuclear Molecule to Helical Chains and2D Network[J]. J Mol Struct,2008,891(1-3):364–369.
    [41] Tan X, Zhang J, Zhang J, et al. Axially Chiral Metal-Organic FrameworksProduced from Spontaneous Resolution with an Achiral Pyridyl DicarboxylateLigand[J]. CrystEngComm,2012,14:63–66.
    [42] Du Z Y, Xu H B, Mao J G. Rational Design of0D,1D, and3D OpenFrameworks Based on Tetranuclear Lanthanide(III) Sulfonate-PhosphonateClusters[J]. Inorg Chem,2006,45:9780–9788.
    [43] Zhu X, Chen Q, Yang Z, et al. Tuning Zinc(II) Coordination Polymers based onBis(1,2,4-Triazol-1-yl)ethane and5-Substituted1,3-Benzenedicarboxylates:Syntheses, Structures and Properties[J]. CrystEngComm,2013,15:471–481.
    [44] Lucky M V, Sivakumar S, Reddy M L P, et al. Lanthanide LuminescentCoordination Polymer Constructed from Unsymmetrical Dinuclear BuildingBlocks Based on4-((1H-Benzo[d]imidazol-1-yl)methyl)benzoic Acid[J]. CrystGrowth Des,2011,11(3):857–864.
    [45]赵晓君.新型金属有机羧酸骨架晶体材料的设计合成、结构与性能研究[D].长春:吉林大学学位论文,2009:17–18.
    [46] Chu Q, Liu G X, Huang Y Q, et al. Syntheses, Structures, and OpticalProperties of Novel Zinc(II) Complexes with Multicarboxylate And N-DonorLigands[J]. Dalton Trans,2007,(38):4302–4311.
    [47] Chui S S, Lo S M, Charmant J P, et al. A Chemically FunctionalizableNanoporous Material[J]. Science,1999,283:1148–1150.
    [48] Peng H M, Jin H G, Gu Z G, et al. One-, Two-and Three-Dimensional3d-4fHeterometal Complexes Constructed from Pyridine-2,3-Dicarboxylic Acid[J].Eur J Inorg Chem,2012,5562–5570.
    [49] Black C A, Costa J S, Fu W T, et al.3-D Lanthanide Metal-OrganicFrameworks: Structure, Photoluminescence, and Magneti[J]. Inorg Chem,2009,48:1062–1068.
    [50] Kan W Q, Ma J F, Liu B, et al. A Series of Coordination Polymers Based on5,50-(Ethane-1,2-diyl)-bis(oxy)-Diisophthalic Acid and Structurally RelatedN-Donor Ligands: Syntheses, Structures and Properties[J]. CrystEngComm,2012,14:286–299.
    [51] Shao M Y, Huo P, Sun Y G, et al. Synthetic Methods and Structural Study ofCoordination Polymers of Cd(II) and Co(II) with Tetrathiafulvalene-Tetracarboxylate[J]. CrystEngComm,2013,15:1086–1094.
    [52] Ablet A, Li S M, Cao W, et al. Luminescence Tuning and White-Light Emissionof Co-doped Ln-Cd-Organic Frameworks[J]. Chem Asian J,2013,8:95–100.
    [53] Liu Y L, Li J, Ma J F, et al. A Series of1D,2D and3D Coordination PolymersBased on a5-(Benzonic-4-Ylmethoxy)isophthalic Acid: Syntheses, Structuresand Photoluminescence[J]. CrystEngComm,2012,14:169–177.
    [54] Chen X L, Gou L, Hu H M, et al. New Examples of Metal CoordinationRchitectures of4,4'-Sulfonyldibenzoic Acid: Syntheses, Crystal Structure andLuminescence[J]. Eur J Inorg Chem,2008,2:239–250.
    [55] Wang Y B, Zhuang W J, Jin L P, et al. New Lanthanide Coordination Polymersof1,2,4,5-Benzenetetracarboxylic Acid and4,4'-Bipyridine with1DChannels[J]. J Mol Struct,2005,737:165–172.
    [56] Wang W H, Tian H R, Zhou Z C, et al. Two Unusual Chiral Lanthanide-SulfateFrameworks with Helical Tubes and Channels Constructed from InterweavingTwo Double-Helical Chains[J]. Cryst Growth Des,2012,12:25672571.
    [57] Sun Y Q, Yang G Y. Organic-Inorganic Hybrid Materials Constructed fromInorganic Lanthanide Sulfate Skeletons and Organic4,5-ImidazoledicarboxylicAcid[J]. Dalton Trans,2007,3771–3781.
    [58]王瑛.新型金属有机磺酸配位聚合物的设计合成、结构与性能研究[D].长春:吉林大学学位论文,2009:16.
    [59] Zhang M S, Yin W, Su Q, et al. Encapsulation and Luminescence of theNanostructured Supramolecular Material [Eu(Phen)4](NO3)3/(CH3)3Si-MCM-41[J]. Mater Lett,2002,57:940–945.
    [60] Fan R Q, Zhang Y J, Yin Y B, et al. Syntheses, Structures, and LuminescentProperties of Cadmium (II) Complexes:3D Supramolecular [Cd(phen)(NO3)(NO2)(H2O)]n and Cd(phen)2(NO3)(NO2) Constructed by π-π StackingInteractions[J]. Synth Met,2009,159:11061111.
    [61] Bünzli J C G, Piguet C. Lanthanide-Containing Molecular and SupramolecularPolymetallic Functional Assemblies[J]. Chem Rev,2002,102:1897–1928.
    [62] Lee J W, Samal S, Selvapalam N, et al. Cucurbituril Homologues andDerivatives: New Opportunities in Supramolecular Chemistry[J]. Acc ChemRes,2003,36:621–630.
    [63] Suh M P, Cheon Y E, Lee E Y. Syntheses and Functions of PorousMetal-Supramolecular Networks[J]. Coord Chem Rev,2008,252:1007–1026.
    [64] Cairns A J, Perman J. A, Wojtas L, et al. Supermolecular Building Blocks(SBBs) and Crystal Design:12-Connected Open Frameworks Based on aMolecular Cubohemioctahedron[J]. J Am Chem Soc,2008,130:1560–1561.
    [65] Huang X C, Zhang J P, Lin Y Y, et al. Luminescent Zigzag Chains andTriple-Stranded Helices of Copper(I)2-Ethylimidazolate: SolventPolarity-Induced Supramolecular Isomerism[J]. Chem Commun,2005,2232–2234.
    [66] Wu S T, Long L S, Huang R B, et el. Ph-Dependent Cu(II) CoordinationPolymers with Tetrazole-1-Acetic Acid: Synthesis, Crystal Structures, EPR andMagnetic Properties[J]. Cryst Growth Des,2007,7:1746–1752.
    [67] Zhang X, Huang D, Chen F, et al. The First One-Dimensional ManganesePolymer Containing4,5-Dicarboxyimidazole: Solvothermal Synthesis, CrystalStructure and Magnetic Behavior of [Mn(phen)(Hdcbi)]n (H3dcbi=4,5-Dicarboxyimidazole, phen=1,10-Phenanthroline)[J]. Inorg Chem Commun,2004,7(5):662–665.
    [68] Wu W P, Wang Y Y, Wu Y P, et al. Hydro(solvo)thermal Synthesis, Structures,Luminescence of2-D Zinc(II) and1-D Copper(II) Complexes Constructedfrom Pyridine-2,6-Dicarboxylic Acid N-Oxide and Decarboxylation of theLigand[J]. CrystEngComm,2007,9:753–757.
    [69] Fan J, Wang Z H, Yang M, Controlled Synthesis, Structures and Properties ofOne-, Two-, and Three-Dimensional Lanthanide Coordination Polymers basedon (8-Quinolyloxy)Acetate[J]. CrystEngComm,2010,12:216–225.
    [70] Fan R Q, Wang L Y, Wang P, et al. Syntheses, Structures and LuminescentProperties of Zero-/Two-Dimensional Cd(II) and Eu(III) Complexes[J]. J SolidState Chem,2012,196,332340.
    [71] Sheldrick G M. SHELXTL NT Crystal Structure Analysis Package[CP].Version5.10; Bruker AXS, Analytical X-ray System: Madison, WI,1999.
    [72] Dolomanov O V, Bourhis L J, Gildea R J, et al. OLEX2: A Complete StructureSolution, Refinement and Analysis Program[J]. J Appl Cryst,2009,42:339–341.
    [73] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision C.02,Gaussian, Inc., Pittsburgh, PA,2003.
    [74] Huber H, Ha T K, Nguyen M T. Is n6an Open-Chain Molecule?[J]. J Mol StrucTheochem,1983,105:351–358.
    [75] Vij A, Wilson W W, Vij V, et al. Synthesis, Characterization, and CrystalStructure of Surprisingly Stable Fluoroantimonate Salts of N5+[J]. J Am ChemSoc,2001,123:6308–6313.
    [76] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules[M].New York: Osford University Press,1989.
    [77] Wadt W R, Hay P J. Ab Initio Effective Core Potentials for MolecularCalculations. Potentials for Main Group Elements Na to Bi[J]. J Chem Phys,1985,82(1):284–298.
    [78] Hay P J, Wadt W R. Ab Initio Effective Core Potentials for MolecularCalculations. Potentials for the Transition Metal Atoms Sc to Hg[J]. J ChemPhys,1985,82(1):270–283.
    [79] Hay P J, Wadt W R. Ab Initio Effective Core Potentials for MolecularCalculations. Potentials for K to Au Including the Outermost Core Orbitals[J].J Chem Phys,1985,82(1):299–310.
    [80] Das S, Kim H, Kim K. Metathesis in Single Crystal: Complete and ReversibleExchange of Metal Ions Constituting the Frameworks of Metal-OrganicFrameworks[J]. J Am Chem Soc,2009,131(11):3814–3815.
    [81] Lee S J, Lin W B. Chiral Metallocycles: Rational Synthesis and NovelApplications[J]. Acc Chem Res,2008,41:521–537.
    [82] Comby S, Imbert D, Vandevyver C, et al. A Novel Strategy for the Design of8-Hydroxyquinolinate-Based Lanthanide Bioprobes That Emit in the NearInfrared Range[J]. Chem Eur J,2007,13:936944.
    [83] Huo Y P, Zhu S Z, Hu S. Synthesis and Luminescent Properties of Zn ComplexBased on8-Hydroxyquinoline Group Containing3,5-bis(Trifluoromethyl)benzene Unit with Unique Crystal Structure[J].Tetrahedron,2010,66:86358640.
    [84] Liu W, Yu J, Jiang J, et al. Hydrothermal Syntheses, Structures andLuminescent Properties of Zn(II) Coordination Polymers Assembled withBenzene-1,2,3-Tricarboxylic Acid Involving in situ Ligand Reactions[J].CrystEngComm,2011,13:2764–2773.
    [85] Cheng J W, Zheng S T, Yang G Y. Diversity of Crystal Structure with DifferentLanthanide Ions Involving in situ Oxidation-Hydrolysis Reaction[J]. DaltonTrans,2007,4059–4066.
    [86] Spek A L. Single-Crystal Structure Validation with the Program PLATON[J]. JAppl Crystallogr,2003,36:7–13.
    [87] Spek A L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University:Utrecht, The Netherlands[CP].2006.
    [88] Neels A, Neels B M, Stoeckli-Evans H, et al. Synthesis and X-ray PowderStructures of Nickel(II) and Copper(II) Coordination Polymers with2,5-Bis(2-Pyridyl)pyrazine[J]. Inorg Chem,1997,36:3402–3409.
    [89]唐龙,吴亚盘,付峰等.基于吡啶-4-甲酸构筑的二维Cu(II)位聚合物及其密度泛函研究[J].化学学报,2010,68(13):1261–1266.
    [90] Lan A J, Padmanabhan M, Li K H, et al. Two-Dimensional CoordinationPolymers of Zn(II) and Cd(II) Derived from3,3',5,5'-Azobenzenetetracarboxylic Acid Exhibiting Solvent FacilitatedStructure Reversibility[J]. Inorg Chim Acta,2011,366:68–75.
    [91] Kondo M, Yoshitomi T, Seki K, et al. Three-Dimensional Framework withChanneling Cavities for Small Molecules:{[M2(4,4'-Bpy)3(NO3)4]·Xh2O}n (M=Co, Ni, Zn)[J]. Angew Chem Int Ed,1997,36:1725–1727.
    [92] Liu G C, Zhang J X, Wang X L, et al. Synthesis, Crystal Structure andPhotoluminescence of a New1D Cd(II) Coordination Polymer[J]. Chin J InorgChem,2010,26(5):913–916.
    [93] Yao Y L, Xue L, Che Y X, et al. Syntheses, Structures, and Characterizations ofTwo Pairs of Cd(II)-5-Aminotetrazolate Coordination Polymers[J]. CrystGrowth Des,2009,9(1):606–610.
    [94]闫立伟,杨莉,兰静波等.一种新型的基于苝四酰亚胺衍生物的比色和荧光传感器对二价铜离子的选择性识别[J].中国科学(B辑:化学),2009,52(4):518–522.
    [95] Moore E G, Szigethy G, Xu J, et al.3-Hydroxypyridin-2-one Complexes ofNear-Infrared (NIR) Emitting Lanthanides: Sensitization of Holmium(III) andPraseodymium(III) in Aqueous Solution[J]. Angew Chem Int Ed,2008,47,9500–9503.
    [96] Biju S, Reddy M L P, Cowley A H, et al.3-Phenyl-4-acyl-5-isoxazolonateComplex of Tb3+Doped into Poly-Bhydroxybutyrate Matrix as a PromisingLight-Conversion Molecular Device[J]. J Mater Chem,2009,19:5179–5187.
    [97] Zheng Y Z, Xue W, Tong M L, et al. A Two-Dimensional Iron(II) CarboxylateLinear Chain Polymer that Exhibits a Metamagnetic Spin-CantedAntiferro-Magnetic to Single-Chain Magnetic Transition[J]. Inorg Chem,2008,47:4077–4087.
    [98] Zhang L L, Lu C Y, Chen S P, et al. Synthesis, Structure and Properties ofNovel3-D Porous Lanthanide-3,4',5-Azobenzenetricarboxylate Frameworks[J].Inorg Chem Commun,2011,14:143–145.
    [99] Murugavel R, Bahet K, Anantharaman G. Reactions of2-Mercaptobenzoic Acidwith Divalent Alkaline Earth Metal Ions: Synthesis, Spectral Studies, andSingle-Crystal X-ray Structures of Calcium, Strontium, and Barium Complexesof2,2'-Dithiobis (Benzoic acid)[J]. Inorg Chem,2001,40:6870–6878.
    [100] Livage C, Guillou N, Chaigneau J, et al. A Three-Dimensional Metal-OrganicFramework with an Unprecedented Octahedral Building Unit[J]. Angew ChemInt Ed,2005,44:6488–6491.
    [101] Shyu E, Supkowski R M, LaDuca R L. A Chiral Luminescent CoordinationPolymer Featuring a Unique4-Connected Self-Catenated Topology Built fromHelical Motifs[J]. Inorg Chem,2009,48(7):2723–2725.
    [102] Liu Y, Xu X, Zheng F K, et al. Chiral Octupolar Metal-Organoboron NLOFrameworks with (14,3) Topology[J]. Angew Chem Int Ed,2008,47(24):4538–4541.
    [103] Wu C D, Hu A G, Zhang L, et al. A Homochiral Porous Metal-OrganicFramework for Highly Enantioselective Heterogeneous AsymmetricCatalysis[J]. J Am Chem Soc,2005,127:8940–8941.
    [104] Qiu L G, Gu L N, Hu G, et al. Synthesis, Structural Characterization andSelectively Catalytic Properties of Metal-Organic Frameworks withNano-Sized Channels: A Modular Design Strategy[J]. J Solid State Chem,2009,182(3):502–508.
    [105] Seo J S, Whang D, Lee H, et al. A Homochiral Metal-Organic Porous Materialfor Enantioselective Separation and Catalysis[J]. Nature,2000,404:982–986.
    [106] Xu G F, Wang Q L, Gamez P, et al. A Promising New Route TowardsSingle-Molecule Magnets Based on the Oxalate Ligand[J]. Chem Commun,2010,46,1506–1508.
    [107] Millward A R, Yaghi O M. Metal-Organic Frameworks with ExceptionallyHigh Capacity for Storage of Carbon Dioxide at Room Temperature[J]. J AmChem Soc,2005,127:17998–17999.
    [108] Ma S, Zhou H C. A Metal-Organic Framework with Entatic Metal CentersExhibiting High Gas Adsorption Affinity[J]. J Am Chem Soc,2006,128:11734–11735.
    [109] Devic T, Serre C, Audebrand N, et al. MIL-103, A3-D Lanthanide-BasedMetal-Organic Framework with Large One-dimensional Tunnels and a HighSurface Area[J]. J Am Chem Soc,2005,127:12788–12789.
    [110] Huang Z, Du M, Song H B, et al. Effect of Anions on the FrameworkFormation of Novel Ag Coordination Polymers with Angular BridgingLigands[J]. Cryst Growth Des,2004,4:71–78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700