用户名: 密码: 验证码:
复合材料层合板真空辅助湿铺贴挖补修理分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天、风力发电、高速列车、船舶工业、汽车工业等行业快速发展的需要,具有比强度、比刚度高,可设计性强,抗疲劳优良等特点的复合材料层合板,得到了越来越广泛的应用。但复合材料层合板在制造、运输以及使用过程中难免产生各种损伤,从而影响复合材料结构件的安全性能。因此对损伤后的复合材料层合板进行修理以达到结构使用的刚度以及强度要求,具有重大的实用价值。本文主要研究了复合材料层合板真空辅助湿铺贴挖补修理的分析方法。
     首先发展了用于模拟此类挖补修理结构中复合材料单层破坏的各向异性连续损伤本构模型,其中综合考虑了纤维拉伸压缩破坏、基体拉伸压缩破坏、厚度方向拉伸压缩破坏以及1-2平面和1-3平面内的剪切非线性现象,通过采用基于应变的Hashin准则解决了损伤前后应力准则不连续问题;同时本文在充分考虑二次固化界面无厚度特征后,假设复合材料母板和补片通过接触相互粘接在一起,采用双线性cohesive损伤模型模拟粘接属性,分别描述了纯模式及混合模式下其损伤状态变量的计算公式。
     采用双线性cohesive损伤模型对双悬臂梁(DCB)和端部缺口弯曲(ENF)试件进行了裂纹扩展理论分析,通过与梁理论、修正梁理论以及弹性地基梁模型结果进行对比验证了此理论分析的准确性,探讨了双线性损伤模型中参数变化对试验载荷-位移曲线和黏聚区长度的影响,为双线性cohesive损伤模型参数的选取提供了理论指导。
     基于遗传算法建立了力学问题中本构模型参数的识别方法,基于试验测量和参数识别模型正分析所得载荷-位移曲线之间的误差平方和定义了适应度函数,编写了MATLAB程序实现了此参数识别方法。采用铺层结构为(00,900,450,-450)s的ASTM标准开孔拉伸试件作为复合材料单层损伤本构模型中剪切非线性因子和损伤速率影响因子的参数识别模型;选用DCB和ENF试件作为二次固化界面双线性损伤参数识别模型,用于界面刚度、界面点强度、界面断裂韧性的取值。通过假设“真实值”进行数值仿真分析验证了参数识别模型的可靠性和有效性。
     根据复合材料层合板真空辅助湿铺贴挖补修理工艺流程分别制作了三种不同打磨角度和不同阶梯宽厚比的斜面形和阶梯形修理试验件,通过试验研究获得了各试验件指定点弹性应变值以及拉伸极限载荷,对试验过程观察获得了两种挖补修理方式的破坏过程,并得到了最终破坏模式。
     通过对真空辅助湿铺贴挖补修理结构中母板和补片构型进行微观分析,进行适当简化建立了合理的斜面形和阶梯形挖补修理截面模型。分别对两种修理方式试验件建立了三维有限元模型,采用复合材料连续损伤本构模型模拟层合板单层破坏、采用基于双线性cohesive损伤模型的接触分析模拟二次固化界面破坏,分别对两种挖补修理方式的破坏过程进行了模拟研究,通过与试验结果进行对比验证了此模型的有效性,最后研究了修理参数(打磨角度、阶梯宽厚比)变化对挖补修理结果的影响。
With the rapid development of aerospace, wind power generation, high-speed train, shipindustry, automobile industry, the composite laminates, which possess high specific strength,high specific stiffness, outstanding designability, excellent fatigue resistance and otheradvantages, have been more and more widely used. However, damages that may affect the safetyperformance of composite structures will inevitably produce in composite laminates during theprocess of the manufacturing, transportation and use, thus affects the safety performance ofcomposite structures. Therefore, the repairs for damaged composite laminates has a great valuein practicality. Once repaired, the structure shall satisfy the structural stiffness and strengthrequirements. This paper mainly studies the assessment of the vacuum-assisted wet-layupscarf-patch and stepped-patch repaired composite laminates.
     The study started from the continuum damage constitutive model for composites of each ply,which took into account the fiber tensile and compressive failure, the matrix tensile andcompression damage, tensile and compression failure in the thickness direction and the shearnonlinear phenomena in1-2plane and1-3plane. The stress discontinuity problem before andafter damage was solved by using the Hashin criterion based on strain. At the same time,considering the zero thickness characteristics of secondary curing interface, the motherboard andthe composite patch are bonded to each other through the contact. The bilinear cohesive damagemodel was used to simulate this adhesive contact property. The pure mode and mixed mode ofthe damage variable formula were described, respectively.
     Following a crack extension theoretical analysis on the double cantilever beam (DCB) andend notched flexure (ENF) specimens using bilinear cohesive damage model, the accuracy ofthis theoretical analysis was verified by comparing results to data obtained by the beam theory,modified beam theory and elastic foundation beam model. The influence of the changes of thedamage model parameters on the test load displacement curve and the length of the cohesivezone is discussed, This provides a theoretical guidance for the selection of parameters of bilinearcohesive damage model.
     Based on genetic algorithm, the identification method of constitutive model parameter for amechanical problem was established. The fitness function was defined by using the errorbetween the load displacement curves, obtained by the experiment and analysis using theparameter identification model. This parameter identification method was implemented byMATLAB program. The open hole tensile testing specimens as specified in ASTM, whose layupwere (00,900,450,-450)s, were used for parameter identification of the shear nonlinear factors and the damage rate impact factors in the single-layer composite damage constitutive model. TheDCB and ENF specimens were selected as the bilinear damage parameter identification model ofsecondary curing interface for the interface stiffness, the interface point strength, interfacialfracture toughness values. Numerical simulation analysis were carried out by assuming the 'realvalue' to verify the reliability and validity of the parameter identification model.
     According to the process of the vacuum-assisted wet-layup flush repaired compositelaminates, three different grinding angles of scarf repaired and different step width to thicknessratioe of stepped repaired specimens were produced. The elastic strain at specified points and theultimate tensile load were obtained by experiment. The failure process and the final failure modeof these two kinds of repaired method were obtained by observation during the trial process.
     Through the microscopic analysis of the configurations of the parent material and the patchin the vacuum-assisted wet-layup flush repaired laminates, the models of the section for the scarfand stepped repair were established reasonably. And three-dimensional finite element models ofthese two kinds of repaired mode were built respectively. The composite continuous damageconstitutive model is used to simulate layer destruction, and the contact analysis is based onbilinear cohesive damage model to simulate the failure of secondary curing interface. The failureprocess of each method was studied. These models were verified by comparing with theexperimental results. Finally the effect of the repair parameters, such as grinding angle, stepwidth to thickness ratio, on the repair result were studied.
引文
[1]朱剑.复合材料及其发展概况[J].科技资讯,2007,1:1.
    [2]航空航天工业部科学技术研究院.复合材料设计手册[M].北京:航空工业出版社,1990.
    [3]中国航空研究院.复合材料结构设计手册[M].北京:航空工业出版社,2001.
    [4]于文花.复合材料使用中的维修性和成本问题[J].国际航空,2002,(03):33-35.
    [5]淡蓝,七丁.复合材料低成本制造技术调查报告[J].航空制造技术,2009,(15):76-77.
    [6]包建文.高效低成本复合材料及其制造技术[M].北京:国防工业出版社,2012.
    [7] Michaud D J, Beris A N, Dhurjati P S. Thick-sectioned RTM composite manufacturing: PartI–In situ cure model parameter identification and sensing[J]. Journal of CompositeMaterials,2002,36(10):1175-1200.
    [8] Michaud D J, Beris A N, Dhurjati P S. Thick-sectioned RTM composite manufacturing, partII. Robust cure cycle optimization and control[J]. Journal of Composite Materials,2002,36(10):1201-1231.
    [9] Han N L, Suh S S, Yang J M, et al. Resin film infusion of stitched stiffened compositepanels[J]. Composites Part A: Applied Science and Manufacturing,2003,34(3):227-236.
    [10]张明龙,肖加余,曾竟成,等. RFI工艺制备复合材料板材研究[J].玻璃钢/复合材料,2006,(02):41-43.
    [11] Zhao C H, Zhang A C, Zhang Y Z. The development of vacuum-assisted resin infusion[J].Fiber Reinforced Plastics,2009,1:20.
    [12] Dyskin A V, Estrin Y, Kanel-Belov A J, et al. A new principle in design of compositematerials: reinforcement by interlocked elements[J]. Composites Science and Technology,2003,63(3):483-491.
    [13]韩小平,郭章新,朱西平,等.含孔复合材料层合板孔边的应力集中[J].复合材料学报,2009,26(1):168-173.
    [14]朱西平,毛坤,韩小平,等.含孔复合材料层板的力学性能研究[J].机械科学与技术,2006,25(9):1126-1129.
    [15] Wu H C, Mu B. On stress concentrations for isotropic/orthotropic plates and cylinders witha circular hole[J]. Composites Part B: Engineering,2003,34(2):127-134.
    [16] Kubair D V, Bhanu-Chandar B. Stress concentration factor due to a circular hole infunctionally graded panels under uniaxial tension[J]. International Journal of MechanicalSciences,2008,50(4):732-742.
    [17]孙先念,陈浩然,陈绍杰.含分层损伤复合材料层合板前后屈曲行为研究[J].航空学报,1999,20(3):224-229.
    [18] Pradhan S C, Tay T E. Three-dimensional finite element modelling of delamination growthin notched composite laminates under compression loading[J]. Engineering FractureMechanics,1998,60(2):157-171.
    [19] Aslan Z, ahin M. Buckling behavior and compressive failure of composite laminatescontaining multiple large delaminations[J]. Composite Structures,2009,89(3):382-390.
    [20] Hawyes V J, Curtis P T, Soutis C. Effect of impact damage on the compressive response ofcomposite laminates. Composites Part A: Applied Science and Manufacturing.2001,32(9):1263-1270.
    [21]益小苏.复合材料结构整体化技术研究进展[J].航空科学技术,2011,(02):4-8.
    [22]焦婷,杨胜春.复合材料粘接修理分析与验证技术研究[C].第17届全国复合材料学术会议.中国航空学会,2012:753-756
    [23]陈绍杰.复合材料结构修理指南[M].航空工业出版社,2001.
    [24]田秀云,杜洪增.复合材料结构及维修[M].中国民航出版社,1996.
    [25] Ahn S H, Spinner G S. Repair of composite laminates. DOT/FAA/AR-00/46. Washington,DC, United States: Federal Aviation Administration,2000.
    [26] Wegman R F, Tullos T R. Handbook of adhesive bonded structural repair[M]. NoyesPublications,1992.
    [27] Tomblin J S, Salah L, Welch J M, et al. Bonded repair of aircraft composite sandwichstructures. DOT/FAA/AR-03/74. Washington, DC, United States: Federal AviationAdministration,2004.
    [28] Myhre S H, Beck C E. Repair concepts for advanced composite structures[J]. Journal ofAircraft,1979,16(10):720-728.
    [29]乔新,翟长泰,黄传奇,等.波音飞机复合材料结构修理教程[M].中国民航出版社,1996.
    [30]黄传奇,沈俭,张忠华,等.空中客车及麦道飞机复合材料结构修理[M].中国民航出版社,1997.
    [31] Hart-Smith L.J. Adhesive-bonded scarf and stepped-lap joints[R]. NASA-CR-112237.Washington, United States: National Aeronautics and Space Administration, January1973.
    [32] Gleich D M, Van Tooren M J L, De Haan P A J. Shear and peel stress analysis of anadhesively bonded scarf joint[J]. Journal of Adhesion Science and Technology.2000,14(6):281-294.
    [33] Yan S, Wu D. Analysis and design of composites scarf hoints[M], Computer Aided Designin Composite Material Technology III. Springer Netherlands,1992:519-527.
    [34] Robson J E, Matthews F L, Kinloch A J. The strength of composite repair patches: alaminate analysis approach[J]. Journal of Reinforced Plastics and Composites,1992,11(7):729-742.
    [35] Objois A, Fargette B, Gilibert Y. The influence of the bevel angle on the micromechanicalbehaviour of bonded scarf joints[J]. Journal of Adhesion Science and Technology.2000,14(8):1057-1070.
    [36] Objois A, Assih J, Troalen J P. Theoretical method to predict the first microcracks in a scarfjoint[J]. Journal of Adhesion.2005,81(9):893-909.
    [37] Mortensen F, Thomsen O T. Simplified linear and non-linear analysis of stepped andscarfed adhesive-bonded lap-joints between composite laminates[J]. Composite Structures.1997,38(1-4):281-294.
    [38] Ahn S H, Springer G S. Repair of composite laminates-II: models[J]. Journal of compositematerials,1998,32(11):1076-1114.
    [39] Chu W S, Ahn S H. Internet-based composite repair[J]. Journal of Composite Materials,2005,39(9):827-845.
    [40]王勖成.有限单元法[M].清华大学出版社,2003.
    [41] Zienkiewicz O C, Taylor R L. The finite element method: solid mechanics[M].Butterworth-Heinemann,2000.
    [42] Adkins D W, Pipes R B. Planar scarf joints in composite repair[R]. NASA. United States:1978.
    [43] Zimmerman K, Liu D. Geometrical parameters in composite repair[J]. Journal ofComposite Materials,1995,29(11):1473-1487.
    [44] Found M S, Friend M J. Evaluation of CFRP patches with scarf repair patches[J].CompositeStructures.1995,32(1-4):115-122.
    [45] Charalambides M N, Hardouin R, Kinloch A J, et al. Adhesively bonded repairs tofibre-composite materials II: finite element modelling[J]. Composites: Part A,1998,29A:1383-1396.
    [46] Baker A A, Chester R J, Hugo G R, et al. Scarf repairs to highly strained graphite/epoxystructure[J]. International Journal of Adhesion&Adhesives.1999,19:161-171.
    [47] Odi R A, Friend C M. An improved2D model for bonded composite joints[J]. InternationalJournal of Adhesion and Adhesives,2004,24(5):389-405.
    [48] Harman A B, Wang C H. Improved design methods for scarf repairs to highly strainedcomposite aircraft structure[J]. Composite Structures,2006,75(1):132-144.
    [49] Wang C H, Gunnion A. Design methodology for scarf repairs to composite structures[R].Defence Science and Technology Organisation Victoria (Australia) Air Vehicle Div,2006.
    [50] Wang C H, Gunnion A J. On the design methodology of scarf repairs to compositelaminates[J]. Composites Science and Technology,2008,68(1):35-46.
    [51] Campilho R, De Moura M, Domingues J. Stress and failure analyses of scarf repaired CFRPlaminates using a cohesive damage model[J]. Journal of Adhesion Science and Technology,2007,21(9):855-870.
    [52] Tzetzis D, Hogg P J. Experimental and finite element analysis on the performance ofvacuum-assisted resin infused single scarf repairs[J]. Materials&Design,2008,29(2):436-449.
    [53] Campilho R D S G, De Moura M F S F, Pinto A M G, et al. Modelling the tensile fracturebehaviour of CFRP scarf repairs[J]. Composites Part B: Engineering.2009,40(2):149-157
    [54] Kimiaeifar A, Toft H, Lund E, et al. Reliability analysis of adhesive bonded scarf joints[J].Engineering Structures,2012,35:281-287.
    [55] Soutis C, Hu F Z. A3-D failure analysis of scarf patch repaired CFRP plates[J]. AmericanInstitute of Aeronautics and Astronautics, Inc,1998:1971-1977.
    [56] Soutis C, Hu F Z. Failure analysis of scarf-patch-repaired carbon fiber/epoxy laminatesunder compression[J]. AIAA Journal,2000,38(4):737-740.
    [57] Cook B.M. Experimentation and analysis of composite scarf joint [D]. Graduate School ofEngineering and Management, Air Force Institute of Technology (AU),2005.
    [58] Sutter D.A. Three-dimensional analysis of a composite repair and the effect of overplyshape variation on structural efficiency [D]. Graduate School of Engineering andManagement, Air Force Institute of Technology (AU),2007.
    [59] Gunnion A J, Herszberg I. Parametric study of scarf joints in composite structures[J].Composite Structures,2006,75(1):364-376.
    [60] Kim Y H, Jo Y D, Murakami R. A computational analysis of the scarf angle on a compositesrepair[J]. International Journal of Ocean System Engineering,2011,1(1):9-15.
    [61] Breitzman T D, Iarve E V, Cook B M, et al. Optimization of a composite scarf repair patchunder tensile loading[J]. Composites Part A: Applied Science and Manufacturing,2009,40(12):1921-1930.
    [62] Wang C H, Gunnion A J. Optimum shapes of scarf repairs[J]. Composites Part A: AppliedScience and Manufacturing,2009,40(9):1407-1418.
    [63] Nakano H, Sekiguchi Y, Sawa T. FEM stress analysis and strength prediction of scarfadhesive joints under static bending moments[J]. International Journal of Adhesion andAdhesives,2013.
    [64] Chou S.P. Finite element application for strength analysis of scarf-patch-repaired compositelaminates [D]. Department of Aerospace Engineering, College of Engineering, WichitaState University,2006.
    [65] Das M, Madenci E, Ambur D R. Three-dimensional nonlinear analyses of scarf repair incomposite laminates and sandwich panels[J]. Journal of the Mechanics of Materials andStructures,2008,3:1641-1658.
    [66] Kumar S B, Sridhar I, Sivashanker S, et al. Tensile failure of adhesively bonded CFRPcomposite scarf joints[J]. Materials Science and Engineering: B,2006,132(1):113-120.
    [67] Pinto A M G, Campilho R, de Moura M, et al. Numerical evaluation of three-dimensionalscarf repairs in carbon-epoxy structures[J]. International Journal of Adhesion andAdhesives,2010,30(5):329-337.
    [68] Campilho R D S G, de Moura M, Ramantani D A, et al. Buckling behaviour ofcarbon-epoxy adhesively-bonded scarf repairs[J]. Journal of Adhesion Science andTechnology,2009,23(10-11):1493-1513.
    [69] Ridha M, Tan V B C, Tay T E. Traction–separation laws for progressive failure of bondedscarf repair of composite panel[J]. Composite Structures,2011,93(4):1239-1245.
    [70]孟凡颢,陈绍杰,童小燕.层压板修理设计中的参数选择问题[J],复合材料学报,2001,18(4):28-31.
    [71]孟凡颢,陈绍杰,董善艳,等.复合材料损伤结构胶接补强修补分析及设计[J].飞机设计,2002(1):18-21.
    [72]喻梅,许希武.复合材料挖补修理结构的压缩强度分析[J].中国矿业大学学报,2008,37(5):709-714.
    [73]喻梅.复合材料结构挖补补强强度研究[D].南京:南京航空航天大学,2005.
    [74]喻梅,胡新宇.复合材料挖补修理结构的有限元建模及精度影响分析[J].安徽建筑工业学院学报(自然科学版),2009,(06):1-6.
    [75]林国伟,陈普会.胶接修补复合材料层合板失效分析的PDA-CZM方法[J].航空学报,2009,30(10):1877-1882.
    [76]姜华强.复合材料层压板的损伤评估与修理研究[D].南京航空航天大学,2012.
    [77]王跃全.飞机复合材料结构修理设计渐进损伤分析[D].南京航空航天大学,2010.
    [78]郭霞,关志东,刘遂,等.层压板双面挖补修理的拉伸性能研究及参数分析[J].复合材料学报,2012,29(1):176-182.
    [79]汪源龙,程小全,侯卫国,等.挖补修理复合材料层合板拉伸性能研究[J].工程力学,2012,29(7):328-334.
    [80]汪源龙,程小全.拉伸载荷下挖补角对复合材料挖补修理的影响[J].经济发展方式转变与自主创新——第十二届中国科学技术协会年会(第二卷).中国科学技术协会学会、福建省人民政府,2010:684-688
    [81]王伦.复合材料层合板胶接挖补工艺与性能分析[D].南京航空航天大学,2012.
    [82] Ong C L, Wu K W, Lee C L, et al. Comparsion of stepped-lap repair and scarf repair forfiberglass composite[C]. International Aerospace Congress1995: Proceedings; SecondPacific International Conference on Aerospace and Technology; Sixth AustralianAeronautical Conference. Institution of Engineers, Australia,1995:829.
    [83] Ichikawa K, Shin Y, Sawa T. A three-dimensional finite-element stress analysis and strengthevaluation of stepped-lap adhesive joints subjected to static tensile loadings[J].International Journal of Adhesion and Adhesives,2008,28(8):464-470.
    [84] Sawa T, Ichikawa K, Shin Y, et al. A three-dimensional finite element stress analysis andstrength prediction of stepped-lap adhesive joints of dissimilar adherends subjected tobending moments[J]. International Journal of Adhesion and Adhesives,2010,30(5):298-305.
    [85] Beylergil B, Aktas A, Cunedioglu Y. Buckling and compressive failure of stepped-lap jointsrepaired with composite patches[J]. Journal of Composite Materials,2012,46(26):3213-3230.
    [86] Kimiaeifar A, Lund E, Thomsen O T, et al. Asymptotic sampling for reliability analysis ofadhesive bonded stepped lap composite joints[J]. Engineering Structures,2013,49:655-663.
    [87]祝世兴,徐海岩.复合材料挖补修理参数研究[C]. Proceedings of2010The3rdInternational Conference on Computational Intelligence and Industrial Application (Volume9).2010.
    [88]徐建新,张志德,李顸河.复合材料层合板阶梯式挖补修理参数分析[J].机械科学与技术,2011,30(8):1304-1307.
    [89]徐建新,曹小梅,李顶河.复合材料加筋板的阶梯式挖补修理稳定性分析[J].中国民航大学学报,2011,29(4):1-3.
    [90]卿光辉,王卫伟,刘艳红.复合材料加筋层合板阶梯式挖补修理的稳定性分析研究[J].玻璃钢/复合材料,2012,(04):32-35.
    [91]江毅,卿光辉.复合材料层合板阶梯式挖补修理的屈曲分析[J].航空维修与工程,2012,(01):62-64.
    [92]李顶河,赵鲁春,徐建新,等.复合材料正交加筋层合圆柱壳结构阶梯式挖补修理的参数化研究[J].工程力学,2012,(09):308-317.
    [93]李兆远.复合材料层合板挖补修理强度分析[D].南京航空航天大学,2009.
    [94]朱书华,王跃全,童明波.复合材料层合板阶梯形挖补胶接修理渐进损伤分析[J].复合材料学报,2012,29(6).
    [95] Whittingham B, Baker A A, Harman A, et al. Micrographic studies on adhesively bondedscarf repairs to thick composite aircraft structure[J]. Composites Part A: Applied Scienceand Manufacturing,2009,40(9):1419-1432.
    [96] Chang F K, Chang K Y. A progressive damage model for laminated compositescontaining stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855.
    [97]王丹勇,温卫东,崔海涛.含孔复合材料层合板静拉伸三维逐渐损伤分析[J].力学学报,2005,37(6):788-795.
    [98]徐焜,许希武.三维编织复合材料渐进损伤的非线性数值分析[J].力学学报,2007,39(3):398-407.
    [99]姜云鹏,岳珠峰.复合材料层合板螺栓连接失效的数值模拟[J],复合材料学报,2005,22(4):177-182.
    [100] Batra R C, Gopinath G, Zheng J Q. Damage and failure in low energy impact offiber-reinforced polymeric composite laminates[J]. Composite Structures,2012,94(2):540-547.
    [101] Matzenmiller A, Lubliner J, Taylor R L. A constitutive model for anisotropic damage infiber-composites[J]. Mechanics of Materials,1995,20(2):125-152.
    [102] Lapczyk I, Hurtado J A. Progressive damage modeling in fiber reinforced materials[J].Composites Part A: Applied Science and Manufacturing,2007,38(11):2333-2341.
    [103] Linde P, Pleitner J, Boer H, et al. Modeling and simulation of fibre metal laminates[C],2004ABAQUS Users' Conference. Boston Massachusetts: ABAQU Inc.,2004:421-439.
    [104]王跃全,童明波,朱书华.基于CDM的复合材料层合板三维非线性渐进损伤分析[J],南京航空航天大学学报,2009,41(6):709-714.
    [105] Jones R, Callinan R J. Finite element analysis of patched cracks[J]. Journal of StructuralMechanics.1979,7(2):107-130.
    [106] Chandra R, Guruprasad K. Numerical estimation of stress intensity factors in patchedcracked plates[J]. Engineering Fracture Mechanics.1987,27(5):559-569.
    [107] Sun C T, Klug J, Arendt C. Analysis of cracked aluminum plates repaired with bondedcomposite patches[J]. AIAA Journal.1996,34(2):369-374.
    [108] Ratwani M.M. Analysis of cracked, adhesively bonded laminate structures[J]. AIAA Journal.1979,17(9):988-944.
    [109] Campilho R D S G, De Moura M F S F, Domingues J J M S. Using a cohesive damagemodel to predict the tensile behaviour of CFRP single-strap repairs[J]. International Journalof Solids and Structures.2008,45(5):1497-1512.
    [110] Borg R, Nilsson L, Simonsson K. Simulating DCB, ENF and MMB experiments using shellelements and a cohesive zone model[J]. Composites Science and Technology,2004,64(2):269-278.
    [111] Lu Z, Xu Q. Cohesive zone modeling for viscoplastic behavior at finite deformations[J].Composites Science and Technology,2012.24(74):173-178.
    [112]陈丽华,徐元铭,刘博.复合材料分层问题中界面层方面的数值研究[J].复合材料学报,2010,27(3):144-149.
    [113] Banea M D, Da Silva L F M. Adhesively bonded joints in composite materials: anoverview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal ofMaterials Design and Applications,2009,223(1):1-18.
    [114] Wang C H, Gunnion A J. On the design methodology of scarf repairs to compositelaminates[J]. Composites Science and Technology,2008,68(1):35-46.
    [115] Lema tre J.损伤力学教程[M].科学出版社,1996.
    [116] Matzenmiller A, Lubliner J, Taylor R L. A constitutive model for anisotropic damage infiber-composites[J]. Mechanics of Materials.1995,20(2):125-152.
    [117]沈观林.复合材料力学[M].清华大学出版社,2006.
    [118]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995.
    [119] Hashin Z. Failure criteria for unidirectional fiber composites[J]. Journal of AplliedMechanics.1980,47(2):329-335.
    [120] Huang C H, Lee Y J. Experiments and simulation of the static contact crush of compositelaminated plates[J]. Composite Structures,2003,61(3):265-270.
    [121]张彦,朱平,来新民,等.低速冲击作用下碳纤维复合材料铺层板的损伤分析[J].复合材料学报,2006,23(2):150-157.
    [122] Hahn H T, Tsai S W.Nonlinear elastic behavior of unidirectional composite laminae[J].Journal of Cornposite Materials,1973,7(1):102-118
    [123] Shokrieh M M, Lessard L B.Effects of material nonlinearity on the three-dimensional stressstate of pin-loaded composite laminates[J]. Journal of Composite Materials,1996,30(7):839-861.
    [124]庄茁,由小川,廖剑辉,等.基于ABAQUS的有限元分析和应用[M].清华大学出版社,2009.
    [125]许金泉.界面力学[M].科学出版社,2006.
    [126] Balzani C., Wagner W. An interface element for the simulation of delamination inunidirectional fiber-reinforced composite laminates[J]. Engineering Fracture Mechanics.2008,75(9):2597-2615.
    [127] ABAQUS. ABAQUS6.8documentation [J]. Providence, RI: ABAQUS,2008.
    [128]王新峰.机织复合材料多尺度渐近损伤研究[D],南京:南京航空航天大学,2007.
    [129] NASA. Simplified composites micromechanics equations for strength, fracture toughness,impact resistance and environmental effects[C].29th Annual Conference of the Society ofthe Plastics Industry (SPI)..1984.
    [130] American Society for Testing and Materials. ASTM D5528-01Standard test method formode Ⅰ interlaminar fracture toughnessof unidirectional fiber-reinforced polymer matrixcomposites[S]. West Conshohocken: ASTM,2007.
    [131] Harper P W, Hallett S R. Cohesive zone length in numerical simulations of compositedelamination[J]. Engineering Fracture Mechanics,2008,75(16):4774-4792.
    [132] Bathias C, Laksimi A. Delamination threshold and loading effect in fiber glass epoxycomposite[J]. Delamination and Debonding of Materials, ASTM STP,1985,876:217-237.
    [133] Weatherby,J R. Evaluation of energy release rates in unidirectional double cantileveredbeam fracture specimens[D], Texas A&M University,1982.
    [134] Kanninen M F. An augmented double cantilever beam model for studying crack propagationand arrest[J]. International Journal of Fracture,1973,9(1):83-92.
    [135] Kanninen M F. A dynamic analysis of unstable crack propagation and arrest in the DCB testspecimen[J]. International Journal of Fracture,1974,10(3):415-430.
    [136] Williams J G. End corrections for orthotropic DCB specimens[J]. Composites Science andTechnology,1989,35(4):367-376.
    [137] Kondo K. Analysis of double cantilever beam specimen[J]. Advanced Composite Materials,1995,4(4):355-366.
    [138]Olsson R. A simplified improved beam analysis of the DCB specimen[J]. CompositesScience and Technology,1992,43(4):329-338.
    [139] Ozdil F, Carlsson L A. Beam analysis of angle-ply laminate DCB specimens[J]. CompositesScience and Technology,1999,59(2):305-315.
    [140] Shokrieh M M, Heidari-Rarani M, Ayatollahi M R. Calculation of GI for a multidirectionalcomposite double cantilever beam on two-parametric elastic foundation[J]. AerospaceScience and Technology,2011,15(7):534-543.
    [141] Pradeep K R, Nageswara R B, Srinivasan S M, et al. Interface fracture assessment onhoneycomb sandwich composite DCB specimens[J]. Engineering Fracture Mechanics,2012.93:108-118.
    [142] Stigh U. Damage and crack growth analysis of the double cantilever beam specimen[J].International Journal of Fracture,1988,37(1): R13-R18.
    [143] Williams J G, Hadavinia H. Analytical solutions for cohesive zone models[J]. Journal of theMechanics and Physics of Solids,2002,50(4):809-825.
    [144] de Morais A B. A new fibre bridging based analysis of the double cantilever beam (DCB)test[J]. Composites Part A: Applied Science and Manufacturing,2011,42(10):1361-1368.
    [145] Russell A J, Street K N. Factors affecting the interlaminar fracture energy of graphite/epoxylaminates[J]. Progress in science and Engineering of Composites,1982:279-286.
    [146] Carlsson L A, JW Gillespie J R, Pipes R B. On the analysis and design of the end notchedflexure (ENF) specimen for mode II testing[J]. Journal of Composite Materials,1986,20(6):594-604.
    [147] Whitney J M, Gillespie Jr J W, Carlsson L. Singularity approach to the analysis of the endnotch flexure specimen[C]. American Society for Composites Second TechnicalConference.1987:391-398.
    [148] Whitney J M. Analysis of interlaminar mode II bending specimens using a higher orderbeam theory[J]. Journal of Reinforced Plastics and Composites,1990,9(6):522-536.
    [149] Wang Y, Williams J G. Corrections for mode II fracture toughness specimens of compositesmaterials[J]. Composites Science and Technology,1992,43(3):251-256.
    [150] Chatterjee S N. Analysis of test specimens for interlaminar mode II fracture toughness, Part1. Elastic laminates[J]. Journal of Composite Materials,1991,25(5):470-493.
    [151] Corleto C R, Hogan H A. Energy release rates for the ENF specimen using a beam on anelastic foundation[J]. Journal of Composite Materials,1995,29(11):1420-1436.
    [152] Ozdil F, Carlsson L A, Davies P. Beam analysis of angle-ply laminate end-notched flexurespecimens[J]. Composites Science and Technology,1998,58(12):1929-1938.
    [153] Ding W, Kortschot M T. A simplified beam analysis of the end notched flexure mode IIdelamination specimen[J]. Composite Structures,1999,45(4):271-278.
    [154] Wang J, Qiao P. Novel beam analysis of end notched flexure specimen for mode-IIfracture[J]. Engineering Fracture Mechanics,2004,71(2):219-231.
    [155] De Morais A B. Novel cohesive beam model for the end-notched flexure (ENF) specimen[J].Engineering Fracture Mechanics,2011,78(17):3017-3029.
    [156] Raghu Prasad B K, Pavan Kumar D. Analysis of composite ENF specimen using higherorder beam theories[J]. Thin-Walled Structures,2008,46(6):676-688.
    [157]陈瑛,乔丕忠.4ENF黏聚解析模型分析[J].河海大学学报(自然科学版),2008,2(36):234-237.
    [158]沈观林.复合材料力学[M].清华大学出版社,2006.
    [159]黄席樾.现代智能算法理论及应用[M].科学出版社,2005.
    [160] Holland J H. Adaptation in natural and artificial systems: An introductory analysis withapplications to biology, control, and artificial intelligence[M]. U Michigan Press,1975.
    [161]王小平,曹立明.遗传算法:理论,应用及软件实现[M].西安交通大学出版社,2002.
    [162] Chaparro B M, Thuillier S, Menezes L F, et al. Material parameters identification:Gradient-based, genetic and hybrid optimization algorithms[J]. Computational MaterialsScience,2008,44(2):339-346.
    [163] Mu oz-Rojas P A, Cardoso E L, Vaz Jr M. Parameter identification of damage models usinggenetic algorithms[J]. Experimental Mechanics,2010,50(5):627-634.
    [164] Jankowiak T, Lodygowski T. Identification of parameters of concrete damage plasticityconstitutive model[J]. Foundations of civil and environmental engineering,2005,6:53-69.
    [165]伍乾坤,韩旭,胡德安.一种脆性材料动态本构损伤参数的计算反求方法[J].固体力学学报,2011,32(3):242-248.
    [166]刘军,李玉龙,石霄鹏,等.鸟体本构模型参数反演Ⅱ:模型参数反演研究[J].航空学报,2011,32(5):812-821.
    [167]李守巨.基于计算智能的岩土力学模型参数反演方法及其工程应用[J].岩石力学与工程学报,2004,24(2):343-343.
    [168]黄筑平.连续介质力学基础[M].高等教育出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700