用户名: 密码: 验证码:
用于乙醇水蒸气重整Co/CeO_2催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇重整制氢催化剂存在的核心问题是由于积碳等导致稳定性差,CeO_2具有储-释氧能力并可与活性组分产生相互作用,因此可以调节活性组分的化学状态和有利于积炭的氧化消除,从而提高催化剂的稳定性。本文研究新催化剂—Co/CeO_2催化剂,主要研究内容包括催化剂结构和催化性能以及制备方法—结构性能的关系,并对乙醇水蒸气重整制氢反应(SRE)积碳和载体效应进行了初步探讨。
     采用共沉淀法制备了Co/CeO_2催化剂,研究发现该系列催化剂中钴的主要存在形式包括小晶粒钴的氧化物、大晶粒Co3O4和进入CeO_2晶格的钴;制备条件中Co3O4含量、焙烧温度和老化时间影响钴在催化剂中的存在形式。结合催化剂性能测试结果可得,催化剂中高分散小晶粒钴的氧化物(还原所得的钴)是关键的活性组分。其中10%Co/CeO_2-C-650催化剂对SRE反应具有高活性、高选择性和较好的稳定性。
     采用浸渍法分别制备了Co/CeO_2和Co/CeXTi1-XO_2催化剂,与共沉淀法制备的催化剂相比,该系列催化剂产物中甲烷含量较高。载体中Ti的加入并不能改善催化剂性能,Ti可能和Ce或Co发生相互作用,从而削弱了Co和Ce的相互作用,导致催化剂性能下降。XRD结果显示浸渍法制备的Co/CeO_2催化剂主要物相是Co3O4和CeO_2,比较发现制备方法对催化剂中钴的化学状态有显著的影响。该系列催化剂中20%Co/CeO_2-I-650催化剂对SRE反应具有高活性和高选择性和较好的稳定性。
     考察了制备方法对Co /CeO_2催化剂结构、还原性能和催化性能的影响,证实了钴和CeO_2之间存在协同效应,CeO_2对CoOx的还原产生影响,被还原出的Co0是SRE反应的主要活性组分;制备方法的不同使得Co与载体间的相互作用不同,其中共沉淀制备的催化剂进入氧化铈晶格的钴较多,其表面的钴铈作用较弱,钴更容易被还原,因此具有较多的活性组分,使得该催化剂的活性和选择性较好,积碳程度较小,同时,二者结构上的差异导致沉积碳种类不同。
     利用共沉淀法制备的10%Co/CeO_2-C-650催化剂,考察了反应温度和反应时间对积碳的影响,结合DTA-TG热分析技术和SEM,初步探讨了SRE反应中积碳量和积碳种类的规律。
     探讨氧化铝作为SRE反应制氢催化剂载体的可行性,考察了载体Al2O3对催化剂性能及结构的影响。
Catalyst stability is a crucial problem for hydrogen production in steam reforming of ethanol (SRE), which can be caused by carbon deposition, metal sintering, and so on. CeO_2 has a good oxygen-storage capacity and tends to interact with active component. The presence of CeO_2 is benefit for carbon oxidation and adjusting chemical nature of active component. These would improve catalyst stability. In our work, new Co/CeO_2 catalysts for SRE were studied. The study included catalyst structure, catalytic performance and the relation of preparation method with structure and catalyst performance. Besides, the carbon deposition and the effect of support were also investigated on the Co/CeO_2 catalysts for SRE.
     The Co/CeO_2 catalysts were prepared by co-precipitation. The research indicates that cobalt exists in three forms including cobalt oxide with small crystal size, bulk Co3O4, and cobalt in CeO_2 lattice in these catalysts. Both the content of cobalt and calcination temperature affects the form of cobalt. Combining with activity test, metal cobalt reduced from high dispersion oxides of cobalt with small crystal size is crucial active component. The 10%Co/CeO_2-650 catalyst prepared by co-precipitation method shows high activity, selectivity and good stability.
     The Co/CeO_2 and Co/CeXTi1-XO_2 catalysts were prepared by impregnation method. They show higher selectivity towards methane than Co/CeO_2 prepared by co-precipitation method. It shows that the addition of Ti does not improve catalyst performance. Ti may interact with Ce or Co, and weaken the interaction between Co and Ce, so it results in the decrease of catalytic performance. In addition, XRD results show that only Co3O4 and CeO_2 phases can be observed in the Co/CeO_2 catalysts prepared by impregnation method. So the chemical nature of cobalt in the catalysts is affected obviously by preparation method. The 20%Co/CeO_2-I-650 catalyst prepared by impregnation method also shows good catalytic performance for SRE.
     The effect of preparation method on catalyst structure, reduction capability and catalytic performance was investigated. The results indicate that the synergistic effect exists between cobalt and CeO_2, which influences the reduction of CoOx. Co0 reduced from CoOx is key active component. The preparation method influences the interaction between cobalt and CeO_2. In comparison with catalysts prepared by impregnation, more Co ions enters into CeO_2 lattice, and results in weaker interaction between active phase and ceria on surface of Co3O4/CeO_2 prepared by co-precipitation. Thus, it is easier to reduce Co species to metal cobalt that is active for SRE. Meanwhile, the incorporation of Co ions into CeO_2 crystal lattice is beneficial for resistance to carbon deposition.
     The impact of reaction temperature and reaction time on carbon deposition was researched on 10%Co/CeO_2-650 catalyst with co-precipitation method. Combining with DTA-TG and SEM study, the discipline between the quantities of carbon deposition and carbon species was analyzed.
     The feasibility of Al2O3 as carrier for hydrogen production was investigated in SRE. Further, the effect of Al2O3 on catalyst structure and performance was studied.
引文
[1] B Sorensen, Hydrogen and fuel cells-emerging technologies and application, Elsevier Academic Press, 2004, 398~402
    [2] S Ashley, Scientific American, March 2005: 50~61 (或《科学美国人》的中文版,2005(5): 46)
    [3] R A Lemons, Fuel cell for transportation, Journal of Power Sources, 1990, 29(1): 251~264
    [4] S G Chalk, P G Pati1, S R Venkateswaran, The new generation of vehicles: market opportunities for fuel cells, Journal of Power Sources, 1996, 61(1): 7~13
    [5] K B Prater, Solid polymer fuel cell for transport and stationary applicatons, Journal of Power Sources, 1996, 61(1):105~109
    [6] C E Thomas, I F Kuhn, B D James, et al., Affordable hydrogen supply pathways for fuel cell vehicles, International Journal of Hydrogen Energy, 1998, 23(6): 507~516
    [7] C E Thomas, B D James, F D Lomax, Market penetration scenarios for fuel cell vehicles, International Journal of Hydrogen Energy, 1998, 23(10): 949~966
    [8] W Donitz, Fuell cells for mobile applications, status, requirements and future application potential, International Journal of Hydrogen Energy, 1998, 23 (7): 611~615
    [9] 中华人民共和国国务院,国家中长期科学和技术发展规划纲要(2006-2020年)
    [10] Available via the Internet at http://www.lnpower.com/
    [11] Available via the Internet at http://www.sl-power.com/
    [12] 衣宝廉,燃料电池现状与未来,电源技术,1998,22(5): 216~221
    [13] 李乃朝,衣宝廉,离子交换膜燃料电池汽车,电化学,1997,3(2):125~131
    [14] L Carrette, K A Feiedrich, U Stimming, Fuel cells-fundamentals and applications, Fuel Cells, 2001 (1): 5~39
    [15] 衣宝廉,质子交换膜燃料电池一国内外状况与主要技术问题,1997,21,(2): 80~85
    [16] 徐超,氢能将是主宰未来世界的主要能源,东方经济,2004(6):20~28
    [17] EERE, available via the Internet at http://www.eere.energy.gov/consumerinfo/factsheets/a109.html
    [18] M F Reyniers, C R H de Smet, P G Menon, et al., Catalytic Partial Oxidation: Part I. Catalytic Processes to Convert Methane: Partial or Total Oxidation, Cattech, 2002, 6(4): 140
    [19] H S Roh, K W Jun, S E Park, Methane-reforming reactions over Ni/Ce-ZrO2/θ-Al2O3 catalysts, Applied Catalysis A: General, 2003, 251(2): 275~283
    [20] C Song, Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century, Catalysis Today, 2002, 77 (1): 17~49
    [21] A F Ghenciu, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems, Current Opinion in Solid State and Materials Science, 2002, 6(5): 389~399
    [22] R Farrauto, S H wang, L Shore, et al., New Material Needs For Hydrocarbon Fuel Processing: Generating Hydrogen for the PEM Fuel Cell, Annual Review of Materials Research, 2003, 33(1):1~27
    [23] K B Prater, Solid polymer fuel cell development at Ballard, Journal of Power Sources, 1992, 37 (1-2): 181~188
    [24] 宋文生,李磊,王宇新,燃料电池汽车氢源,汽车工程,2003,25(4): 415~417
    [25] B Hohlein, S V Andrian, T Grube, et al., Critical assessment of power trains with fuel cell system and different fuels, Journal of Power Sources, 2000, 86 (1): 243~249
    [26] A J Appleby,燃料电池的未来——用于车辆的电化学发动机,科学(中译本) , 1999, 10: 32~39
    [27] K D Christopher,便携式电子产品的电池革命,科学(中译本) , 1999, 10: 45~49
    [28] 王艳辉, 王树东, 吴迪镛,PEMFC制氢技术现状,环境科学进展,1999,7(1): 73~77
    [29] A F Ghenciu, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems, Current Opinion in Solid State and Materials Science, 2002, 6(5): 389~399
    [30] J C Amphlett, K A M Creber, J M Davis, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells, International Journal of Hydrogen Energy, 1994, 19(2): 131~137 [ 31] T Ioannides, Thermodynamic analysis of ethanol processors forfuel cell applications, Journal of Power Sources, 2001, 92 (1): 17~25
    [32] S Freni, G Maggio, S Cavallaro, Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach, Journal of power sources, 1996, 62(1): 67~73
    [33] Maggiog, Frenis, Cavallaros, et al., Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study, Journal of Power Sources, 1998, 74(1): 17~23
    [34] F Mari?o, M Boveri, G Baronetti, et al., Hydrogen production via catalytic gasification of ethanol : A mechanism proposal over copper–nickel catalysts, International Journal of Hydrogen Energy, 2004, 29(1): 67~71 [ 35 ] S Fernando, M Hanna, Development of a Novel Biofuel Blend Using Ethanol-Biodiesel-Diesel Microemulsions: EB-Diesel, Energy & Fuels, 2004,18(6): 1695~1703
    [36] 亓爱笃,甲醇氧化重整制氢过程的研究,博士学位论文,中科院大连化学物理研究所,1999
    [37] E Y Garc?′a, M A Laborde, Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis, International Journal of Hydrogen Energy, 1991,16(5): 307~312
    [38] K Vasudeva, N Mitra, P Umasankar, et al., Steam reforming of ethanol for hydrogen production: Thermodynamic analysis, International Journal of Hydrogen Energy, 1996, 21(1): 13~18
    [39] S Cavallaro, V Chiodo, S Freni, et al., Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC, Applied Catalysis A:General, 2003, 249(1): 119~128
    [40] A Haryanto, Sandun Fernando, Naveen Murali, et al., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review, Energy & Fuels, 2005, 19(5): 2098~2106
    [41] G A Deluga, J R Salge, L D Schmidt, et al., Renewable Hydrogen from Ethanol by Autothermal Reforming, Scienci, 2004, 303: 993~997
    [42] J Llorca, P R de la Piscina, J Sales, et al., Production of Hydrogen from Ethanolic Aqueous Solutions over Oxide Catalysts, Chemical Communications, 2001, 7(3): 641~642
    [43] A N Fatsikostas, X E Verykios, Reaction Network of Steam Reforming of Ethanol over Ni-Based Catalysts, Journal of Catalysis, 2004, 225(1): 439~452
    [44] J P Breen, R Burch, Coleman H M, Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications, Applied Catalysis B: Environmental, 2002, 39(1): 65~74
    [45] K Dimitris, Liguras, I Dimitris, Kondarides, et al., Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Applied Catalysis B: Environmental, 2003, 43(1): 345~354
    [46] S Cavallaro, V Chiodo, V Vita, et al., Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst, Journal of Power Sources, 2003, 123(1): 10~16
    [47] S Cavallaro, Ethanol Steam Reforming on Rh/Al2O3 Catalysts, Energy & Fuels, 2000, 14(2): 1195~1199
    [48] C Diagne, H Idriss, A Kiennemann, Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts, Catalysis Communications, 2002, 3(12): 565~571
    [49] E C Wanat, K Venkataraman, L D Schmidt., Steam reforming and water–gas shift of ethanol on Rh and Rh–Ce catalysts in a catalytic wall reactor, Applied Catalysis A: General, 2004, 276(1-2): 155~162
    [50] V Fierro, O Akdim, H Provendier, C Mirodatos., Ethanol oxidative steam reforming over Ni-based catalysts, Journal of Power Sources, 2005,145(2): 659~666
    [51] F Aupretre, C Descorme, D Duprez, et al., Ethanol steam reforming over MgxNi1?xAl2O3 spinel oxide-supported Rh catalysts, Journal of Catalysis, 2005, 233(2): 464~477
    [52] C J Jiang, D L Trimm, M S Wainwright, Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst, Applied Catalysis A:General, 1993, 97(2): 145~158
    [53] T J Huang, S W Wang, Hydrogen production via partial oxidation of methanol over copper-zinc catalysts, Applied Catalysis, 1986, 24(1-2): 287~297
    [54] L A lejo, R Lago, M A Pena, et al., Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts, Applied Catalysis A, 1997, 162(1): 281~297
    [55] 席靖宇(Xi J Y), 王志飞(Wang Z F), 吕功煊(Lu G X), Cu/Zn,Cu/Zn/Ni 催化剂甲醇部分氧化制氢, 物理化学学报(Acta Physico-Chimica Sinica) , 2001, 17 (7) : 655~658
    [56] S Velu, N Satoh, C S Gopinath, et al., Oxidative Reforming of Bio-Ethanol Over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production, Catalysis Letters, 2002, 82 (1-2) 145~152
    [57] F Marino, M Boveri, G Baronetti, et al., Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts Effect of Ni, International Journal of Hydrogen Energy, 2001, 26(7): 665~668
    [58] F J Marino, E G Cerrella, S Duhalde, et al., Hydrogen from steam reforming of ethanol Characterization and performance of copper-nickel supported catalysts, International Journal of Hydrogen Energy, 1998, 23 (12): 1095~1101
    [59] C A Luenga, G Ciampi, M O Cencig, et al., A novel catalyst system for ethanol gasification, International Journal of Hydrogen Energy, 1992, 17 (9): 677~681
    [60] S Cavallaro, S Freni, Ethanol steam reforming in a molten carbonate fuel cell a preliminary kinetic inrestigation, International Journal of Hydrogen Energy, 1996, 21(6): 465~469
    [61] J Comas, F Mari?o, M Laborde,et al., Bio-ethanol steam reforming on Ni/Al2O3 catalyst, Chemical Engineering Journal, 2004, 98(1): 61~68
    [62] S Freni, S Cavallaro, N Mondello, et al., Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC, Journal of Power Sources, 2002, 108(1): 53~57
    [63] F Frusteri, S Freni, V Chiodo, et al., Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC, Journal of Power Sources , 2004, 132(1) : 139~144
    [64] D Srinivas, C V V Satyanarayana, H S Potdar, et al., Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol, Applied Catalysis A: General , 2003 , 246(2) : 323~334
    [65] J Sun, XP Qiu, F Wu, et al., H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application, International Journal of Hydrogen Energy, 2005, 30 (4): 437~445
    [66] A N Fatsikostas, D I Kondarides, X E Verykios, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol, Catalysis Today, 2002,75 (1): 145~155
    [67] J Sun, F Wu, X P Qiu, et al., Hydrogen production from ethanol steam reforming over Ni/Al2O3 and Ni/La2O3 catalysts at low temperature, Chinese Journal of Catalysis, 2004, 25 (7): 551~555
    [68] A Therdthianwong, T Sakulkoakiet, S Therdthianwong, Hydrogen Production by Catalytic Ethanol Steam Reforming, Science Asia, 2001,27(3): 193~198
    [69] N A Fatsikostas, X E Verykios, Reaction network of steam reforming of ethanol over Ni-based catalysts , Journal of Catalysis, 2004, 225(2): 439~452
    [70] A N Fatsikostas, D I Kondarides, X E Verykios, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol, Catalysis Today, 2002, 75(1-4): 145~155
    [71] V Klouz, V Fierro, P Denton, et al., Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimization, Journal of Power Sources, 2002, 105(1): 26~34
    [72] F Frusteri, S Freni, V Chiodo, et al., Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell, Applied Catalysis A:General, 2004, 270(1-2): 1~7
    [73] F Haga, Nakajima, Yamashita, et al., Catalytic Properties of Supported Transition Metal Catalysts for Conversion of Ethanol in the Presence of Water Vapor, [J] Nippon Kagaku Kaishi, 1997, 1: 33~36
    [74] F Haga, Nakajima, Miyah, et al., Catalytic atalytic properties of supported cobalt catalysts for steam reforming of ethanol, Catalysis Letters, 1997, 48(3-4): 223~227
    [75] F Haga, Nakajima, Yamashita, et al., Effect of Particle Size on Steam Reforming of Ethanol over Alumina-Supported Cobalt Catalyst, [J] Nippon Kagaku Kaishi, 1997, 11:758~762
    [76] F Haga, T Nakajima, K Yamashita, et al., Effect of crystallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethano, [J] Reaction Kinetics and Catalysis Letters, 1998, 63(2): 253~259
    [77] C Ngamcharussrivichai, X H Liu, X H Li, An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based catalysts, available online at www.sciencedirect.com, fuel , 2006, 1~10
    [78] S M Batista, R K S Santos, E M Assaf, Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol, Journal of Power Sources, 2003, 124(1):99~103
    [79] M S Batista, R K S Santos, E M Assaf, High efficiency steam reforming of ethanol by cobalt-based catalysts, Journal of Power Sources, 2004, 134 (1): 27~32
    [80] J Llorca, N Homs, J Sales, et al., Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming, Journal of Catalysis, 2002, 209(1): 306~317
    [81] J Llorca, N Homs, J Sales, et al., Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol, Journal of Catalysis, 2004, 222(1):470~480
    [82] J Llorca, N Homs, P R de la Piscina, In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts, Journal of Catalysis, 2004, 227(1): 556~560
    [83] J M Guil, N Homs, J Llorca, et al., Microcalorimetric and Infrared Studies of Ethanol and Acetaldehyde Adsorption to Investigate the Ethanol Steam Reforming on Supported Cobalt Catalysts, Journal of Physical Chemistry B, 2005,109(21): 10813~10819
    [84] I Fishtik, A Alexander, R Datta, A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions, International Journal of Hydrogen Energy, 2000, 25 (1) : 31~45
    [85] P Y Sheng, H Idriss, Ethanol Reactions over Au-Rh/CeO2 Catalysts, total Decomposition and H2 Formation, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 2004, 22 (4): 1652~1658
    [86] S Zhao; T Luo; R J Gorte, Deactivation of the Water-Gas-Shift Activity of Pd/Ceria by Mo, Journal of Catalysis, 2004, 221(2): 413~420.
    [87] A Y ee, J Morrisons, Idrissh, A Study of the Reactions of Ethanol on CeO2 and Pd/CeO2 by Steady State Reactions, Temperature Programmed Desorption, and In Situ FT-IR, Journal of Catalysis, 1999, 186(2): 279~295
    [88] A Yee, J Morrisons, Idrissh, A Study of Ethanol Reactions over Pt/CeO2 by Temperature-Programmed Desorption and in Situ FT-IR Spectroscopy: Evidence of Benzene Formation, Journal of Catalysis, 2000, 191(1): 30~45
    [89] A Yee, Morrisons J, Idrissh, The reactions of ethanol over M/CeO2 catalysts: Evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2, Catalysis Today, 2000, 63(2-4): 327~335
    [90] I Fishtik, A A Lexander, R Datta, et al., A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions, International Journal of Hydrogen Energy, 2000, 25 (1): 31~45
    [91] C A Luenga , I G Ciamp, M O Cencig, et al., A novel catalyst system for ethanol gasification, International Journal of Hydrogen Energy, 1992, 17 (9) : 677~681
    [92] S Freni, G Maggio, Energy Balance Of DifferentI Internal Reforming MCFC Configurations, International Journal of Energy Research, 1997, 21(3): 253~264
    [93] G Maggio, S Freni, S Cavallaro, Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study, Journal of Power Sources, 1998, 74(1): 17~23
    [94] A Lessandro, T Design, better cerium-based Oxidation catalysts, Chemtech, 1997, 6(1): 32~37
    [95] 王建新等,汽车排气污染质量及催化转化器,北京,化学工业出版社,2000, 105~106,
    [96] M M Schubert, M J Kahlich, H A Gasteiger, et al., Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study, Journal of Power Sources, 1999, 84 (2): 175~182
    [97] P V Snytnikov, V A Sobyanin, V D Belyaev, et al., Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts, Applied Catalysis A:General, 2003, 239 (1-2): 149~156
    [98] Y Liu, Q Fu, Maria Flytzani-Stephanopoulos, Preferential Oxidation of CO in H2 Over Cu-CeO2 Catalysts (prepared by urea-gellation), Catalysis Today, 2004, 93-95: 241~246
    [99] Y Liu, X Y Wang, X Bai, Preferential Oxidation of CO in H2 over CuO/CeO2 Catalysts (prepared by adsorption-impregnation), Journal of Rare Earths, 2005, 23(1): 41~47
    [100] L F Liotta, G D Carlo, G Pantaleo, et al.,Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity, Catalysis Communications, 2005, 6(5): 329~336
    [101] M Kang, M W Song, C H Lee, Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts, Applied Catalysis A:General, 2003, 251(1): 143~156
    [102] L Spadaro, F Arenaa, M L Granados, et al., Metal–support interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction, Journal of Catalysis, 2005, 234(2): 451~162
    [103] M Kraum, M Baerns, Fischer–Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance, Applied Catalysis A: General, 1999, 186(1-2): 189~200
    [104] M M Natile, A Glisenti, CoOx/CeO2 Nanocomposite Powders: Synthesis, Characterization, and Reactivity, Chemistry of Materials, 2005, 17(13): 3403~3414
    [105] T Nishiguchi, T Matsumoto, H Kanai, et al., Catalytic steam reforming of ethanol to produce hydrogen and acetone, Applied Catalysis A:General, 2005, 279(1-2): 273~277
    [106] J C Vargas, F Sternenberg, A C Roger, et al., Steam Reforming of Bioethanol on Co°/Ce-Zr-Co and Co°/Ce-ZrCatalysts: A Comparison Between Cobalt Integration and Cobalt Impregnation,Presented in the Technical Program, Pisa Italy, 2004, (5):16~19
    [107] P Arnoldy, J A Moulijin, Temperature-programmed reduction of CoO/Al2O3 catalysts, Journal of Catalysis, 1985, 93(1): 38~54 [ 108 ] B Viswanathan, R Gopalakrishnan, Effect of support and promoter in Fischer-Tropsch cobalt catalysts, Journal of Catalysis, 1986, 99(2): 342~348
    [109] G. Jacobs, T K Das, Y Zhang, et al., Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Applied Catalysis A: 2002, 233(1-2): 263~281 [ 110 ] H F J van't Blik, R Prins, Characterization of supported cobalt and cobalt-rhodium catalysts: 1. Temperature-programmed reduction (TPR) and oxidation (TPO) of Co---Rh/Al2O3, Journal of catalysis, 1986, 97(1): 188~199
    [111] J H A Martens, H F J van’t Blik, R Prins, characterization of supported cobalt and cobalt-Rhodium catalysts, 2. Temperature-programmed reduction (TPR) and oxidation (TPO) of Co/TiO2 and Co-Rh/Ti2O3, Journal of catalysis, 1986, 97(1): 200~209
    [112] H F J van’t Blik, D C K oningsberger, R Prins, characterization of supported cobalt and cobalt-Rhodium catalysts, 3. Temperature-programmed reduction (TPR) and oxidation (TPO), and EXAFS of Co-Rh/SiO2, Journal of catalysis, 1986, 97(1): 210~218
    [113] B A Sexton, A E Hughes, T W Turney, An XPS and TPR study of the reduction of promoted Cobalt-Kieselguhr Fischer-Tropoch catalysts, Journal of Catalysis, 1986, 97(2): 390~406
    [114] J Llorca , J-A Dalmon, Pilar Ram′?rez de la Piscina, In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol, Applied Catalysis A: General, 2003, 243 (2): 261~269
    [115] B C Zhang, Y Li, W L Cai, et al., Steam reforming of ethanol over Ni-Cu/CeO2 catalyst, Chinese Journal of catalysis, 2006, 27(7): 567~572
    [116] G Jacobs, T K Das, Y Zhang, et al., Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Applied Catalysis A: General, 2002, 233(1-2): 263~281
    [117] B Ernst, L Hilaire, A Kiennemann, Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer–Tropsch catalyst, Catalysis Today, 1999, 50(2): 413~427
    [118] H Wang, J L Ye, Y Liu, et al., Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different method, catalysis today, (accepted)
    [119] J Rynkowski, J Farbotko, R Touroude, Redox behaviour of ceria–titania mixed oxides, Applied Catalysis A: General, 2000, 203 (1): 335~348
    [120] B M Reddy, A Khan, Nanosized CeO2–SiO2, CeO2–TiO2, and CeO2–ZrO2 mixed oxides: influence of supporting oxide on thermal stability and oxygen storage properties of ceria, Catalysis Surveys from Asia, 2005, 9( 3): 155~171
    [121] J Llorca, N Homs, J Sales, et al., Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol, Journal of Catalysis, 2004, 222 (1): 470~480
    [122] W Shan, W Shen, C Li, Reduction property and catalytic activity of Ce1?XNiXO2 mixed oxide catalysts for CH4 oxidation, Appllied Catalysis A:Genernal, 2003, 246(1): 1~9 [ 123 ] J Llorca, P Piscina, J-A Dalmon, et al., CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor, Applied Catalysis B: Environmental, 2003, 43(4): 355~369
    [124] J A C Dias, J M Assaf, The advantage of air addition on the methane steam reforming over Ni / γ-Al2O3, Jounud of Power Soroces, 2004, 137(1/2): 264~268
    [125] B Ernst, L Hilaire, A Kiennemann, Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer–Tropsch catalyst, Catalysis Today, 1999, 50(2): 413~427
    [126] L Spadaro, F Arena, M L Granadosc, et al., Metal–support interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction, Journal of Catalysis, 2005, 234(2): 451~462
    [127] 黎先财,陈娟荣,赖志华,等,不同载体对镍基催化剂的XPS影响,2006,27(1): 8~10
    [128] 王广建 , 秦永宁, 马 智,等,含氧预硫化掺杂Cu-LaCoO3催化剂上CO还原SO2催化反应研究,无机化学学报,2006,22(3): 571~576
    [129] G Jacobs, T K Das, Y Zhang, et al., Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Applied Catalysis A: General, 2002, 233(1-2): 263~281 [ 130 ] B Viswanathan, R Gopalakrishnan, Effect of support and promoter in Fischer-Tropsch cobalt catalysts, Journal of Catalysis, 1986, 99(2): 342~348
    [131] D Terribile, A Trovarelli, C Leitenburg, et al., Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria–zirconia solid solutions, Catalysis Today, 1999, 47(1-4): 133~140
    [132] J Kaspar, P Fornasiero, M Graziani, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, 1999, 50(2): 285~298 [133 ] L F Liotta, G Di Carlo, G Pantaleo, et al., Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity, Catalysis Commununications, 2005, 6 (5): 329~336
    [134] S Cavallaro, N Mondello, S Freni, Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell , Journal of Power Sources, 2001, 102(1-2): 198~204
    [135] V A Tsipouriari,A M Ettathiou,Z L zhang,et al., Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts, Catalysis today, 1994, 21(2-3): 579~587
    [136] M A Goala, A A Lemonidou,A M Ettathiou , Characterization of Carbonaceous Species Formed during Reforming of CH4with CO2 over Ni/CaO–Al2O3Catalysts Studied by Various Transient Techniques, Journal of Catalysis, 1996, 161(2): 626~640
    [137] B Ernst, L Hilai, A Kiennemann, Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer–Tropsch catalyst , Catalysis Today, 1999, 50(2): 413~427
    [138] B C Zhang, X L Tang, Y Li, W J Cai, Y D Xu, W J Shen, Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts, Catalysis Communications, 2006, 7(6): 367~372
    [139] 孙泉,李文英,谢克昌,燃料化学学报,甲烷/二氧化碳重整反应催化剂的制备及反应性能研究,1996,24(3):219~224
    [140] 刘红梅, 申文杰, 包信和,Co助剂对甲烷脱氢芳构化反应中Mo/MCM-22催化剂积碳行为的影响,催化学报,2004,25(6):495~500
    [141] F Solymosi, A Szoeke, Cserenyi , Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts, Journal Catalysis Letters, 1996, 39(3-4): 157~161
    [142] A Szoeke, F Solymosi, Selective oxidation of methane to benzene over K2MoO4/ZSM-5 catalysts , Applied Catalysis A:General, 1996, 142(2): 361~374
    [143] J M Assaf , E A Ticianelli,High efficiency steam reforming of ethanol by cobalt-based catalysts,Journal of Power Sources , 2004, 134 (1): 27~32
    [144] J Llorca, N Homs, J Sales, et al., Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming, Journal of Catalysis , 2002, 209(1): 306~317
    [145] J Llorca, R P de la Piscina, J Sales, et al., Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts, Chemical Communications, 2001, (7): 641~642
    [146] 杨重愚,氧化铝生产工艺学,北京:冶金工业出版社,1993,16
    [147] A Kogelbauer, J G Goodwin, R Joukaci , Ruthenium promotion of Co/Al203 F-T catalysts, Journal of Catalysis,1996,160(1): 125~133
    [148] E V Steen, G S Sewell, R A Makhothe, et al., TPR study on the preparation of impregnated Co/SiO2 Catalysts, Journal of Catalysis, 1996, 162(2): 220~229
    [149] 陈建刚,相宏伟,王秀芝,等,锆助剂含量对钴基费一托合成催化剂的影响,催化学报,2000,21 (4):359~362
    [150] Y L Zhang, D G Wei, S Hammache, et al., Effect of water vapor on the reduction of Ru-promoted Co/A12O3, Journal of catalysis, 1999, 188(2): 281~290
    [151] 梁新义,张黎明, 秦永宁,等,超声促进浸渍法制备催化剂LaCoO3/γ-Al2O3,物理化学学报,Acta Physico-Chimica Sinica, 2003,19(7):666~669
    [152] 安琴,冯长根,曾庆轩,等,陶瓷蜂窝载体γ—Al2O3涂层研究进展,化学通报,2001,64(3):135~140
    [153] R Oukaci, A H Singleton, J G Goodwin, Comparison of patented Co F –T catalysts using fixed-bed and slurry bubble column reactors, Appled Catalysis A, 1999, 186(1): 129~144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700