用户名: 密码: 验证码:
溶氧水平对黄颡鱼生长、代谢及氧化应激的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以黄颡鱼(Pelteobagrus fulvidraco Richardson)为研究对象,采用实验生态和生理学方法,在室内可控条件下,研究了溶氧水平黄颡鱼生长、呼吸代谢、能量代谢及氧化应激的影响。本研究包括三部分,第一部分测定黄颡鱼的瞬时耗氧率与窒息点;第二部分研究溶氧水平对黄颡鱼稚鱼生长及呼吸代谢的影响;第三部分研究溶氧水平对黄颡鱼生长、能量收支及氧化应激的影响。其主要研究结果如下:1.黄颡鱼瞬时耗氧率与窒息点的研究
     在28±0.5℃下,用封闭静水式装置测定了黄颡鱼的瞬时耗氧率和窒息点,其体长(BL)为1.90~11.03 cm,体重(BW)为0.17~22.99 g。结果表明:在该规格范围内,窒息点(Sp)范围为0.33~0.60 mg/L,瞬时耗氧率(IRO2)范围为0.0119~0.2081 mg/g·h。Sp和IRO2随规格增加而降低,二者与BL、BW的幂函数方程分别为:Sp=0.7795BL-3695(R2=0.9619)、Sp=0.4897BW-0.1323(R2=0.9656),IRO2=0.7290BL-0·5709(R2=0.9580)、IRO2=0.3549BW-0.2036(R2=0.9539);IRO2随水中溶解氧(DO)的下降相应地下降,二者之间存在明显的线性关系。可见,黄颡鱼是低窒息点鱼类,其呼吸类型可归属于顺应型。
     在28±0.5℃循环水环境中设置四种溶氧组,分别为低溶氧组(G1,2.92mg/L)、中低溶氧组(G2,4.71mg/L)、饱和溶氧组(G3,6.77mg/L)、过饱和溶氧组(G4,9.68mg/L),研究初始体重为(1.62±0.02)g的黄颡鱼稚鱼的生长、摄食及呼吸代谢规律。结果显示:G3组特定生长率(SGR)、饲料转化效率(FCE)均显著高于其它各试验组(P<0.05)。试验鱼的耗氧率、排氨率与溶氧水平无正相关性,G3组的耗氧率、排氨率始终显著高于其它三组。摄食后1~4h内耗氧率和排氨率均呈现迅速上升,到达最大值后再缓慢下降,二者均在09:00和21:00出现高峰,G3组的耗氧率高峰值分别为0.345 mg/g·h、0.331 mg/g·h,G3组的排氨率高峰值分别为24.194μg/g·h、17.77μg/g·h。上述结果表明,不同溶氧条件下,黄颡鱼稚鱼的耗氧率、排氨率变化过程具有类似的特征,二者在能量代谢机制上相互关联;在饱和溶氧条件下,黄颡鱼稚鱼生长最快、呼吸代谢最为旺盛。
     研究了溶氧水平对黄颡鱼生长、饲料利用、氮代谢及氧化应激的影响。试验设计4个溶氧组(DO),分别为低溶氧组(D1,2.28 mg/L)、中低溶氧组(D2,4.04 mg/L)、饱和溶氧组(D3,6.51 mg/L)、过饱和溶氧组(D4,9.11 mg/L),每组3个重复。试验在循环水养殖系统持续8周,试验期间水温28℃。结果表明,当DO上升至6.51mg/L时,特定生长率(SGRw)、摄食率(FR)显著升高(P<0.05);在2.28~9.11mg/L DO范围内,各试验组的FCEd、FCEe、ADCd、ADCe表现出随着DO水平的升高而升高,但D4组与D5组差异不显著(P>0.05);摄食能(C)、生长能(G)在D3组最高,分别为434.39J/g·d、77.89 J/g·d,在D4组又有所下降;呼吸代谢能(R)的变化趋势与C、G相似。肝脏和血清中丙二醛(MDA)的含量在D3组最低;肝脏中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性在D3组最高,谷胱甘肽过氧化物酶(GSH-PX)活性在各组间无显著性差异;血清中SOD、GSH-PX、CAT活性在D3组均显著最高。试验表明,饱和溶氧条件对黄颡鱼的生长代谢、氮代谢以及抗氧化物酶活性具有显著促进作用。
The present study was conducted to investigate the effects of dissolved oxygen on the growth, metabolism and oxidative stress of yellow catfish with the method of experimental ecology and physiology under indoor controlled condition. This study consists of three parts, the first part investigated instantaneous oxygen consumption rate and suffocation point of yellow catfish; the second part investigated effects of dissolved oxygen on feed intake, growth and respiratory metabolism of juvenile yellow catfish; the third part investigated effects of dissolved oxygen on the growth, energy budget and oxidative stress of yellow catfish. Its main findings as fellows:
     In this experiment, instantaneous oxygen consumption rate (IRO2) and suffocation point (Sp) of yellow catfish (BL:1.90~11.03 cm, BW:0.17~22.99 g) were investigated by means of sealed-still water at 28±0.5℃. The results showed that the range of Sp and IRO2 was 0.33~0.60 mg/L and 0.0119~0.2081 mg/g·h. Both Sp and IRO2 of yellow catfish decreased with size increasing, and the power function between Sp and size, and IRO2 and size can be described as Sp=0.7795L-0.3695(R2= 0.9619), Sp=0.4897W-0.1323 (R2=0.9656) and IRO2=0.7284L-0.5709 (R2=0.9580), IRO2= 0.3549W -0.2036(R2= 0.9539), respectively. IRO2 of yellow catfish decreased with decreasing dissolved oxygen (DO) and there were linear correlations between IRO2 and DO. This study suggests that yellow catfish has low suffocation point and its breath relegates to compliant style.
     A 6-week feeding experiment was conducted to investigate the effects of dissolved oxygen (DO) levels on feed intake, growth and respiratory metabolism of juvenile yellow catfish (initial weight:1.62±0.02 g per fish) reared in 300-L indoor flow-through circular fiberglass tanks in 28±0.5℃. Four DO levels were hypoxia (G1,2.92 mg/L), moderate hypoxia (G2,4.71 mg/L), saturation (G3,6.77 mg/L) and super-saturation (G4,9.68 mg/L), respectively. The results showed that specific growth rate and feed conversion efficiency were significantly higher in the normoxic group (G3) than in the other groups (P< 0.05). The oxygen consumption and ammonia excretion rate of experimental fish had no direct correlation with dissolved oxygen, which was significantly higher in the saturation than in the hypoxia and super-saturation. The experiment showed that after the tested fish ate its food in 4 hours the both rates increased drastically at 09:00 and 21:00, and reached their maximum levels, then decreased slowly towards to their nomal levels. The highest oxygen consumption rate were 0.345 mg/g·h and 0.331 mg/g·h and ammonia excretion rate were 24.194μg/g·h and 17.770μg/g·h in the saturated group (G3). This study suggests that response in the rate of ammonia excretion in juvenile yellow catfish should be relative closely to response in the oxygen consumption and saturation was considered to be highest for growth and respiratory metabolism.
     A 8-weeks feeding experiment was conducted to investigate the effects of dissolved oxygen levels (DO) on growth performance, feed utilization, nitrogen metabolism and oxidative stress of yellow catfish. Four dissolved oxygen levels were formulated. Experimental fish were reared at oxygen levels of hypoxia (D1,2.28 mg/L), moderate hypoxia (D2,4.04 mg/L), saturation (D3,6.51 mg/L) and super-saturation (D4,9.11 mg/L). During the experiment, the experimental fish was reared in re-circulating system and water temperature was 28℃. The results showed that the specific growth rate in wet weight (SGRw) and feeding rate (FR) increased significantly, when DO be above 6.51 mg/L. Feed conversion efficiency of dry weight (FCEd) and energy (FCEe), apparent digestibility coefficient of dry matter (ADCd) and gross energy (ADCe) increased with the increasing with DO increment within the range of 2.28~9.11mg/L, but no significant difference was found among D3 and D4 groups (P>0.05). The highest gross energy intake (C) and growth energy (G) were 434.39 J/g·d and 77.89 J/g·d in the D3 group, then decreased slowly in D4 group. The general direction in the value of energy of respiratory metabolism (R) was similar closely to C and G. The contents of malondialdehyde (MDA) in liver and serum were the lowest in the D3 group. Activities of superoxide dismutase (SOD) and catalase (CAT) were the highest and activities of glutathione peroxidase (GSH-PX) were no significantly affected in the liver of yellow catfish exposed to 6.51 mg/L DO. Activities of SOD、GSH-PX、CAT in the serum were the highest in the D3 group. The results indicated that metabolism of growth and nitrogen and activities of the antioxidant defense were promoted in yellow catfish exposed to saturated DO level.
引文
1. 陈锦云,陈玉翠.饥饿状态下瓦氏黄颡鱼氨氮排泄及鱼体生化组成变化.安徽农业大学学报,2006,33(1):81-83
    2. 陈琴,黄钧,唐章生,冯鹏菲,欧阳贤华,罗仁生.小口脂鲤鱼种耗氧率与窒息点的初步测定.淡水渔业,2000,30(11):44-46
    3. 陈松波, 陈伟兴,范兆廷.鱼类呼吸代谢研究进展.水生态学杂志,2004,17(1):84-88
    4. 陈苏维,朱文东.影响鱼类免疫防御能力的环境胁迫因素及机制.湖北农业科学,2007,46(6):987-989
    5. 陈孝煊,吴志新,吴青,熊波.澳大利亚红赘赘虾耗氧率和窒息点的研究.华中农业大学学报,1996,15(3):270-274
    6.崔奕波,王少梅,陈少莲.饥饿状态下草鱼的代谢率和氮排泄率及其与体重的关系.水生生物学学报,1993,17(4):375-376
    7.戴庆年,张其永,黄兰芳.大弹涂鱼耗氧率研究.海洋学报,1996,18(1):130-133
    8. 刁晓明,苏胜齐,李华,周洪高,樊声容.岩原鲤耗氧率和窒息点研究.西南农业大学学报,1994,16(3):208-211
    9.董晓煜,张秀梅,张沛东.溶解氧与养殖密度对褐牙鲆幼鱼血细胞数量和血红蛋白含量的影响.海洋水产研究,2008,29(6):40-46
    10.杜金瑞.梁子湖黄颡鱼的繁殖和食性研究.动物学杂志,1963,12(2):74-77
    11.范德朋,潘鲁青,马生.温度对缢蛏(Sinonovacula constricta)耗氧率和排氨率的影响.青岛海洋大学学报,2002,32(1):56-62
    12.范镇明,赵新红,钱龙.河鲈鱼苗耗氧率和窒息点的测定.水生态学杂志,2009,30(4):129-132
    13.房文红,王慧,来琦芳,李国保.斑节对虾鳃Na+-K+-ATPase的活性.上海水产大学学报,2001,10(2):140-144
    14.郭春雨,管越强,刘波兰.温度、pH和盐度对克氏原螯虾鳃Na+-K+-ATPase活性的影响.动物学杂志,2007,42(6):96-102.
    15.胡成钰,洪一江,王军花,余志坚,林光华.植物血凝素对兴国红鲤头肾和脾 脏的比较组织学研究.水生生物学报,2002,26(5):489-493
    16.黄玉瑶.鲤鱼、白鲢、鳊鱼的鱼苗、鱼种耗氧量的研究.动物学报,1975,21(1):78-88
    17.李爱华.拥挤胁迫对草鱼皮质醇、血糖及肝脏中抗坏血酸含量的影响.水生生物学报,1997,21(4):384-386
    18.李治,谢小军,曹振.摄食对南方鲇耗氧和氨氮排泄的影响.2005,29(3):247-252
    19.廖勋波,张明.鄱阳湖黄颡鱼耗氧率与窒息点的研究.中国饲料,2008,3:39-40
    20.廖志洪,林小涛,王春,邱炜韬.黄颡鱼仔、稚、幼鱼耗氧率及氨氮排泄率的初步研究.生态科学,2004,23(3):223-226
    21.林仕梅,罗莉,叶元士,许忠能,金文伟.嘉陵江黄颡鱼养殖研究.西南农业大学学报,2000,22(1):68-70
    22.柳敏海,罗海忠,陈波,彭志兰,傅荣兵.铜、镉对鲵鱼幼鱼鳃丝Na+-K+-ATPase和肝脏SOD酶活性的影响.安全与环境学报,2007,7(4):5-8
    23.卢迈新,肖学铮,吴锐全,谢骏,黄樟翰.不同生长状况下日本鳗鲡耗氧率的初步测定.中国水产科学,1999,6(2):120-121
    24.罗相忠,邹桂伟,潘光碧.大口鳅耗氧率与窒息点的初步研究.淡水渔业,1997,27(3):21-22
    25.罗玉双,夏维福,刘良国,韩庆,王文彬,李文健.黄颡鱼人工繁殖及鱼苗培育试验.水产科学,2001,20(6):15-17
    26.聂品.鱼类非特异性免疫研究的新进展.水产学报,1997,21(1):69-73
    27.钱周兴,方一峰.特殊动力作用在海洋生物中的研究进展.海洋学研究,2005,23(3):30-35
    28.乔慧,黄成,王喆,潘建林.不同饲料对黄颡鱼消化酶活性的影响.淡水渔业,2007,37(1):58-61
    29.史春路,刘小玲,葛海燕.皮质醇对黄颡鱼腹腔炎性吞噬细胞的影响.华中农业大学学报,2008,27(3):405-408
    30.宋苏祥,刘洪柏,孙大江,范兆廷.史氏鲟稚鱼的耗氧率和窒息点.中国水产科学,1997,4(5):100-103
    31.唐贤明,田景波,潘鲁青,梁友.大菱鲆正常代谢水平及节律性的研究.海洋 水产研究,2003,24(4):7-12
    32.王芳,董双林,李德尚.菲律宾蛤仔和栉孔扇贝的呼吸与排泄的研究.水产学报,1997,21(3):252-257
    33.王丽华,黄国强,田思娟,张国政,韦柳枝,张秀梅.盐度对褐牙鲆幼鱼生长的影响及其在盐度胁迫后的补偿生长.中国水产科学,2008,15(4):615-621
    34.王卫民.黄颡鱼的规模人工繁殖试验.水产科学,1999,18(3):9-12
    35.王文博,李爱华.环境胁迫对鱼类免疫系统影响的研究概况.水产学报,2002,26(4):368-374
    36.王文辉,王吉桥,程鑫,柳圭泽,李文宽,骆小年,李敬伟.不同剂型维生素C对黄颡鱼生长和几种免疫指标的影响.中国水产科学,2006,13(6):951-958
    37.王武,王峰,张东升.江黄颡鱼瞬时耗氧率和窒息点的研究.水产科技情报,2003,30(3):99-102
    38.王昭明,吴凡修,沈希顺.虹鳟鱼养殖.北京:中国农业出版社,2004
    39.吴垠,张洪,赵慧慧,李韬.在循环养殖系统中不同溶氧量对虹鳟幼鱼代谢水平的影响.上海水产大学学报,2007,16(5):437-442
    40.谢刚,许淑英,祁宝杏,叶星.卷口鱼耗氧率规律的研究.大连水产学院学报,2002,17(2):89-94
    41.谢小军,孙儒泳.影响鱼类代谢的主要生态因素的研究进展.西南师范大学学报,1989,14(4):141-149.
    42.闫茂仓,单乐州,邵鑫斌,胡利华,柴雪良;林志华.盐度和pH值对鲵鱼幼鱼耗氧率和氨氮排泄率的影响.台湾海峡,2007,26(1):85-91
    43.杨春,李达,徐光龙,张力.鄱阳湖鳜鱼窒息点与耗氧率的初步研究.江西农业学报,1998,10(4):96-98
    44.杨家云.嘉陵江瓦氏黄颡鱼的繁殖生物学.西南师范大学学报,1994,19(6):639-645
    45.叶奕佐.鱼苗、鱼种耗氧率、能需量、窒息点及其呼吸系数的初步报告.动物学报,1959,11(2):117-135
    46.殷名称.鱼类生态学.北京:中国农业出版社,1995,91-97
    47.尹洪滨,马波.黑龙江野鲤肌肉营养成分分析.水产学杂志,1999,12(2):65-68
    48.余宁,陆金平,周刚.黄颡鱼生长特性与食性研究.水产养殖,1996,3:19-20
    49.张国强,骆小华,李勃.黄颡鱼人工繁殖关键技术研究.大连水产学院学报,2000,15(4):293-299
    50.张庆舒,王英.大黄鱼鱼苗耗氧率和窒息点的研究.经济动物学报,2007,11(3):150-153
    51.张永安,孙宝剑,聂品.鱼类免疫组织和细胞的研究概况.水生生物学报,2000,24(6):648-654
    52.章晓炜,汪雯翰,郑聪.黄颡鱼仔鱼食性及生长研究.水产科学,2002,21(3):13-15
    53.赵峰,庄平,章龙珍,黄晓荣,田宏杰,张涛,冯广朋.盐度驯化对史氏鲟鳃Na+-K+-ATPase酶活力、血清渗透压及离子浓度的影响.水产学报,2006,30(4):444-449
    54.朱爱意,赵向炯,付俊.褐菖鲇耗氧率及窒息点的初步研究.海洋水产研究,2007,28(1):95-100
    55. Adelman I R, Smith L L. Effect of oxygen on growth and food conversion efficiency of northern pike. Prog Fish Cult,1970,32(2):93-96
    56. Affonso E G, Polez V L, Correa C F, Mazon M R R, Moraes G, Rantin F T. Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comp Biochem Physiol Part C,2002,133:375-382
    57. Ansaldo M, Luquet C M, Evelson P A, Polo J M, Llesuy S. Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks. Polar Biol,2000,23:160-165
    58. AOAC. Association of Official Analytical Chemists In:Williams S (Eds), Official Methods of Analysis.14th ed. Washington,1984,152-163
    59. Bagnyukova T V, Storey K B, Lushchaka V I. Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. J Therm Biol,2003,28:21-28
    60. Bagnyukovaa T V, Lushchaka O V, Storeyb K B, Lushchak V I. Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23℃.J Therm Biol,2007,32:227-234
    61. Barton B A, Peter R E, Paulencu C R. Plasma Cortisol Levels of Fingerling Rainbow Trout (Salmo gairdneri) at Rest, and Subjected to Handling, Confinement, Transport, and Stocking. Can JFish Aquat Sci,1980,37(5):805-811
    62. Bickler P E, Buck L T. Hypoxia tolerance in reptiles, amphibians, and fishes:Life with variable oxygen availability. Annu Rev Physiol,2007,69:145-170
    63. Boleza K A, Burnett L E, Burnett K G. Hypercapnic hypoxia compromises bactericidal activity of fish anterior kidney cells against opportunistic environmental pathogens. Fish Shellf Immunol,2001,11:593-610
    64. Bolin D W, King R P, Klosterman E W. A simplified method for the determination of chromic oxide Cr2O3 when used as an index substance. Science,1952,116: 634-635
    65. Brauner C J. The effect of diet and short duration hyperoxia exposure on seawater transfer in coho salmon smolts [Oncorhynchus kisutch). Aquaculture,1999,177: 257-265
    66. Brito R, Chimal M E, Gaxiola G, Rosas C. Growth, metabolic rate, and digestive enzyme activity in the white shrimp Litopenaeus setiferus early post-larvae fed different diets. J Exp Mar Biol Ecol,2000,255:21-36
    67. Buckingham M J, Freed D J. Effects of temperature and pH on the oxygen consumption in the prosobranch snail Viviparus contectoides. Comp Biochem Physiol part A,1976,53 (3):249-252
    68. Buentello J A, Gatlin D M Ⅲ, Neil W H. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus puntactus). Aquaculture,2000,182:339-352
    69. Caldwell C A, Hinshaw J. Physiological and hematological responses in rainbow trout subjected to supplemental dissolved oxygen in fish culture. Aquaculture,1994, 126:183-193
    70. Carlson J K, Parsons G R. Seasonal diferences in routine oxygen consumption rates of the bonnethead Shark. J Fish Biol,1999,55 (4):876-879
    71. Chabot D, Dutil J D. Reduced growth of Atlantic cod in non-lethal hypoxia conditions. J Fish Biol,1999,55:472-491
    72. Chen J C, Lin C Y. Responses of oxygen consumption, Ammonia-N excretion and Urea-N excretion of Penaeus chinensis exposed to ambient ammonia at different salinity and pH levels. Aquaculture,1995,136:243-255
    73. Chen J H, Mai K S, Ma H M, Wang X J, Deng D, Liu X W, Xu W, Liu Z G, Zhang W B, Tan B P, Ai Q H. Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Joneset Preston). Fish Shellf Immunol,2007, 22:272-281
    74. Cheng W T, Liu C H, Hsu J P, Chen J C. Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococc. Fish Shellf Immunol,2002,13:351-365
    75. Cheng W T, Liu C H, Kuo C M. Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture,2003,220:843-856
    76. Cho C Y, Slinber S J, Bayley H S. Bioenergetics of salmonidfishes:energy intake, expendition and productivity. Comp Biochem Physiol part B,1982,73 (1):25-41
    77. Clausen R G. Oxygen consumption in fresh water fishes. Ecology,1936,17 (2): 216-226
    78. Coiro L L, Poucher S L, Miller D C. Hypoxic effects on growth of Palaemonetes vulgaris larvae and other species:using constant exposure data to estimate cyclic exposure response. J Exp Mar Biol Ecol,2000,247 (2):243-255
    79. Cooper R U, Clough L M, Farwell M A, West T L. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J Exp Mar Biol Ecol,2002,279:1-20
    80. Craig J K, Crowde L B. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Mar Ecol Prog Ser,2005,294:79-94
    81. Cuesta A, Meseguer J, Esteban M A. Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Vet Immunol Immunopathol,2004,101:203-210
    82. Cunha Bastos V L F, Salles J B, Valente R H, Leon I R, Perales J, Danta R F, Albano R M, Bastos F F, Cunha Bastos J. Cytosolic glutathione peroxidase from liver of pacu (Piaractus mesopotamicus), a hypoxia-tolerant fish of the Pantanal. Biochimie,2007,89:1332-1342
    83. Davis S L. Environmental modulation of the immune system via endocrine system. Domest Anim Endocrin,1998,15 (5):283-289
    84. Davisa K B, Griffina B R, Gray W L. Effect of handling stress on susceptibility of channel catfish Ictalurus punctatus to Ichthyophthirius multifiliis and channel catfish virus infection. Aquaculture,2002,214:55-66
    85. Demple B. Radical ideas:genetic responses to oxidative stress. Clin Exp Pharm Physiol,1999,26:64-78
    86. Di Giulio R T, Washburn P C, Wenning J R, Winston G W, Jewell C S. Biochemical responses in aquatic animals:A review of determinants of oxidative stress. Environ Toxicol Chem,1989,8:1103-1123
    87. Doulos S D, Kindschi G A. Effect of oxygen supersaturation on the culture of cutthroat trout, Oncorhynchus Clarki Richardson, and rainbow trout, Oncorhynchus mykiss Richardson. Aquac Fish Manage,1990,21:39-46
    88. Eccies D H. The effect of temperature and body mass on rountine oxygen consumption in the south-african cyprinid Fish Barbus Aenues Burchell. J Biol, 1985,27:155-165
    89. Edsall D A, Smith C E. Performance of rainbow trout and Snake River cutthroat trout rearing in oxygen supersaturated water. Aquaculture,1990,90:251-259
    90. Ellsaesser C F, Clem L W. Cortisol-induced hematologic and immunologic changes in channel catfish (Ictalurus punctatus). Comp Biochem Physiol part A,1987,87 (2):405-408
    91. Elston R. Histopathology of oxygen intoxication in the juvenile red abalone, Haliotis rufescens Swainson. J Fish Dis,1983,6:101-110
    92. Fang Y. Reactive oxygen species in organisms. In:Fang Y, Zheng R (eds) Theory and application of free radical biology. Science Press, Beijing,2002, pp122-126
    93. Femandes M N, Rantin F T. Relationships between oxygen availability and metabolic cost of breathing in Nile tilapia (Oreochronis niloticus):aquacultural consequences. Aquaculture,1994,127:339-346
    94. Filho D W, Giulivi C, Boveris A. Antioxidant defences in marine fish. Ⅰ:Teleosts. Comp Biochem Physiol part C,1993,106:409-413
    95. Fleming A, Hone P W, Higham J. The effect of water velocity on consumption and growth of greenlip abalone in tanks. In:Hone P W and Fleming A, Editors,1997. Proceedings of the 4th Annual Abalone Aquaculture Workshop, Port Fairy, Victoria, FRDC, Canberra, Australia,1997,16-23
    96. Foss A, Evensen T H, Imsland A K, Oiestad V. Effect of reduced salinities on growth, food conversation efficiency and osmoregulatory status in the spotted wolfish. J Fish Biol,2001,59:416-426
    97. Foss A, Evensen T H, Qiestad V. Effect of hypoxia and hyperoxia on growth and food conversion efficiency in the spotted wolfish Anarhichas minor (Olafsen). Aquac Res,2002,28:1257-1263
    98. Foss A, Vollen T, Oiestad V. Growth and oxygen consumption in normal and O2 supersaturated water, and interactive effects of O2 saturation and ammonia on growth in spotted wolffish (Anarhichas minor Olafsen). Aquaculture,2003,224 (1-4):105-116
    99. Fry F E H. The aquatic respiration of fish, Physiology of Fishes. New York: Aeademic press,1957,1:1-63
    100. Giulio R D, Washburn P, Wenning R, Winston G W, Jewell C S. Biochemical responses in aquatic animals:A review of determinants of oxidative stress. Environ Toxicol and Chem,1989,8:1103-1123
    101.Glass M L, Andersen N A, Kruhoffer M, Williams E M, Heisler N. Combined effects of environmental PO2 and temperature on ventilation and blood gases in the carp Cyprinus carpio L. J Exp Biol,1990,148:1-17
    102.Goss G C, Wood C M, Laurent P, Perry S F. Morphological responses of rainbow trout (Oncorhynchus mykiss) gill to hyperoxia, base (NaHCO3) and acid (HCL) infusions. Fish Physiol Biochem,1994,12:465-477
    103.Griffiths C L. Animal Energetics. New York:Academic Press,1987:2-28
    104.Guppy M, Fuery C J, Flanigan J E. Biochemical principles of metabolic depression. Comp Biochem Physiol part B,1994,109:175-189
    105.Hagerman L, Szaniawska A. Haemolymph nitrogen compounds and ammonia efflux rates under anoxia in the brackish water isopod Saduria entomodon. Mar Ecol Prog Ser,1994,103:285-289
    106.Harper S L, Reiber C L. Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus. J Exp Biol,2006,209(9):1639-1650
    107.Harris J O, Maguire G B, Edwards S J. Effect of pH on growth rate, oxygen consumption rate, and histopathology of gill and kidney tissue for juvenile greenlip abalone, Haliotis rubra Do-novan and blacklip abalone, Haliotis rubra Leach. J Shellf Re,1999,18 (2):611-619
    108.Herbing I H, White L.The effects of body mass and feeding on metabolic rate in small juvenile Atlantic cod. J Fish Biol,2002,61(4):945-958
    109.Hermes-Lima M, Storey J M, Storey K B. Review:Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp Biochem Physiol Part B,1998,120:437-448
    110.Herrmann J P and Enders E C. Effect of body size on the standard metabolism of Horse maekerd. J Fish Biol,2000,57 (3):746-760
    111.Hijran Y Y. Plasma Lysozyme Levels and Secondary Stress Response in Rainbow Trout, Oncorhynchus mykiss (Walbaum) after Exposure to Leteux- Meyer Mixture. Turk J Vet Anim Sci,2006,30:265-269
    112.Hogendoorn H. Growth and production of African catfish, Clarias lazera. Bio-energetic relations of body weight and feeding level. Aquaculture,1983,35: 1-7
    113.Hu F W, Pan L Q, Jing F T. Effects of hypoxia on dopamine concentration and the immune response of white shrimp (Litopenaeus vannamei). J Ocean Univ China, 2009,8:77-82
    114.Huang G, Wei L, Zhang X, Gao T. Compensatory growth of juvenile brown flounder Paralichthys olivaceus (Temminck & Schlegel) following thermal manipulation. JFish Biol,2008,72:2534-2542
    115. Jiang L X, Pan L Q, Bo F. Effect of dissolved oxygen on immune parameters of the white shrimp Litopenaeus vannamei. Fish Shellf Immunol,2005,18:185-188
    116. Jobling M. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa. J Fish Biol,1982,20:501-516
    117. John D, Sakamoto M T, Cordon G E, Iwama G K. Physiological and respiratory respomes of the ozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comp Biochem Physiol PartA,1997,177(3):391-398
    118. Kang J C, Matsuda O. Combined effect of hypoxia and hydrogen sulfide on early developmental stages of white shrimp Metapenaeus monoceros. Appl Biol Sci,1994, 33 (1):21-27
    119.Karim M D R, Sekine M, Ukita M. Simulation of eutrophication and associated occurrence of hypoxic and anoxic condition in a coastal bay in Japan. Mar Pollut Bull,2002,45:280-285
    120.Kennish M J. Environmental threats and environmental future of estuaries. Environ Conserv,2002,29(1):78-107
    121.Kiφrboe T, Munk P, Richardson K. Respiration and growth of larval herring Clupea harengus:relation between specific dynamic action and growth efficiency. Mar Ecol Prog Ser,1987,40:1-10
    122.Lopes P A, Pinheiro T, Santos M C, Mathias M L, Collares-Pereira M J, Viegas-Crespo A M. Response of antioxidant enzymes in freshwater fish populations (Leuciscus alburnides complex) to inorganic pollutants exposure. Sci Total Environ,2001,280 (1-3):153-163
    123.Lushchak V I, Bagnyukov T V, Lushchak O V, Storey J M, Storey K B. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int JBiochem Cell Biol,2005a,37:1319-1330
    124.Lushchak V I, Bagnyukova T V, Husak V V, Luzhna L I, Lushchak O V, Storey K B. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol,2005b,37: 1670-1680
    125.Lushchak V I, Bagnyukova T V. Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol Part B,2006c,144: 283-289
    126.Lushchak V I, Bagnyukova T V. Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comp Biochem Physiol Part B,2007,148: 390-397
    127.Lushchak V I, Bagnyukova T V. Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comp Biochem Physiol Part B,2007,148: 390-397
    128.Lushchak V I, Bagnyukova T V. Temperature increase results in oxidative stress in goldfish tissues.1. Indices of oxidative stress. Comp Biochem Physiol Part C, 2006a,143:30-35
    129.Lushchak V I, Bagnyukova T V. Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Physiol Part C,2006b,143:36-41
    130.Lushchak V I, Lushchak L P, Mota A A, Hermes-Lima M. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regulatory Integrative Comp Physiol,2001,280: 100-107
    131.McGraw W, Teichert-Coddington D R, Rouse D B, Boyd C E. Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture,2001,199(3-4):311-321
    132.Middleton R J, Reeder B C. Dissolved oxygen fluctuations in organically and inorganically fertilized walleye (Stizostedion vitreum) hatchery ponds. Aquaculture, 2003,219:337-345
    133.Moraes G, Chippari A R, Guerra C D R, Gomes L C, Souza R H S. Immediate changes on metabolic parameters of the freshwater teleost fish Piaractus mesopotamicus (Pacu) under severe hypoxia. Boletim Tecnico CEPTA,1997,10: 45-52
    134.Morgan J D, Iwama G K. Salinity effects on oxygen consumption, gill Na+, K+-ATPase and ionregulation in juvenile cohos. J Fish Biol,1998,53 (5): 1110-1119
    135.Neiva B, Ronaldo L L, Bibiana M, Vania L L, Bernardo B. Survival, growth and biochemical parameters of silver catfish, Rhamdia quelen (Quoy and Gaimard, 1824), juveniles exposed to different dissolved oxygen levels. Aquac Res,2006,37: 1524-1531
    136.Newell R C. Factors affecting the respiration of intertidal invertebrates. Am Zool, 1973,13 (2):513-528
    137.Papoutsoglou S E, Petropoulos G, Barbieri R. Polyculture rearing of Cyprinus carpio (L) and Oreochromis aureus (St.) using a closed circulated system. Aquaculture,1992,103:311-320
    138.Papoutsoglou S E, Voutsinos G A. Influence of feeding level on growth rate of Tilapia aureus (Steindachner) reared in a closed circulated system. Aquac Fish Manage,1988,19:291-298
    139.Papoutsoglou S E, Voutsinos G A. Influence of feeding level on growth rate of Tilapia aureus (Steindachner) reared in a closed circulated system. Aquac Fish Manage,1988,19:291-298
    140.Pavela J S, Ross J L, Jr Chittenden M E. Sharp reductions in abundance of fishes and benthic macroinvertebrates in the Gulf of Mexico off Texas associated with hypoxia. Northeast Gulf Sci,1983,6 (2):167-173
    141.Pichavant K, Ruyet P L J, Bayon N L, Severe A, Le Roux A, Quemener L, Maxime V, Nonnotte G, Boeuf G. Effects of hypoxia O2 growth and metabolism of juvenile turbot. Aquaculture,2000,188 (1-2):103-114
    142.Pihl L, Baden S P, Diaz R J. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Mar biol,1991,108 (3):349-360
    143.Porchas M M, Cordova L R M, Enriquez R R. Cortisol and Glucose:Reliable indicators of fish stress? Pan-Am J Aquat Sci,2009,4 (2):158-178
    144.Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston G W. Oxidative stress in ecotoxicology:From the analysis of individual antioxidants to a more integrated approach. Mar Environ Res,2002,54:419-423
    145.Renaud M L. Detecting and avoiding oxygen deficient sea water by brown shrimp, Penaeus aztecus (Ives), and white shrimp Penaeus setiferus (Linnaeus). J Exp Mar Bio Ecol,1986,98 (3):283-292
    146.Richardson J, William E K, Hickey C W. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. NZ J Mar Freshw Res,2001,35 (3):625-633
    147.Ritola O, Livingstone D R, Peters L D, Lindstrom-Seppa P. Antioxidant processes are affected in juvenile trout (Oncorhynchus mykiss) exposed to ozone oxygen supersaturated water. Aquaculture,2002,210:1-19
    148.Robertsonl, Thomas P, Arnold C R, Trant J M. Plasma cortisol and secondary stress responses of red drum to handling, transport, rearing density, and a disease outbreak. Prog Fish Cult,1987,49:1-12
    149.Rosas C, Martinez E, Gaxiola G, Brito R, Diaz-Iglesia E, Soto L A. Effect of dissolved oxygen on the energy balance and survival of Penaeus setiferus juveniles. Mar Ecol Prog Ser,1998,174:67-75
    150.Rosas C, Martinez E, Gaxiola G, Brito R, Diaz-Iglesia E, Soto L A. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. J Exp Mar Bio Ecol, 1999,234:41-57
    151.Ruyet J P L, Pichavant K, Vacher C N, Lindstrom-Seppa P. Effects of O2 super-saturation on metabolism and growth in juvenile turbot (Scophthalmus maximus L.). Aquaculture,2002,205:373-383
    152.Santovito G, Arnaldo Cassini E P, Irato P, Albergoni V. Antioxidant responses of the Mediterranean mussel, Mytilus galloprovincialis, to environmental variability of dissolved oxygen. Comp Biochem Physiol Part C,2005,140:321-329
    153.Scapigliati G, Scalia D, Marras A, Melon S, Mazzini M. Immunoglobulin levels in the teleost sea bass Dicentrarchus labrax (L.) in relation to age, season, and water oxygenation. Aquaculture,1999,174:207-212
    154.Scapigliati G, Scalia D, Marras A, Meloni S, Mazzini M. Immunoglobulin levels in the teleost sea bass Dicentrarchus labrax (L.) in relation to age, season, and water oxygenation. Aquaculture,1999,174:207-212
    155.Scholnick D A, Snyder G K. Response of the tadpole shrimp riops longicaudatus to hypoxia. Crustaceana,1996,69 (8):937-948
    156.Sofronios E P, Gar T. Blue Tilapia (Oreochromis aureus) growth rate in relation to dissolved oxygen concentration under recirculated water conditions. Aquacult Eng, 1996,15:181-192
    157.Soivio A, Nikinmaa M, Westman K. The blood oxygen binding properties of hypoxic Salmo gairdneri. J Comp Physiol,1980,136B:83-87
    158.Thetmeyer H, Waller U, Black K D, Inselmanna S, Rosenthal H. Growth of European sea bass (Dicentrarchus labrax L.) under hypoxic and oscillating oxygen conditions. Aquaculture,1999,174:355-367
    159.Tran-Duy A, Schrama J W, Van Dam A A, Verreth Johan A J. Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture,2008,275:152-162
    160.Truchot J P. Acid-base homeostasis in aquatic animals exposed to natural and perturbed environments. BelgJZool,1994,124:61-71
    161.Wang Y, Zhang H, Qi Z. Occurrence and effects of harmful bloom caused by Prorocentrtum micans in seawater experimental enclosures. J Fish China,1998,22 (3):218-222
    162.Wannamaker C M, Rice J A. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J Exp Mar Bio Ecol,2000,249(2):145-163
    163.Wardle C S, Soofiani N M, O'Neill F G, Johnstone A D F. Measurements of aerobic metabolism of a school of horsemackerel al diferent swimming speeds. J Fish Biol,1996,49 (5):854-862
    164.Wei L Z, Zhang X M, Huang G Q. Effects of limited dissolved oxygen supply on the growth and energy allocation of juvenile Chinese shrimp, Fenneropenaeus chinensis. J world aquac soc,2009,40 (4):483-191
    165.Wei L, Zhang X, Li J, Huang G Compensatory growth of Chinese shrimp, Fenneropenaeus chinensis following hypoxic exposure. Aquac Int,2008,16 (5): 455-470
    166.Welker T L, Mcnulty S T, Klesius P H. Effect of sublethal hypoxia on the immune response and susceptibility of channel catfish, Ictalurus punctatus, to enteric septicemia. J World Aquac Soc,2007,38 (1):12-23
    167.Wilhelm Filho D, Torres M A, Zaniboni-Filho E, Pedrosa R C. Effects of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapara Leporinus elongates (Valenciennes,1847). Aquaculture,2005,244:349-357
    168.Wood C M. Branchial ion and acid-base transfer in freshwater teleost fish: environmental hyperoxia as a probe. Physiol Zool,1991,64:68-102
    169.Wu R S S. Hypoxia:from molecular responses to ecosystem responses. Mar Pollut Bull,2002,45:35-45
    170.Xie X, Sun R. The daily total metabolism and specific dynamic action in the southern catfish (Silurus meridionalis). Acta Hydrobiol Sin,1992,16 (3):200-207
    171.Yamochi S, Sano M. Changes of dissolved oxygen concentration and its effect on the mortality of southern rough shrimp at Tanigawa fishing port, Osaka Bay. Bull Jpn Soc Fish Oceanogr,1992,56(1):1-12
    172.Zaitsev Y P. Recent changes in the trophic structure of the Black Sea. Fish Oceanogr,1992,1(2):180-189.
    173.Zakes Z, Demska-zakes K, Jarocki P, Stawecki K. Rate of oxygen consumption and ammonia excretion of juvenile Eurasian perch Perca fluviatilis L. Aquac Int,2003, 11 (3):277-288
    174.Zang W, Zhu Z, Dai X, Zhao F, Lu Y, Xu G, Xu R. Studies on the correlation between the instantaneous velocity of consumed oxygen of Chinese prawn and the aquatic environment. Fish Sci Technol Inf,1992,19 (4):100-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700