用户名: 密码: 验证码:
SVZ来源的神经前体细胞参与皮质发育障碍致痫机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮质发育障碍(malformations of cortical development, MCDs)是小儿难治性癫痫的主要病因之一。随着临床诊断技术的不断发展,尤其是高分辨率核磁共振成像技术的出现,MCDs的诊断率逐年上升,最新资料显示大约有40%难治性癫痫是由MCDs引起的。因此,关于MCDs致病机制的研究成为人们关注的重点。
     MCDs的临床分型较为复杂,根据最新分类标准,局灶性皮质发育不良(focal cortical dysplasia,FCD)是MCDs中的常见类型之一。大量的研究证实,FCD属于神经细胞迁移异常类疾病(neuronal migration disorders, NMDs)。在皮层发育的后期阶段,多种外源性刺激因素引起新生神经元的异常迁移可能是引起FCD的原因之一。另外,临床研究也证实,在FCD的致痫病灶中存在一些与癫痫发作程度正相关的“异构神经元”,如:气球样细胞(balloon cells,BCs)。最近的研究发现,BCs是由室管膜下区(subventricular zone,SVZ)的神经前体细胞(Neural precursor cells,NPCs)异常迁移分化而来。由此可见,SVZ区NPCs的异常迁移与FCD的致病机制或者致痫过程密切相关。因此,针对性地研究SVZ区NPCs向FCD病灶中的迁移、分化过程以及FCD病灶中SVZ来源细胞的分子生物学特性,将有助于人们进一步认识和阐明MCDs的致痫机制。
     在本研究中,我们利用建立的FCD动物模型,结合使用荧光分子探针CM-DiI标记NPCs在体(in vivo)示踪技术,系统观察了SVZ区NPCs向FCD皮层病灶迁移、分化的过程。并且,利用膜片钳记录等神经电生理技术手段,研究了不同发育阶段FCD皮层损伤灶中SVZ区NPCs源性神经元的电生理特性。在动物模型的研究基础上,我们进一步以MCDs临床手术切除的标本为研究对象,初步研究了FCD和TSC皮层病灶中SVZ区NPCs来源的“异构神经元”的分子表型。主要结果如下:
     一、SVZ区NPCs参与皮质发育障碍致痫机制的动物实验研究
     1.联合利用局部皮层冰冻损伤和CM-DiI侧脑室注射的方法,我们建立了“DiI标记SVZ区NPCs—局灶性皮质发育不良”动物模型(DiI-FCD模型)。结果显示,DiI-FCD模型冰冻损伤灶内可见DiI(+)细胞形成的细胞迁移流(SFMS)。而且,在P10到P90各个阶段,DiI(+)细胞形成的SFMS一直存在。
     2.利用免疫荧光双标技术,我们对DiI-FCD模型SFMS中的DiI(+)细胞进行了进一步鉴定。结果显示,P10模型SFMS中DiI(+)不同程度地表现为Nestin、DCX以及OTX1/2阳性。这提示,局部皮层冰冻损伤激活了内源性SVZ区NPCs的迁移,DiI-FCD模型皮质损伤灶—微脑回畸形结构中的DiI(+)细胞主要来源于SVZ区NPCs的迁移分化。进一步的研究显示,在微脑回畸形中,大部分DiI(+)细胞分化为胶质细胞,参与局部胶质增生的形成。但仍有一部分DiI(+)细胞分化为神经元,并与周围的细胞形成了突触联系,整合入局部的神经环路。
     3.电生理的研究结果显示:①从SVZ迁移至微脑回畸形结构中的DiI(+)神经元表现为幼稚神经元的电生理特性,提示其比正常皮层神经元发育较迟缓。然而, DiI(+)神经元比正常皮层神经元兴奋性更高,成熟的DiI(+)神经元(P90)兴奋性增高更显著;②对单个动作电位的分析显示,DiI(+)神经元动作电位的去极化和复极化过程均较正常神经元快,而且,大多数DiI(+)神经元的AHP幅值绝对值显著增大;③DiI(+)神经元的sEPSC的幅值除在P10阶段高于正常神经元外,其他阶段(P30-P90)与正常皮层神经元差异不大,但sEPSC的频率在幼年至成年的各个时期均较正常皮层神经元增高;④DiI(+)神经元上记录的eEPSC主要是NMDA受体介导的突触后电流。与正常皮层神经元相比,DiI(+)神经元上eEPSC峰值略高,但没有达到统计学差异。而且,其10-90% rise time和decay time均较正常神经元有所增高;⑤DiI(+)神经元对突触前细胞的反馈抑制效应较正常皮层神经元降低。
     二、MCDs致痫灶内SVZ区域NPCs来源的异构神经元分子表型的研究
     1.利用Western blot的方法,我们进一步研究了P10-P90不同发育阶段DiI-FCD模型微脑回畸形皮层中NMDA/AMPA受体亚单位的表达变化情况,结果显示:在DiI-FCD模型的微脑回畸形中,GluR2,GluR 3蛋白含量在P10-P90各个阶段都呈不同程度的表达上调;NR1和NR2A在P30以后呈表达上调趋势;NR2B蛋白含量除了在P60时期DiI-FCD模型的微脑回畸形中NR2B蛋白含量略低于对照组外,其他时间点都表达上调。此外,我们发现IL-6、IL-6R以及gp130蛋白水平在DiI-FCD模型微脑回畸形皮层中显著表达上调,细胞外给予高浓度IL-6刺激可以引起DiI(+)神经元动作电位发放频率显著增加。这提示:①IL-6可能促进了SVZ区来源的DiI(+)神经元的存活和分化;②微脑回畸形结构中的IL-6,可能参与了FCD病灶高致痫性的形成过程。
     2.根据在MCDs动物模型上观察到的IL-6及其受体表达上调的现象,我们利用临床MCDs的手术切除标本,进一步研究了IL-6及其受体在两种常见的MCDs疾病类型(TSC和FCD)中的表达和细胞定位。RT-PCR和Western blot的结果分别从mRNA水平和蛋白水平证实,IL-6、IL-6R及gp130在TSC皮质结节和FCDIIb的皮质致痫灶中表达上调。进一步的免疫组化和免疫荧光双标的研究发现,IL-6和IL-6R在TSC皮质结节和FCDIIb的皮质致痫灶中的表达具有明显的细胞特异性,即:IL-6和IL-6R在来源于SVZ区NPCs的“异构神经元”上表达显著增高。这些IL-6/IL-6R阳性的异构神经元,除了FCDIIb中的一些BCs表现为胶质细胞谱系外,大多表现为神经元谱系。这些结果说明,SVZ区NPCs源性的异构神经元可能只MCDs致痫灶中IL-6的细胞来源之一。进一步的研究发现,IL-6信号转导通路gp130/JAK2/STAT3在TSC皮质结节和FCDIIb的皮质致痫灶中普遍被激活。这说明TSC皮质结节和FCDIIb的皮质致痫灶中表达上调的IL-6可能通过gp130/JAK2/STAT3通路发挥其生物学功能。
     结论如下:
     1.利用DiI-FCD模型,我们成功地观察到了SVZ区NPCs向微脑回畸形结构内部及其周围皮层迁移的过程,这进一步验证了SVZ区NPCs参与FCD病灶形成的推断。而且,迁移至微脑回畸形局部的NPCs分化为胶质细胞和神经元,并且能和周围细胞形成突触联系,这提示:在MCDs皮层病灶中,SVZ区NPCs来源的细胞具有影响局部神经环路兴奋性的形态学基础;
     2. SVZ区NPCs来源的神经元具有高兴奋性、接收更多的兴奋性传入以及输出较小的反馈抑制等电生理特性。这提示:SVZ区NPCs来源的神经元兴奋性增高,进而引起整个神经环路兴奋性上调,这些细胞可能是MCDs致痫灶“痫样放电”的“点燃”因素;
     3. DiI-FCD模型微脑回畸形局部皮层中NMDA/AMPA受体亚单位表达水平的改变,这在一定程度上反应了微脑回畸形局部皮层兴奋性受体分布的失衡状态,进一步支持了上述电生理研究的推断;
     4.动物实验和临床标本的研究同时证实:MCDs中SVZ区NPCs源性的“异构神经元”不但可以通过自身兴奋性的改变影响局部神经环路的兴奋性,还可能通过释放一些可溶性的蛋白因子(如:IL-6),以旁分泌或者自分泌的方式作用于自身或者其他细胞,进而影响局部皮层的兴奋性。
     综上所述,多方面的证据都显示:在MCDs致痫病灶中,SVZ区NPCs来源的异位神经元是MCDs癫痫发作的重要原因之一。
Malformations of cortical development (MCDs) are increasingly recognized as important causes of medically intractable epilepsy in pediatric patients. With the continuous development of clinical diagnostic techniques, particularly the emergence of high-resolution magnetic resonance imaging, the diagnosis rate of MCDs is increasing, the latest data showed that about 40% of refractory epilepsy is caused by the MCDs. Therefore, the pathogenic mechanism of MCDs become a major concern.
     Clinical classification of MCDs is more complex, according to the latest classification, focal cortical dysplasia (FCD) are the common types of MCDs. A large number of studies confirmed that FCD is abnormal neuronal migration diseases (NMDs). During the late stage of cortical development, a variety of exogenous stimuli cause the abnormal migration of newborn neurons resulted in FCD sequently. In addition, clinical studies have also indicated that the misshapen cells, such as balloon cells (BCs), within the cortical lesions of FCD are in some degree of positive correlation with the severity of seizure. Recent studies have demonstrated that BCs are derived in part from the neural precursor cells (NPCs) in subventricular zone (SVZ). Accordingly, we speculate that the abnormal migration of SVZ-derived NPCs is closely related to the epileptogenicity of MCDs. Therefore, to observe the the migration and differentiation of SVZ-derived cells in FCD lesions and to study the roles and neurochemical features of misshapen cells within the cortical dysplastic lesions of MCDs will help people better understand and clarify the mechanisms of epileptogenicity of MCDs.
     In this study, we have established a rat model of a microgyral malformation, and continuously observed the process of the migration and differentiation of SVZ-derived NPCs labelled with CM-DiI (named as“DiI-FCD”model). In addition, by using the patch-clamp recording techniques in the brain slice, we investigated the electrophysiological characteristics of the SVZ-NPCs- derived pyramidal neurons in the microgyral and paramicrogyral regions. Furthermore, the alterations of neurochemical features in the microgyral/ paramicrogyral of the DiI-FCD model and the cortical lesions of MCDs have also been studied in the present study. The main results are as follows:
     1. Experimental study of the the involvement of SVZ-derived neural precursor cells in the epileptogenicity of malformations of cortical development
     1.1 Combined use of neonatally cortical freez-lesion and CM-DiI intracerebroventricular injection methods, we successfully established a“DiI labeled SVZ NPCs- focal cortical dysplasia”animal model (DiI-FCD model). The results showed that DiI-positive (DiI+) cells, which form a migratory stream from SVZ to FCD cortical lesion (SFMS), could be continuously observed from P10 to P90.
     1.2 By using double immunofluorescence techniques, the molecular phenotype of the DiI(+) were further identified. The results showed that the DiI(+) cells in the SFMS of P10 rats expressed Nestin, DCX and OTX1/2, which confirmed that these cells are from SVZ-derived NPCs. Further studies revealed that most of the DiI(+) cells in SFMS differentiate into glial cells, which probably in the formation of local gliosis. However, part of the DiI (+) cells differentiate into neurons, and with the surrounding cells to form a synapse.
     1.3 Electrophysiological studies showed that: (1) The intrinsic membrane properties of DiI(+) neurons in the microgyral and paramicrogyral regions suggest that these cells are more immature, but higher excitability, than the control neurons from age-matched animals. (2) The depolarization and repolarization process of the DiI(+) neurons shows faster than those of normal neurons, and the absolute value of the AHP amplitude increased significantly in DiI(+) cells. (3) During the P10 phase, the amplitude of spontaneous EPSC (sEPSC) in the DiI(+) neurons are higher than normal neurons; however, during the other stages (P30-P90), there is no significant difference between each group. In addition, the sEPSC frequency in the early years to adulthood are significant higher than normal cortical neurons. (4) Compared with normal cortical neurons, the amplitude of evoked-EPSC (eEPSC) in DiI (+) neurons increased slightly, but did not achieve statistical significance. Moreover, the 10-90% rise time and decay time has increased compared with normal neurons. Interestingly, by analysising the paired-plus eEPSC, the data shows an impairment of feedback inhibition in DiI(+) neurons.
     2. The molecular phenotype of SVZ-derived neural precursor cells in the malformations of cortical development
     2.1 Using western blot method, we further studied the expression of NMDA/ AMPA receptor subunits in the microgyral and paramicrogyral regions compared with the control cortex from sham-operated group. The results show that the GluR2 and GluR3 proteins increased in DiI-FCD group in each stage of P10-P90, and NR1 and NR2A were upregulated from P30 to P90. Except the P60 stage, NR2B protein levels are upregulated in the DiI-FCD group. In addition, we also found that IL-6, IL-6R and gp130 proteins in DiI-FCD model was significantly upregulated, extracellular high concentration of IL-6 stimulation can cause DiI (+) neuron spike frequency increased significantly.
     2.2 According to the data about the upregulation of the IL-6 and its receptors in the microgyral and paramicrogyral regions of DiI-FCD model, we futher studied the expression of IL-6 system in the cortical lesions of TSC and FCDIIb. The results demonstrated that upregulation of mRNA and increased protein levels of IL-6 and its receptors, including the IL-6 receptor (IL-6R) and gp130, were observed in both TSC and FCDIIb lesions. Immunohistochemical analyses indicated that IL-6 and IL-6R were strongly expressed in misshapen cells such as dysmorphic neurons, TS cells and balloon cells (BCs), while gp130 was expressed in almost all cells following a diffuse distribution pattern. Co-localization assays further revealed that most of the IL-6/IL-6R-positive misshapen cells were co-labeled with neuronal markers rather than astrocytic markers. This finding suggests that these cells have a neuronal lineage, with the exception of the IL-6/IL-6R-positive BCs in FCDIIb, the most of which have an astrocytic lineage. Additionally, the protein levels of JAK2 and phosphorylated STAT3 were strongly increased, suggesting the involvement of the gp130/JAK2/STAT3 pathway in IL-6 signal transduction in both TSC and FCDIIb. Soluble IL-6R, but not soluble gp130, was significantly increased in both TSC and FCDIIb lesions relative to CTX, indicating the activation of this trans-signaling pathway in TSC and FCDIIb lesions. These results suggest that overexpression within the IL-6 system and activation of IL-6 signal transduction pathway in TSC and FCDIIb cortical lesions may contribute to intrinsic and increased epileptogenicity.
     Conclusion:
     1. Using DiI-FCD model, we successfully observe the migration process of SVZ-derived NPCs to the microgyral/ paramicrogyral regions. The data further confirm the hypothesis that the SVZ-derived NPCs are involved in the formation of the epileptogenic foci of FCD.
     2. In the microgyral/paramicrogyral regions, the majority of the SVZ-derived NPCs differeniate into glial cells and neurons, and to format synaptic connections with the surround cells,suggesting the possibility of these cells to influence the local neural circuit.
     3. Electrophysiological studies indicated that the SVZ-NPCs-derived neurons in the the microgyral/paramicrogyral regions showed high excitability and recevied more excitatory input, while the feedback suppression to the presynaptic cells reduced. These data suggested that the high excitability of the SVZ-NPCs-derived neurons would result in the hyperexcitability of the local neural circuit, and consequently trigger the kindling of the epileptiform discharge.
     4. The alterations of the expression of the NMDA/AMPA receptor subunits suggested the imbalance of the excitatory receptors in the microgyral/paramicrogyral regions, which further supported our electrophysiological finding above.
     5. The clinical study demonstrated a strong association between overproduction and overexpression in the IL-6 system and MCDs. Our morphological study further indicated the cell-specific expression patterns of IL-6 and its receptors, which were mainly distributed in the DNs, GNs, BCs and TS cells. This finding suggests that these misshapen cells are the potential source of IL-6 in MCDs cortical lesions. Additionally, we showed that the gp130/JAK2/STAT3 signal-transduction pathway might be involved in the response of these cortical lesions to locally high concentrations of IL-6. Our data do not provide insight into the mechanism(s) of IL-6 that underlie the epileptogenic properties of TSC tubers and FCDIIb cortical lesions. However, it is likely that either the strong expression or cell-specific distribution of IL-6 and its receptors, or the activation of IL-6 signal transduction in these cortical lesions, contributes to the intrinsic and high epileptogenicity of MCDs.
     In summary, a wide range of evidence show that the SVZ–NPCs-derived ectopic neurons in the epileptogenic lesions are one of the possible epileptogenic factors for the epileptogenicity of MCDs.
引文
1. Parent JM: The role of seizure-induced neurogenesis in epileptogenesis and brain repair. Epilepsy Res 2002, 50:179-189.
    2. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH: Aberrantseizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 2006, 59:81-91.
    3. Dudek FE: Seizure-induced neurogenesis and epilepsy: involvement of ectopic granule cells? Epilepsy Curr 2004, 4:103-104.
    4. Jessberger S, Romer B, Babu H, Kempermann G: Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 2005, 196:342-351.
    5. Parent JM, Murphy GG: Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis. Epilepsia 2008, 49 Suppl 5:19-25.
    6. Lamparello P, Baybis M, Pollard J, Hol EM, Eisenstat DD, Aronica E, Crino PB: Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 2007, 130:2267-2276.
    7. Guerrini R, Sicca F, Parmeggiani L: Epilepsy and malformations of the cerebral cortex. Epileptic Disord 2003, 5 Suppl 2:S9-26.
    8. Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, Jackson G, Luders HO, Prayson R, Spreafico R, Vinters HV: Terminology and classification of the cortical dysplasias. Neurology 2004, 62:S2-8.
    9.罗春阳,晏勇:皮质发育障碍的动物模型研究.重庆医学2004, 33:1263-1265.
    10. Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini M, von Holst A, Shmueli O, Sapir T, McConnell SK, Wurst W, et al: Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc Natl Acad Sci U S A 2001, 98:6429-6434.
    11. Fleck MW, Hirotsune S, Gambello MJ, Phillips-Tansey E, Suares G, Mervis RF, Wynshaw-Boris A, McBain CJ: Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J Neurosci 2000, 20:2439-2450.
    12. Castro PA, Cooper EC, Lowenstein DH, Baraban SC: Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy. J Neurosci 2001, 21:6626-6634.
    13. Benardete EA, Kriegstein AR: Increased excitability and decreased sensitivity to GABA in an animal model of dysplastic cortex. Epilepsia 2002, 43:970-982.
    14. Kondo S, Najm I, Kunieda T, Perryman S, Yacubova K, Luders HO: Electroencephalographic characterization of an adult rat model of radiation-induced cortical dysplasia. Epilepsia 2001, 42:1221-1227.
    15. Rosen GD, Galaburda AM: Single cause, polymorphic neuronal migration disorders: an animal model. Dev Med Child Neurol 2000, 42:652-662.
    16. Takase K, Shigeto H, Suzuki SO, Kikuchi H, Ohyagi Y, Kira J: Cortical kindling in a focal freeze lesion rat model. J Clin Neurosci 2009, 16:94-98.
    17.罗春阳,晏勇,王学峰,黄祖春,肖争,马勋泰.:母鼠孕期γ-射线照射及新生鼠脑冰冻损伤后皮质发育障碍的模型研究.中华神经科杂志2005, 38:643-647.
    18. Jacobs KM, Kharazia VN, Prince DA: Mechanisms underlying epileptogenesis in cortical malformations. Epilepsy Res 1999, 36:165-188.
    19. Rosen GD, Sherman GF, Galaburda AM: Birthdates of neurons in induced microgyria. Brain Res 1996, 727:71-78.
    20. Scantlebury MH, Ouellet PL, Psarropoulou C, Carmant L: Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia 2004, 45:592-600.
    21. Luhmann HJ, Raabe K, Qu M, Zilles K: Characterization of neuronal migration disorders in neocortical structures: extracellular in vitro recordings. Eur J Neurosci 1998, 10:3085-3094.
    22. Chevassus-au-Louis N, Baraban SC, Gaiarsa JL, Ben-Ari Y: Cortical malformations and epilepsy: new insights from animal models. Epilepsia 1999, 40:811-821.
    23. Takase K, Shigeto H, Kamada T, Ohyagi Y, Kira J: Efficacy of mediodorsal thalamic nucleus stimulation in a rat model of cortical seizure. Fukuoka Igaku Zasshi 2009, 100:274-280.
    24. DeFazio RA, Hablitz JJ: Alterations in NMDA receptors in a rat model of cortical dysplasia. J Neurophysiol 2000, 83:315-321.
    25. Jacobs KM, Hwang BJ, Prince DA: Focal epileptogenesis in a rat model of polymicrogyria. J Neurophysiol 1999, 81:159-173.
    26. Luhmann HJ, Karpuk N, Qu M, Zilles K: Characterization of neuronal migration disorders in neocortical structures. II. Intracellular in vitro recordings. J Neurophysiol 1998, 80:92-102.
    27. Zilles K, Qu M, Schleicher A, Luhmann HJ: Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABA(A) and GABA(B) receptors. Eur J Neurosci 1998, 10:3095-3106.
    28. Brandt R, Leger J, Lee G: Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J Cell Biol 1995, 131:1327-1340.
    29. Kuffler DP: Long-term survival and sprouting in culture by motoneurons isolated from the spinal cord of adult frogs. J Comp Neurol 1990, 302:729-738.
    30. Vidal-Sanz M, Villegas-Perez MP, Bray GM, Aguayo AJ: Persistent retrograde labeling of adult rat retinal ganglion cells with the carbocyanine dye diI. Exp Neurol 1988, 102:92-101.
    31. Mufson EJ, Brady DR, Kordower JH: Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol Aging 1990, 11:649-653.
    1. Sutor B, Hablitz JJ: EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs. J Neurophysiol 1989, 61:621-634.
    2. Rakhade SN, Zhou C, Aujla PK, Fishman R, Sucher NJ, Jensen FE: Early alterations of AMPA receptors mediate synaptic potentiation induced by neonatal seizures. J Neurosci 2008, 28:7979-7990.
    3. Bertaso F, Zhang C, Scheschonka A, de Bock F, Fontanaud P, Marin P, Huganir RL, Betz H, Bockaert J, Fagni L, Lerner-Natoli M: PICK1 uncoupling from mGluR7a causes absence-like seizures. Nat Neurosci 2008, 11:940-948.
    4. Burke JP, Hablitz JJ: Modulation of epileptiform activity by metabotropic glutamate receptors in immature rat neocortex. J Neurophysiol 1995, 73:205-217.
    5. Avanzini G, Franceschetti S, Mantegazza M: Epileptogenic channelopathies: experimental models of human pathologies. Epilepsia 2007, 48 Suppl 2:51-64.
    6. Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D: Acquired dendritic channelopathy in temporal lobe epilepsy. Science 2004, 305:532-535.
    7. Prince DA, Tseng GF: Epileptogenesis in chronically injured cortex: in vitro studies. J Neurophysiol 1993, 69:1276-1291.
    8. Avramescu S, Timofeev I: Synaptic strength modulation after cortical trauma: a role in epileptogenesis. J Neurosci 2008, 28:6760-6772.
    9. Esclapez M, Hirsch JC, Ben-Ari Y, Bernard C: Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J Comp Neurol 1999, 408:449-460.
    10. Salin P, Tseng GF, Hoffman S, Parada I, Prince DA: Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. J Neurosci 1995, 15:8234-8245.
    11. Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben-Ari Y, Esclapez M, Bernard C: Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 2001, 4:52-62.
    12. Chu Y, Parada I, Prince DA: Temporal and topographic alterations in expression ofthe alpha3 isoform of Na+, K(+)-ATPase in the rat freeze lesion model of microgyria and epileptogenesis. Neuroscience 2009, 162:339-348.
    13. Bordey A, Hablitz JJ, Sontheimer H: Reactive astrocytes show enhanced inwardly rectifying K+ currents in situ. Neuroreport 2000, 11:3151-3155.
    14. Jacobs KM, Kharazia VN, Prince DA: Mechanisms underlying epileptogenesis in cortical malformations. Epilepsy Res 1999, 36:165-188.
    15. Tarnowski M, Sieron AL: Adult stem cells and their ability to differentiate. Med Sci Monit 2006, 12:RA154-163.
    16. Dietrich J, Easterday MC: Developing concepts in neural stem cells. Trends Neurosci 2002, 25:129-131.
    17. Romanko MJ, Rola R, Fike JR, Szele FG, Dizon ML, Felling RJ, Brazel CY, Levison SW: Roles of the mammalian subventricular zone in cell replacement after brain injury. Prog Neurobiol 2004, 74:77-99.
    18. Luskin MB: Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993, 11:173-189.
    19. Lois C, Alvarez-Buylla A: Long-distance neuronal migration in the adult mammalian brain. Science 1994, 264:1145-1148.
    20. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O: Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002, 8:963-970.
    21. Goings GE, Sahni V, Szele FG: Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res 2004, 996:213-226.
    22. Moores CA, Perderiset M, Francis F, Chelly J, Houdusse A, Milligan RA: Mechanism of microtubule stabilization by doublecortin. Mol Cell 2004, 14:833-839.
    23. Acampora D, Gulisano M, Broccoli V, Simeone A: Otx genes in brain morphogenesis. Prog Neurobiol 2001, 64:69-95.
    24. Reimers D, Lopez-Toledano MA, Mason I, Cuevas P, Redondo C, Herranz AS, Lobo MV, Bazan E: Developmental expression of fibroblast growth factor (FGF) receptors in neural stem cell progeny. Modulation of neuronal and glial lineages by basic FGF treatment. Neurol Res 2001, 23:612-621.
    25. Chanas-Sacre G, Rogister B, Moonen G, Leprince P: Radial glia phenotype: origin, regulation, and transdifferentiation. J Neurosci Res 2000, 61:357-363.
    26. Rosen GD, Sherman GF, Galaburda AM: Birthdates of neurons in induced microgyria. Brain Res 1996, 727:71-78.
    27. Kolb B, Gibb R: Possible anatomical basis of recovery of function after neonatal frontal lesions in rats. Behav Neurosci 1993, 107:799-811.
    28. Kolb B, Gibb R, van der Kooy D: Neonatal frontal cortical lesions in rats alter cortical structure and connectivity. Brain Res 1994, 645:85-97.
    1. Mattia D, Olivier A, Avoli M: Seizure-like discharges recorded in human dysplastic neocortex maintained in vitro. Neurology 1995, 45:1391-1395.
    2. Wong M: Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2008, 49:8-21.
    3. Dun NJ, Jiang ZG, Mo N: Tubocurarine suppresses slow calcium-dependent after-hyperpolarization in guinea-pig inferior mesenteric ganglion cells. J Physiol 1986, 375:499-514.
    4. Kellinghaus C, Moddel G, Shigeto H, Ying Z, Jacobsson B, Gonzalez-Martinez J, Burrier C, Janigro D, Najm IM: Dissociation between in vitro and in vivo epileptogenicity in a rat model of cortical dysplasia. Epileptic Disord 2007, 9:11-19.
    5. Scantlebury MH, Ouellet PL, Psarropoulou C, Carmant L: Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia 2004, 45:592-600.
    6. Jacobs KM, Gutnick MJ, Prince DA: Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 1996, 6:514-523.
    7. Rosen GD, Sherman GF, Galaburda AM: Birthdates of neurons in induced microgyria. Brain Res 1996, 727:71-78.
    8. Kolb B, Gibb R: Possible anatomical basis of recovery of function after neonatal frontal lesions in rats. Behav Neurosci 1993, 107:799-811.
    9. Kolb B, Gibb R, van der Kooy D: Neonatal frontal cortical lesions in rats alter cortical structure and connectivity. Brain Res 1994, 645:85-97.
    10. Alvarez-Dolado M, Calcagnotto ME, Karkar KM, Southwell DG, Jones-Davis DM, Estrada RC, Rubenstein JL, Alvarez-Buylla A, Baraban SC: Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain. J Neurosci 2006, 26:7380-7389.
    11. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O: Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002, 8:963-970.
    12. Jacobs KM, Prince DA: Excitatory and inhibitory postsynaptic currents in a ratmodel of epileptogenic microgyria. J Neurophysiol 2005, 93:687-696.
    13. Zsombok A, Jacobs KM: Postsynaptic currents prior to onset of epileptiform activity in rat microgyria. J Neurophysiol 2007, 98:178-186.
    14. Rosen GD, Jacobs KM, Prince DA: Effects of neonatal freeze lesions on expression of parvalbumin in rat neocortex. Cereb Cortex 1998, 8:753-761.
    15. Brill J, Huguenard JR: Enhanced Infragranular and Supragranular Synaptic Input onto Layer 5 Pyramidal Neurons in a Rat Model of Cortical Dysplasia. Cereb Cortex.
    16. Chassoux F, Landre E, Rodrigo S, Beuvon F, Turak B, Semah F, Devaux B: Intralesional recordings and epileptogenic zone in focal polymicrogyria. Epilepsia 2008, 49:51-64.
    1. Hagemann G, Kluska MM, Redecker C, Luhmann HJ, Witte OW: Distribution of glutamate receptor subunits in experimentally induced cortical malformations. Neuroscience 2003, 117:991-1002.
    2. Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ: International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 1998, 50:291-313.
    3. Narahashi T: Chemical modulation of sodium channels and GABAA receptor channel. Adv Neurol 1999, 79:457-480.
    4. Redecker C, Luhmann HJ, Hagemann G, Fritschy JM, Witte OW: Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J Neurosci 2000, 20:5045-5053.
    5. Zilles K, Qu M, Schleicher A, Luhmann HJ: Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABA(A) and GABA(B) receptors. Eur J Neurosci 1998, 10:3095-3106.
    6. Luhmann HJ, Karpuk N, Qu M, Zilles K: Characterization of neuronal migration disorders in neocortical structures. II. Intracellular in vitro recordings. J Neurophysiol 1998, 80:92-102.
    7. Luhmann HJ, Raabe K, Qu M, Zilles K: Characterization of neuronal migrationdisorders in neocortical structures: extracellular in vitro recordings. Eur J Neurosci 1998, 10:3085-3094.
    8. Takase K, Shigeto H, Suzuki SO, Kikuchi H, Ohyagi Y, Kira J: Prenatal freeze lesioning produces epileptogenic focal cortical dysplasia. Epilepsia 2008, 49:997-1010.
    9. Boer K, Troost D, Timmermans W, Gorter JA, Spliet WG, Nellist M, Jansen F, Aronica E: Cellular localization of metabotropic glutamate receptors in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Neuroscience 2008, 156:203-215.
    10. Jiao J, Chen DF: Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells 2008, 26:1221-1230.
    11. Moyse E, Segura S, Liard O, Mahaut S, Mechawar N: Microenvironmental determinants of adult neural stem cell proliferation and lineage commitment in the healthy and injured central nervous system. Curr Stem Cell Res Ther 2008, 3:163-184.
    12. Darsalia V, Kallur T, Kokaia Z: Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 2007, 26:605-614.
    13. de Araujo EG, da Silva GM, Dos Santos AA: Neuronal cell survival: the role of interleukins. Ann N Y Acad Sci 2009, 1153:57-64.
    14. Fukuda M, Suzuki Y, Ishizaki Y, Kira R, Kikuchi C, Watanabe S, Hino H, Morimoto T, Hara T, Ishii E: Interleukin-1beta enhances susceptibility to hyperthermia-induced seizures in developing rats. Seizure 2009, 18:211-214.
    15. Liimatainen S, Fallah M, Kharazmi E, Peltola M, Peltola J: Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J Neurol 2009, 256:796-802.
    16. Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS: The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 2009, 216:258-271.
    17. Ozawa S, Kamiya H, Tsuzuki K: Glutamate receptors in the mammalian centralnervous system. Prog Neurobiol 1998, 54:581-618.
    18. Bernabeu R, Sharp FR: NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab 2000, 20:1669-1680.
    19. Tanovic A, Alfaro V: [Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer's disease and vascular dementia]. Rev Neurol 2006, 42:607-616.
    20. Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS: NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 2001, 13:512-520.
    21. White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB: Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 2001, 49:67-78.
    22. Ying Z, Babb TL, Comair YG, Bingaman W, Bushey M, Touhalisky K: Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. J Neuropathol Exp Neurol 1998, 57:47-62.
    23. Najm IM, Ying Z, Babb T, Mohamed A, Hadam J, LaPresto E, Wyllie E, Kotagal P, Bingaman W, Foldvary N, et al: Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia 2000, 41:971-976.
    24. Mikuni N, Babb TL, Ying Z, Najm I, Nishiyama K, Wylie C, Yacubova K, Okamoto T, Bingaman W: NMDA-receptors 1 and 2A/B coassembly increased in human epileptic focal cortical dysplasia. Epilepsia 1999, 40:1683-1687.
    25. Faiz M, Acarin L, Castellano B, Gonzalez B: Proliferation dynamics of germinative zone cells in the intact and excitotoxically lesioned postnatal rat brain. BMC Neurosci 2005, 6:26.
    26. Sanganahalli BG, Joshi PG, Joshi NB: NMDA and non-NMDA receptors stimulation causes differential oxidative stress in rat cortical slices. Neurochem Int 2006, 49:475-480.
    27. Xu G, Ong J, Liu YQ, Silverstein FS, Barks JD: Subventricular zone proliferation after alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor- mediated neonatal brain injury. Dev Neurosci 2005, 27:228-234.
    28. Sallmann S, Juttler E, Prinz S, Petersen N, Knopf U, Weiser T, Schwaninger M: Induction of interleukin-6 by depolarization of neurons. J Neurosci 2000, 20:8637-8642.
    29. Jankowsky JL, Patterson PH: The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol 2001, 63:125-149.
    30. Juttler E, Tarabin V, Schwaninger M: Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity. Neuroscientist 2002, 8:268-275.
    31. Nakashima K, Wiese S, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Yoshida K, Kishimoto T, Sendtner M, Taga T: Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J Neurosci 1999, 19:5429-5434.
    1. Crino PB: Focal brain malformations: seizures, signaling, sequencing. Epilepsia 2009, 50 Suppl 9:3-8.
    2. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB: A developmental and genetic classification for malformations of cortical development. Neurology 2005, 65:1873-1887.
    3. Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, Jackson G, Luders HO, Prayson R, Spreafico R, Vinters HV: Terminology and classification of the cortical dysplasias. Neurology 2004, 62:S2-8.
    4. Crino PB, Nathanson KL, Henske EP: The tuberous sclerosis complex. N Engl J Med 2006, 355:1345-1356.
    5. Becker AJ, Blumcke I, Urbach H, Hans V, Majores M: Molecular neuropathology of epilepsy-associated glioneuronal malformations. J Neuropathol Exp Neurol 2006, 65:99-108.
    6. Wong M: Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2008, 49:8-21.
    7. Lamparello P, Baybis M, Pollard J, Hol EM, Eisenstat DD, Aronica E, Crino PB: Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 2007, 130:2267-2276.
    8. Blumcke I, Vinters HV, Armstrong D, Aronica E, Thom M, Spreafico R: Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disord 2009, 11:181-193.
    9. Vezzani A, Balosso S, Ravizza T: The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 2008, 22:797-803.
    10. Ravizza T, Boer K, Redeker S, Spliet WG, van Rijen PC, Troost D, Vezzani A, AronicaE: The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis 2006, 24:128-143.
    11. Fukuda M, Suzuki Y, Ishizaki Y, Kira R, Kikuchi C, Watanabe S, Hino H, Morimoto T, Hara T, Ishii E: Interleukin-1beta enhances susceptibility to hyperthermia-induced seizures in developing rats. Seizure 2009, 18:211-214.
    12. Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS: The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 2009, 216:258-271.
    13. Boer K, Jansen F, Nellist M, Redeker S, van den Ouweland AM, Spliet WG, van Nieuwenhuizen O, Troost D, Crino PB, Aronica E: Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res 2008, 78:7-21.
    14. Boulanger MJ, Chow DC, Brevnova EE, Garcia KC: Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 2003, 300:2101-2104.
    15. Peters M, Muller AM, Rose-John S: Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis. Blood 1998, 92:3495-3504.
    16. Tenhumberg S, Waetzig GH, Chalaris A, Rabe B, Seegert D, Scheller J, Rose-John S, Grotzinger J: Structure-guided optimization of the interleukin-6 trans-signaling antagonist sgp130. J Biol Chem 2008, 283:27200-27207.
    17. Rose-John S, Neurath MF: IL-6 trans-signaling: the heat is on. Immunity 2004, 20:2-4.
    18. Juttler E, Tarabin V, Schwaninger M: Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity. Neuroscientist 2002, 8:268-275.
    19. Lehtimaki KA, Keranen T, Huhtala H, Hurme M, Ollikainen J, Honkaniemi J, Palmio J, Peltola J: Regulation of IL-6 system in cerebrospinal fluid and serum compartments by seizures: the effect of seizure type and duration. J Neuroimmunol 2004, 152:121-125.
    20. Sallmann S, Juttler E, Prinz S, Petersen N, Knopf U, Weiser T, Schwaninger M: Induction of interleukin-6 by depolarization of neurons. J Neurosci 2000, 20:8637-8642.
    21. Gomez M, Sampson J, Whittemore V: The Tuberous Sclerosis Complex. . Oxford University Press 1999.
    22. Toering ST, Boer K, de Groot M, Troost D, Heimans JJ, Spliet WG, van Rijen PC, Jansen FE, Gorter JA, Reijneveld JC, Aronica E: Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia 2009, 50:1409-1418.
    23. Schick V, Majores M, Engels G, Hartmann W, Elger CE, Schramm J, Schoch S, Becker AJ: Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells. Brain Pathol 2007, 17:165-173.
    24. Mizuguchi M, Takashima S: Neuropathology of tuberous sclerosis. Brain Dev 2001, 23:508-515.
    25. Giacomini D, Acuna M, Gerez J, Nagashima AC, Silberstein S, Paez-Pereda M, Labeur M, Theodoropoulou M, Renner U, Stalla GK, Arzt E: Pituitary action of cytokines: focus on BMP-4 and gp130 family. Neuroendocrinology 2007, 85:94-100.
    26. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A: Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12:2623-2633.
    27. Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, Lindholm D, Keranen T: Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 2000, 41:205-211.
    28. Kirkman NJ, Libbey JE, Wilcox KS, White HS, Fujinami RS: Innate but not adaptive immune responses contribute to behavioral seizures following viral infection. Epilepsia 2009.
    29. de Araujo EG, da Silva GM, Dos Santos AA: Neuronal cell survival: the role of interleukins. Ann N Y Acad Sci 2009, 1153:57-64.
    30. Xiao E, Xia L, Ferin M, Wardlaw SL: Intracerebroventricular injection of interleukin-1 stimulates the release of high levels of interleukin-6 and interleukin-1 receptor antagonist into peripheral blood in the primate. J Neuroimmunol 1999, 97:70-76.
    31. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L: Interleukin-6-typecytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998, 334 ( Pt 2):297-314.
    32. Choi JS, Kim SY, Park HJ, Cha JH, Choi YS, Kang JE, Chung JW, Chun MH, Lee MY: Upregulation of gp130 and differential activation of STAT and p42/44 MAPK in the rat hippocampus following kainic acid-induced seizures. Brain Res Mol Brain Res 2003, 119:10-18.
    33. Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M, Yamagami T, Nakahata T, et al: Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A 1996, 93:407-411.
    34. Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J: Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 2004, 365:106-110.
    35. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L: Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 1993, 90:10061-10065.
    1. Jankowsky JL, Patterson PH: The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol 2001, 63:125-149.
    2. Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS: The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 2009, 216:258-271.
    3. Juttler E, Tarabin V, Schwaninger M: Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity. Neuroscientist 2002, 8:268-275.
    4.张艳萍,张蕴莉,方伯言:炎性因子IL-6、ICAM-1基因多态性与脑梗死的相关性.医学综述2008, 14 539-541.
    5. Gadient RA, Otten UH: Interleukin-6 (IL-6)--a molecule with both beneficial and destructive potentials. Prog Neurobiol 1997, 52:379-390.
    6. Nowell MA, Williams AS, Carty SA, Scheller J, Hayes AJ, Jones GW, Richards PJ, Slinn S, Ernst M, Jenkins BJ, et al: Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J Immunol 2009, 182:613-622.
    7. Rose-John S, Scheller J, Elson G, Jones SA: Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006, 80:227-236.
    8. Hashizume M, Mihara M: Influence of humanized anti-IL-6R antibody, tocilizumab on the activity of soluble gp130, natural inhibitor of IL-6 signaling. Rheumatol Int 2009, 29:397-401.
    9. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A: Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12:2623-2633.
    10. Lehtimaki KA, Peltola J, Koskikallio E, Keranen T, Honkaniemi J: Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res 2003, 110:253-260.
    11. Choi JS, Kim SY, Park HJ, Cha JH, Choi YS, Kang JE, Chung JW, Chun MH, Lee MY: Upregulation of gp130 and differential activation of STAT and p42/44 MAPK in the rat hippocampus following kainic acid-induced seizures. Brain Res Mol Brain Res 2003, 119:10-18.
    12. Peltola J, Hurme M, Miettinen A, Keranen T: Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res 1998, 31:129-133.
    13. Hulkkonen J, Koskikallio E, Rainesalo S, Keranen T, Hurme M, Peltola J: The balance of inhibitory and excitatory cytokines is differently regulated in vivo and in vitro among therapy resistant epilepsy patients. Epilepsy Res 2004, 59:199-205.
    14. Lehtimaki KA, Keranen T, Palmio J, Makinen R, Hurme M, Honkaniemi J, Peltola J: Increased plasma levels of cytokines after seizures in localization-related epilepsy.Acta Neurol Scand 2007, 116:226-230.
    15. Liimatainen S, Fallah M, Kharazmi E, Peltola M, Peltola J: Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J Neurol 2009, 256:796-802.
    16. Lehtimaki KA, Keranen T, Huhtala H, Hurme M, Ollikainen J, Honkaniemi J, Palmio J, Peltola J: Regulation of IL-6 system in cerebrospinal fluid and serum compartments by seizures: the effect of seizure type and duration. J Neuroimmunol 2004, 152:121-125.
    17. Alapirtti T, Rinta S, Hulkkonen J, Makinen R, Keranen T, Peltola J: Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: A video-EEG study. J Neurol Sci 2009, 280:94-97.
    18. Sallmann S, Juttler E, Prinz S, Petersen N, Knopf U, Weiser T, Schwaninger M: Induction of interleukin-6 by depolarization of neurons. J Neurosci 2000, 20:8637-8642.
    19. Aronica E, Gorter JA, Rozemuller AJ, Yankaya B, Troost D: Interleukin-1 beta down-regulates the expression of metabotropic glutamate receptor 5 in cultured human astrocytes. J Neuroimmunol 2005, 160:188-194.
    20. Lehtimaki KA, Keranen T, Palmio J, Rainesalo S, Saransaari P, Peltola J: Regulation of cerebrospinal fluid levels of cytokines after seizures: the role of IL-6 and glutamic acid. Eur J Neurol 2009, 16:e75.
    21. Bernardino L, Ferreira R, Cristovao AJ, Sales F, Malva JO: Inflammation and neurogenesis in temporal lobe epilepsy. Curr Drug Targets CNS Neurol Disord 2005, 4:349-360.
    22. Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J: Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 2004, 365:106-110.
    23. Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL: Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2003, 73:176-187.
    24. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L:Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 1993, 90:10061-10065.
    25. Gruol DL, Nelson TE: Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 1997, 15:307-339.
    26. Rao RS, Prakash A, Medhi B: Role of different cytokines and seizure susceptibility: a new dimension towards epilepsy research. Indian J Exp Biol 2009, 47:625-634.
    27. Vezzani A, Balosso S, Ravizza T: The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 2008, 22:797-803.
    28. Jankowsky JL, Derrick BE, Patterson PH: Cytokine responses to LTP induction in the rat hippocampus: a comparison of in vitro and in vivo techniques. Learn Mem 2000, 7:400-412.
    29. Vezzani A, Granata T: Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 2005, 46:1724-1743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700