用户名: 密码: 验证码:
时滞及非线性系统最优输出跟踪控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别研究了非线性系统、时滞非线性时滞系统、非线性互联大系统和一类仿射非线性系统的最优输出跟踪控制问题,讨论了控制律的物理可实现问题。本文的主要研究内容可概括如下。
     1.首先综述了与研究背景相关的时滞系统、非线性系统的特点及研究方法,然后对最优控制问题与跟踪问题的相互关系和发展状况进行了介绍,在此基础上对时滞及非线性系统最优输出跟踪控制的主要研究方法和最新动态进行了系统分析。
     2.研究参考输入动态特性由外系统给出的非线性系统的最优输出跟踪问题。针对利用极大值原理研究时滞非线性系统最优输出跟踪控制问题时导出的两点边值问题,运用灵敏度参数方法进行转化,将求解最优输出跟踪控制的既含有超前项又含有时滞项的原两点边值问题问题化为一族等价的不含超前项和时滞项的两点边值问题。这族两点边值问题可通过迭代方法依次求得各阶两点边值问题的解,从而获得原两点边值问题的等价解。引入了降维状态观测器,给出了物理可实现的最优输出跟踪控制律,并利用仿真研究验证了方法的有效性。
     3.研究了非线性系统的最优输出跟踪控制问题。对具有一般形式的非线性系统在零点处进行级数展开,使之成为一阶线性项和高阶非线性项分离的形式。利用灵敏度法,对最优跟踪控制问题所导致的非线性两点边值问题进行级数展开,将原问题转化为一族包含已知非线性级数展开项的线性两点边值问题。详细研究了复合函数的高阶导数,给出了非线性项的各阶级数展开项的算法,代入并逐阶求解就得到由线性反馈和补偿项组成的最优跟踪控制律。并利用仿真研究验证了方法的有效性。
     4.研究了含有非线性互联耦合项的动态大系统最优跟踪控制问题,提出一种次优控制律的设计方法。在系统中引入灵敏度参数ε,关于灵敏度参数ε在ε=0处展开Maclaurin级数。将求解高阶耦合的非线性两点边值问题简化为求解一族解耦的线性两点边值问题序列。该族线性微分方程问题的解,构成含有非线性互联耦合项的动态大系统最优跟踪控制问题非线性共态向量序列,最优控制律由线性反馈项和非线性共态向量的和组成。在最优控制律中截取共态向量和的前有限项,导出了一种次优控制律的设计算法。最后对其进行了仿真研究。
     5.研究了一类仿射非线性系统的最优控制问题,改进了唐等提出的逐次逼近法。根据最优控制理论,这类仿射非线性系统最优控制问题的必要条件为无法解析求解的非线性两点边值问题。通过引入非线性微分方程近似求解的逐次逼近法,将非线性两点边值问题转化为一组线性两点边值问题序列。在构造线性两点边值问题序列时,采用了齐次的构造技巧。迭代求解所构造的齐次线性两点边值问题序列,设计出了具有线性闭环反馈形式的最优控制律。截取有限的迭代结果,设计出一种近似的最优控制律,给出了近似最优控制律的设计算法。并通过实例仿真验证了方法的有效性。
     6.文章最后总结了论文的主要工作,并对下一步的研究方向进行了展望。
The dissertation studies the OOT problem for nonlinear systems, time-delay andnonlinear systems, nonlinear interconnected large-scale systems and a class of affinenonlinear systems, and then dicusses the optimal control law is physically realizable.The main contents are given as follows:
     1. Firstly, the characteristics and research methods of time-delayed systems andnonlinear systems which are relative to research objects have been summarized. Nextthe relationship and development of optimal control problem and tracking problemhave been introduced. Then based on the prepareed work, the relative studies on theOOT problem for time-delay and nonlinear systems up to now and the main methodsare given in detail.
     2. The OOT problem of the nonlinear systems whose reference input is generallyproduced by an exosystem is studied. With the Maximum Value Principle, thetwo-point boundary value (TPBV) problems for the OOT of the time-delay andnonlinear systems have been obtained. By introducing a sensitivity parameter, theoriginal TPBV problem for solving the OOT control with delay and advance terms istransformed into a series of TPBV problems without delay or advance terms. Then bysolving the two-point boundary value problem sequence recursively, TPBV isobtained. A reference input observer is introduced such that the optimal control law isphysically realizable. Simulation examples are employed to test the validity of thepresented sensitivity algorithm.
     3. The OOT for nonlinear systems is considered. The nonlinear systems ingeneral form are expanded at zero and become to a form in which the one-order linearterms separated from the high-order nonlinear terms. Using a sensitivity parameter approach, and expanding the nonlinear two-point boundary value (TPBV) problemsled by the OOT control problem with respect to the sensitivity parameter, the originalnonlinear TPBV problem is transformed into a series of linear TPBV problemscontaining known low-order nonlinear terms. Algorithm of nonlinear expanding termsis obtained and substituting them into the recursion formula of adjoint vectorequations, the OOT control law consisting of linear terms and a nonlinearcompensation term can be approximately obtained. A simulation example is employedto test the validity of the presented algorithm.
     4. Considering the optimal output tracking (OOT) problem for nonlinearinterconnected large-scale dynamic systems, an approach for designing suboptimalcontrol law is proposed. By introducing a sensitivity parameterε,εis expanded atzero. By using the approach, the high order, coupling, nonlinear two-point boundaryvalue (TPBV) problem is transformed into a sequence of linear decoupling TPBVproblems. By solving this sequence of linear differential equations, costate vectorsequence of nonlinear interconnected, coupling large-scale dynamic systems isobtained. Then optimal control law consists of linear feedback term and nonlinear costatevector sum. By intercepting the frontal finite terms of costate vector sum, we obtaineda suboptimal control law and its algorithm. A simulation example illustrates theefficiency of the optimal output tracking control law designed.
     5. This paper considers an optimal control for a class of affine nonlinear systems. Animproved successive approximation approach is proposed. By introducing the SuccessiveApproximation Approach of the nonlinear differential equation theory, a linear two-pointboundary value problem sequence is constructed to approximate the nonlinear two-point boundaryvalue problem. A technique is employed to make sure the constructed linear two-point boundaryvalue problems of the approximating sequence homogeneous, Iteratively solving thisapproximating sequence, optimal control law of linear closed-loop feedback form is designed. Analgorithm is presented to design certain approximate optimal control law by truncating thefinite iteration. An illustrative example shows the validity of the algorithm
     6. Finally, the main work in this dissertation is summarized and a proposition isindicated on the research work in the future.
引文
[1] 陈翰馥,郭雷.现代控制理论的若干进展及展望.科学通报,1998,43(1):1-7.
    [2] Emelyanov S. V. Variable structure automatic control system[M]. Mosoow 1967.
    [3] Utkin V. I. Sliding mode and their application in VSSs[M]. Mosoow 1967.
    [4] Itkin U. Control system of variable stmction[M]. John Wiley & Sons, 1976.
    [5] Report of the Workshop at the University of Santa Clara. Challenges to control : An collective view [M], IEEE Trans AC, 1987.
    [6] Hauser J, S Sastry, P Kokotovic, Nonlinear control via approximate input-output linearization: The ball and beam example [M], IEEE Trans AC; 1992.
    [7] Doyle F J, Frank Allgower, Manfred Morari. A normal form approach to approximate input -output linearization for maximum phase nonlinear SISO systems [M], IEEE Tram AC, 1996.
    [8] Krener A J. Approximate linearization by state feedback and coordinate changes [M];Syst Contr Lett; 1984.
    [9] Hunt L R, Turi, A new algorithm for constructing approximate transformations for nonlinear systems [M];IEEE Trans AC; 1993.
    [10] Sira Ramirez. Design of PI controllers for DC-to-DC power supplies via extended linearization [M], Int J Contr, 1999.
    [11] Brockett R W. Volterra Series and geometry control theory [M], Automatica,1976.
    [12] Wang J, Rugh W J. Feedback linearization families for nonlinear systems [M].IEEE Trans AC, 1987.
    [13] Ghannadan R, Blandcnship G; Adaptive control of nonlinear systems via approximate linearization [M];IEEE Tram AC; 1996.
    [14] Baumann W T, Rugh W J. Feedback control of nonlinear systems by extended linearization [M], IEEE Trans AC. 1986.
    [15] Mill J. K. A force and position control of manipulators during constraine tasks[J]. IEEE trans. On Robotice and Automation. 1989,5(1):30-46。
    [16] W. Li. Optimization of a fuzzy controller using neural network. Orlando, FL,USA: IEEE, Piscataway, NJ, USA, 1994. 1: pp. 223-227.
    [17] S.-J. Wu, H.-H. Chiang, H.-T. Lin, T.-T. Lee. Neural-network-based optimal fuzzy controller design for nonlinear systems. Fuzzy Sets and Systems, 2005,154(2): pp. 182-207.
    [18] M. Abu-Khalaf, F. L. Lewis. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica,2005, 41(5): pp. 779-791.
    [19] 晁红敏,胡跃明,吴忻生.高阶滑模控制在非完整移动机器人鲁棒输出跟踪中的应用.控制理论与应用,2002,19(2):253-257.
    [20] 李琳琳,赵长安,崔祜涛.一类具有不匹配不确定性非线性系统鲁棒输出跟踪.高技术通讯,2001,8:86-88。
    [21] 向峥嵘,陈庆伟,胡维礼.非线性时变系统基于状态观测器的输出跟踪.控制理论与应用,2000,17(4):597-600.
    [22] 王新华,陈增强,袁著祉.基于扩张观测器的非线性不确定系统输出跟踪.控制与决策,2004,19(10):1113-1116。
    [23] R. Marino, P. Tomei. Adaptive tracking and disturbance rejection for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2005, 50(1):90-95.
    [24] 余凯,赵长安,李士勇.一类不确定非线性系统的鲁棒输出跟踪控制器.系统工程与电子技术,2002,24(10):42-49。
    [25] Y. Zhang, S. Li. Optimization design for a class of multi-input nonlinear cascade systems: Backstepping approach. Kunming, China: Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 2004. pp. 1723-1728.
    [26] H. Deng, M. Krstic. Stochastic nonlinear stabilization -- Ⅰ: A backstepping design. Systems & Control Letters, 1997, 32(3): pp. 143-150.
    [27] Y. Zhang, S.-Y. Li. Optimization design for a class of cascade control systems:Backstepping approach. Control Theory and Applications, 2005, 22(3): pp.481-486.
    [28] M. McMullen, A. Jameson, J. Alonso. Demonstration of nonlinear frequency domain methods. AIAA Journal, 2006, 44(7): pp. 1428-1435.
    [29] R. D. Gudi, C. Shreesha, P. S. V. Nataraj. Frequency-domain-based,control-relevant model reduction for nonlinear plants. Industrial and Engineering Chemistry Research, 2002, 41(20): pp. 5006-5015.
    [30] C. G. McGee, M. Haroon, D. E. Adams, Y. W. Ink. A frequency domain technique for characterizing nonlinearities in a tire-vehicle suspension system.Journal of Vibration and Acoustics, Transactions of the ASME, 2005, 127(1):pp. 61-76.
    [31] Y.-F. Chang. Mixed HdH. optimization approach to gap control on EDM.Control Engineering Practice, 2005, 13(1): pp. 95-104.
    [32] T. W. McLain, R. W. Beard. Nonlinear robust control of an electro-hydraulic positioning system. Anaheim, CA, USA: ASME, Fairfield, NJ, USA, 1998. 5:pp. 119-125.
    [33] J. R. Cloutier, C. N. D'Souza, C. P. Mracek. Nonlinear Regulation and Nonlinear H-infinity Control Via the State-Dependent Riccati Equation Technique: Part 1. Theory. Proceedings of the First International Conference on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL, 1996.
    [34] 唐功友,孙亮.非线性互联大系统的最优控制:逐次逼近法.自动化学报,2005(2):pp.248-254.
    [35] G.-Y. Tang, N. Xie, P. Liu. Sensitivity approach to optimal control for affine nonlinear discrete-time systems. Asian Journal of Control, 2005, 7(4): pp.448-454.
    [36] G.-Y. Tang, L. Sun. Optimal control for nonlinear interconnected large-scale systems: A successive approximation approach. Acta Automatica Sinica, 2005,31(2): pp. 248-254.
    [37] R. Beard, G. Saridis, J. Wen. Iterative solution to the finite-time linear quadratic optimal feedback control problem. Seattle, WA, USA, 1995. 5: pp.3921-3922.
    [38] R. W. Beard, T. W. McLain. Successive Galerkin approximation algorithms for nonlinear optimal and robust control. International Journal of Control, 1998,71(5): pp. 717-743.
    [39] T. W. McLain, R. W. Beard. Successive Galerkin approximations to the nonlinear optimal control of an underwater robotic vehicle. Leuven, Belgium:IEEE, Piscataway, NJ, USA, 1998. 1: pp. 762-767.
    [40] 冯国楠.最优控制理论与应用.北京工业大学出版社,1991.
    [41] 王翼.离散控制工程.北京:科学出版社,1987.
    [42] L-C Lai, C-C Yang and C-J Wu. Time-optimal maneuvering control of a rigid spacecraft. Acta stronautica, 2007, 60(10-11): 791-800.
    [43] Y. Park. Robust and optimal attitude stabilization of spacecraft with external disturbances. Aerospace Science and Technology, 2005, 9(3): 253-259.
    [44] T. I. Fossen and J. P. Strand. Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs: experimental results.Automatica, 2001, 37(5): 701-715.
    [45] D. R. Clark and A. R. DeWispelare. Application of multiple objective optimization theory to a preliminary missile design study. Design Studies, 1985, 6(2): 83-90.
    [46] M. El Moursi, A.M. Sharaf and K. El-Arroudi. Optimal control schemes for SSSC for dynamic series compensation. Electric Power Systems Research, 2008, 78(4): 646-656.
    [47] A. Babarit and A. H. Cl(?)ment. Optimal latching control of a wave energy device in regular and irregular waves. Applied Ocean Research, 2006, 28(2):77-91.
    [48] H. Wang, K. Ju and K. Chon. Closed-loop nonlinear system identification via the vector optimal parameter search algorithm: Application to heart rate baroreflex control. Medical Engineering & Physics, 2007, 29(4): 505-515.
    [49] 解学书.最优控制理论与应用:清华大学出版社,1987.
    [50] 刘永清,唐功友.大型动力系统的理论与应甬:滞后、稳定与控制.广州:华南理工大学出版社,1992
    [51] B. Chanane. Optimal control of nonlinear systems: A recursive approach.Computers & Mathematics with Applications, 1998, 35(3): pp. 29-33.
    [52] W. L. Garrard, D. F. Enns, S. A. Snell. Nonlinear feedback control of highly manoeuvrable aircraft. International Journal of Control, 1992, 56: pp. 799-812
    [53] 唐功友,曲海鹏,高延铭.一类非线性系统次优控制的灵敏度法.青岛海 洋大学学报:自然科学版,2002,32(4):pp.615-620
    [54] Y. nishikawa, N. Sannomiya, H. Itakura. A method for suboptimal design of nonlinear feedback systems. Automatica, 1971, 7(6): pp. 703-712.
    [55] W. L. Garrard. Suboptimal feedback control for nonlinear systems. Automatica,1972, 8: pp. 219-221.
    [56] 唐功友,刘毅敏.基于灵敏度法的时滞离散系统最优跟踪控制.控制与决策,2005,20(11):pp.1279-1282
    [57] R. W. Beard, G. N. Saridis, J. T. Wen. Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12):2159-2177.
    [58] R. J. Leake, R. W. Liu. Construcion of suboptimal control sequences. ASME Journal on Control and Optimization, 1967, 5: 54-63.
    [59] G. N. Saridis, C.-S. G. Lee. Approximation theory of optimal control for trainable manipulators. IEEE Transactions on Systems, Man, and Cybernetics,1979, SMC-9(3): 152-159.
    [60] R.W. Beard, G. N. Saridis, J. T. Wen. Galerkin approximation of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12):2159-2177.
    [61] R. W. Beard, G. N. Saridis, J. T. Wen. Approximate solutions to the time-invariant Hamilton-Jacobi-Bellman equation. Journal of Optimization Theory and Applications, 1998, 96(3): 589-626.
    [62] T. W. Mclain, C. A. Bailey, R. W. Beard. Synthesis and experimental testing of a nonlinear optimal tracking controller. Proceedings of the American Control Conference, San Diego, CA, USA, 1999. 2847-2851.
    [63] A. Wernli, G. Cook. Suboptimal control for the nonlinear quadratic regulator problem. Automatica, 1975, 11(1): 75-84.
    [64] V. Rehbock, K. L. Teo, L. S. Jennings. Optimal and suboptimal feedback controls for a class of nonlinear systems. Computers and Mathematics with Applications, 1996, 31(6): 71-86.
    [65] S. P. Banks, D. McCaffrey. Lie algebras, structure of nonlinear systems and chaotic motion. International Journal of Bifurcation and Chaos, 1998, 8(7):1437-1462.
    [66] T. Cimen, S. P. Banks. Nonlinear optimal tracking control with application to super-tankers for autopilot design.Automatica, 2004, 40(10): 1845-1863.
    [67] Y. F. Chang, T. T. Lee. Application of general orthogonal polynomials to the optimal control of linear systems. International Journal of Control, 1986,43(4): 1283-1304.
    [68] M.-L Wang, R.-Y. Chang, S.-Y. Yang. Analysis and optimal control of time-varying systems via general orthogonal polynomials. International Journal of Control, 1986, 44(4): 895-910.
    [69] C.-Y. Tang. Suboptimal control for nonlinear systems: a successive approximation approach. Systems and Control Letters, 2005, 54(5): 429-434.
    [70] D. Mahayana, R. J. Widodo. Optimal tracking of time varying linear systems via general orthogonal polynomials. Kobe, Jpn: Publ by IEEE, Los Alamitos,CA, USA, 1991.3: pp. 2188-2192.
    [71] 吴斌,程鹏.广义正交多项式在时变系统跟踪问题中的应用.北京航空航天大学学报,1999(4):pp.414-417。
    [72] J.-H. Chou, C.-H. Hsieh, J.-H. Sun. On-line optimal tracking control of continuous-time systems. Mechatronics, 2004, 14(5): pp. 587-597,
    [73] T. T. Lee, Y. F. Chang. Analysis of Time-Varying Scaled Systems via General Orthogonal Polynomials. IEEE Transactions on Automatic Control, 1987,AC-32(7): pp. 645-648.
    [74] S.-C. Tsay, I. L. Wu, T.-T. Lee. Optimal Control of Linear Time-Delay Systems via General Orthogonal Polynomials. International Journal of Systems Science, 1988, 19(2): pp. 365-376.
    [75] N. J. Krikelis, K. L Kiriakidis. Optimal feedback control of non-linear systems. International Journal of Systems Science, 1992, 23: pp. 312-329.
    [76] G.-Y. Tang, Y.-D. Zhao, B.-L. Zhang. optimal output tracking control for nonlinear systems via successive approximation approach. Nonlinear Analysis, 2007, 66(6): pp. 1365-1377.
    [77] J. Chu, Application of a discrete optimal tracking controller to an industrial electric heater with pure delays, J. of Process Control, 1995, 5(1): 3-8.
    [78] 佘焱,张嗣瀛.一类时滞非线性控制系统的输出调节.控制理论与应用,2001(1):pp.102-104.
    [79] J.-P. Richard. Time-delay systems: an overview of some recent advances and open problems. Automatica, 2003, 39(10): 1667-1694.
    [80] G. L. Kharatishvili. A maximum principle in external problems with delays, in:Mathematical Theory of Control. New York: Academic Press, 1967.
    [81] Becerra V M, Roberts P D. Dynamic integrated system optimization and parameter estimation for discrete time optimal control of nonlinear systems. [J]International Journal of Control, 1996,63(2) :257-281.
    [82] Kolmanovsky I V, Maizenberg T L. Optimal control of continuous-time linear systems with a time-varying, random delay [J]. Systems and Control Letters,2001, 44(2), 119-126.
    [83] Cai G-P, Huang J-Z, Yang S X. An optimal control method for linear systems with time delay[J]. Computers and Structures, 2003, 81(15): 1539-1546.
    [84] Sheng J, Elbeyli O, Sun J Q. Optimal Feedback Controls of Linear Systems with Tune Delay[A]. Proc. ASME Design Engineering Technical Conference[C], 2003, 5 (C): 2015-2035.
    [85] M. N. Oguztoreli. Time-Lag Control Systems. New York: Academic Press,1966.
    [86] D. H. Eller, J. K. Aggarwal, H. T. Banks. Optimal control of linear time-delay systems. IEEE Transactions on Automatic Control, 1969, 14: 678-687.
    [87] Y. Alekal, P. Brunovsky, D. H. Chung, B. E. Lee. The quadratic problem for systems with time delays. IEEE Transactions on Automatic Control, 1971, 16:673-687.
    [88] H. Tamro. Decentralized optimization for distributed-lag models of discrete systems. Automatica, 1975, 11(3): 595-602.
    [89] M. C. Delfour. The linear quadratic control problem with delays in space and control variables: a state space approach. SIAM Journal of Control Optimization, 1986, 24: 835-883.
    [90] K. Uchida, E. Shimemura, T. Kubo, N. Abe. The linear-quadratic optimal control approach to feedback control design for systems with delay.Automatica, 1988, 24(6): 773-780.
    [91] N. J. Krikelis, K. I. Kiriakidis. Optimal feedback control of the non-linear systems. International Journal of Systems Science, 1992, 23: 2141-2153.
    [92] G.-Y. Tang, P.-L. Fu. A suboptimal control approach of linear time-delay systems. Proceedings of 14th World Congress of IFAC. Beijing P. R. China,1999. 99-104.
    [93] Liao F, Wang J L, Yang G H. Reliable robust flight tracking control: an LMI approach[J]. IEEE Transactions on Control Systems Technology, 2002, 10:76-89.
    [94] Sharma R, Tewari A. Optimal nonlinear tracking of spacecraft attitude maneuvers [J]. IEEE Transactions on Control Systems Technology, 2004, 12:677-682.
    [95] Liang Y W, Chu T C, Wu P J, Xu S D, Cheng C C. Nonlinear reliable output tracking control with application to bank-to-turn missile systems[A].Proceedings of the 5th World Congress on Intelligent Control and Automation[C]. Hangzhou: IEEE, 2004, 2: 1187-1191.
    [96] Fu S H, Cheng C C, Yin C Y. Nonlinear adaptive tracking control for underway replenishment progress [A]. Proceedings of 2004 IEEE International Conference on Networking Sensing and Control[C]. IEEE, 2004, 2: 707-712.
    [97] Kim Y H, Lewis F L, Dawson D M. Intelligent optimal control of robotic manipulators using neural networks [J]. Automatica, 2000, 36: 1355-1364.
    [98] Tang G-Y, SUN Ling. Optimal Control for Interconnected Large-Scale System:A Successive Approximation Approach [J]. ACTA AUTOMATICA SINICA,2005, 31(2): 248-254.
    [99] Zhao X-H, Tang G-Y. Suboptimal control of linear discrete large-scale systems with state time-delay[A]. In: Proceedings of the Fourth International Conference on Control and Automation[C], Montreal Canada, 2003, 404-408.
    [100]Nagurka M. L., Yen V., Fourier-based optimal control of nonlinear dynamic systems [J], Trans. ASME J. Dyn. Syst. Meas. Control, 1990, 112 (1): 17-26.
    [101]J. S. Shamma, J. R. Cloutier, Existence of SDRE Stabilizing Feedback, IEEE Trans. on Automatic Control, Voi.48, No.3, 513-517, 2003.
    [102]T. Cimen, S. P. Banks, Global Optimal Feedback Control for General Nonlinear Systems with Nonquadratic Performance Criteria, Systems & Control Letters, Vol.53, No.5, 327-346, 2004.
    [103]R. W. Beard, G. N. Saridis, J. T. Wen, Galerkin Approximations of the Generalized Hamilton-Jacobi -Bellman Equation, Automatica, Vol.33, No.12,2159-2177, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700