用户名: 密码: 验证码:
聚合物热分解机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,聚合物的热分解反应机理的理论研究成为最具活力的研究领域。本文对几类聚合物反应机理进行了计算和模拟。具体方法是以聚合物的重复单元作为计算模型,得到各类高聚物的结构特征量子化学参数,通过对聚合物单体反应机理的研究来探讨聚合物的相关反应机理。
     本文采用量子化学方法系统研究了如下3个体系;(1)聚丁烯二酸二乙酯的热分解反应机理;(2)聚氯乙烯脱去氯化氢的热分解反应机理;(3)聚β-羟基丁二酸的热分解反应机理。
     首先,对聚丁烯二酸二乙酯的热分解反应机理进行了理论研究。在HF/6-31G(d)和B3LYP/6-31G(d)水平上计算了3条可能的反应路径。他们分别是路径(Ⅰ),(Ⅱ)和(Ⅲ)。并且在相同水平上计算了聚丁烯二酸二乙酯热分解反应中反应物、过渡态和产物的平衡构型、振动频率和能量,并在B3LYP/6-31G(d)水平上经过内禀反应坐标(IRC)分析加以证实。结果表明,三条路径反应的活化能活化能遵从以下顺序:Ⅲ>Ⅱ>Ⅰ,因此路径(Ⅰ)为主要的反应路径。
     其次,用密度泛函理论方法(B3LYP),在6-31G*水平上对聚氯乙烯(PVC)脱去氯化氢热分解反应的机理进行了理论研究,计算了3条可能的最低能量反应路径。计算了氯乙烯脱去氯化氢分子反应中反应物、过渡态和产物的平衡构型、振动频率和能量,并进一步在B3G3水平上进行了能量计算。经过内禀反应坐标分析(IRC)加以证实。结果表明氯化氢的催化作用作为离子反应机理是热分解反应的主要途径之一,在B3LYP/6-31G(d)水平上路径(2)和路径(3)的活化能分别是55.1 kcal/mol和41.5 kcal/mol。
     最后,对聚β-羟基丁二酸的热分解反应机理进行了研究。采用密度泛函理论(DFT),在B3LYP/6-31G(d)水平上对反应过程中反应物、过渡态和产物的平衡构型、振动频率和能量进行了理论计算。结果表明此热分解反应经历了三个阶段的拉链式反应。产生反丁烯二酸,然后脱水生成酐。本文所建立的各种模型精确,可靠。本文从理论上对几种聚合物的热降解机理进行了分析和研究。结果表明密度泛函理论能够对聚合物热分解反应机理提供合理的几何结构和相对反应能量。为各种聚合物反应机理的理论探究也提供一定的指导作用。
Recently, the thermal decomposition mechanism of polymer mechanism becomes one of the most active fields. The chemical descriptors of polymers were choosed, used to calculate and predict the property or reaction mechanism of polymers. The quantum chemical descriptors or topology descriptors are obtained directly from repeating units of polymers. Discussing the reation mechanism from monomers of polymers, the calculated results indicate the mechanism of polymer. The paper applied the quantum methods and systematically studied the following three systems. (1) the thermal decomposition of model compounds for Poly (dialkyl fumarate), (2) the thermal dehydrochlorination of model compounds for poly (vinyl chloride), (3) the thermal decomposition of model compounds forβ-Poly (L-malate).
     Firstly, the thermal decomposition of model compounds for poly (dialkyl fumarate) was investigated theoretically. The three minimum energy paths of the possible reactions were calculated at the HF/6-31G (d) and B3LYP/6-31G(d) levels. Three favorable paths were found (path (Ⅰ) , path (Ⅱ) and path (Ⅲ) ). Geometries, structures, and energies were evaluated for reactants, products, and transition states of the proposed pathways at the HF/6-31G (d) and B3LYP/6-31G (d) levels. The transition states of possible reaction pathways was obtained at B3LYP/6-31G (d) level and verified by internal reaction coordinate (IRC) analysis. The activation energies for the three reaction paths are in the following order:Ⅲ>Ⅱ>Ⅰ. It has been found that the path (Ⅰ) is considered as the main path for the thermal decomposition of model compounds for poly (dialkyl fumarate).
     Secondly, the thermal decomposition mechanism of HCl elimination reaction of polyvinyl chloride (PVC) is investigated using density function theory with B3LYP/6-31G* method. The three minimum energy paths of the possible reactions were calculated. The geometries, structures, and energies were evaluated for reactants, products, and transition states of the proposed pathways at the B3LYP/6-31G(d) level. To obtain more reliable thermal enthalpies and activation energies, calculations were also carried out using the composite G3B3 approach. The transition state of possible reaction pathway was obtained and verified by internal reaction coordinate (IRC) analysis. The result shows that the ionic reaction mechanism of decomposition mechanism of HCl elimination reaction of vinyl chloride is a main reactive channel. The activation energies of path (2) and path (3) are 55.1 kcal/mol and 41.5 kcal/mol at the B3LYP/6-31G(d) level, respectively.
     At last, the thermal decomposition of model compounds forβ-Poly (L-malate) was investigated theoretically. The geometries, structures, and energies were evaluated for reactants, products, and transition states of the proposed pathways at the B3LYP/6-31G(d) levels. It was found that poly (β, L-malic acid) depolymerized by an unzipping mechanism with generation of fumaric acid which is then partially converted in a mixture of maleic acid and anhydride.
     The models in this paper are proved to be accurate and reliable. The thermal decomposition of model compounds for some polymers was investigated theoretically. The results indicate that the density functional theory can provide reasonable and relative energies, and it was applied for the theoretical study the thermal decomposition mechanism.
引文
[1]潘祖仁.高分子化学[M].北京:化学工业出版社, 2001: 230-235
    [2]焦书科,周彦豪译.现代塑料手册[M].北京:中国石化出版社, 2003: 602-603.
    [3]高军刚,李源勋.高分子材料[M].北京:化学工业出版社,2002: 107-108.
    [4] L. A. Utracki. Polymer alloys and blends[M]. New York: Hanser Publishers, 1989: 248-250.
    [5]鲁江,许静雯,郦华兴.完全生物降解塑料的研究进展.塑料科技[J]. 2000, 12(6): 47-49.
    [6]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社, 2002: 9-11.
    [7]黄根龙.治理塑料废弃物新技术途径采讨一专论可降解塑料的研究发展[J].化学进展, 1998, 2: 106-118.
    [8] R. W. Lenz. Biodegradable polymers[J]. Adv. Polym. Sci., 1993, 107: 1-40.
    [9] W. Koch, M. C. A. Holthausen. Chemist’s guide to density functional theory[M]. New York: Wiley, 2001: 245-302.
    [10] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [11] C. Lee, W. Yang, R. G. Parr. Development of the colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789.
    [12] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, M. S. Gordon. Self-consistent molecular orbital methods. 23. A polarization basis set for second row elements[J]. J. Chem. Phys., 1982, 77: 3654–3665.
    [13]刘志平,黄世萍,汪文川.分子计算科学一化学工程新的生长点[J].化工学报, 2003, 4: 49-61.
    [14]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985, 786-789.
    [15]林梦海.量子化学计算方法与应用[M].北京:科学出版社, 2004, 116-153.
    [16] P. Yang, F. Gao. Principle of bioinorganic chemistry[M]. Beijing: Science Press, 2002: 463-465.
    [17] J. A. Pople. Theory of molecular orbit approximate method[M]. Jiang Yuansheng, trans. Beijing: Science Press, 1976: 64-74.
    [18]徐光宪,黎乐民.量子化学基本原理和从头算方法(中册)[M].北京:科学出版社, 1985: 678-743.
    [19]江元生.结构化学[M].北京:高等教育出版社, 1997: 228-346.
    [20] D. W. Rogers. Computational chemistry using the PC, 3rd ed[M]. New Jersey: John Wiley & Sons Inc., 2003: 263-293.
    [21] E. Heilbronner, H. Bock. The HMO-Model and its application[M]. Wang Zong mu, Chen Yin Li,trans. Beijing: Science Press, 1982: 104-110.
    [22] M. J. S. Dewar. The molecular orbital theory of organic chemistry[M]. Dai Shushan, Liu Youde, trans. Beijing: Science Press, 1997: 549-552.
    [23] W. Koch, M. C. A. Holthausen. Chemist’s guide to density functional theory[M]. New York: Wiley, 2001: 245-302.
    [24] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas[J]. Phys. Rev.1964, 136: B864-871.
    [25] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation efects[J]. Phys. Rev., 1965, 140, A1133-1138.
    [26] D. C. Langreth, K. P. Perdew. Exchange-correlation energy of a metallic surface: Wave-vector analysis[J]. Phys. Rev., 1977, B15: 2884-2901.
    [27] D. C. Langreth, J. P. Perdew. Exchange-correlation energy of a metallic surface: Wave-vector analysis II [J]. Phys. Rev., 1982, B26: 2810-2818.
    [28] J. P. Perdew, J. A. Chevary, S. R. Vosko, et al. Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev., 1992, B46: 6671-6687.
    [29] J. S. Winn. Physical chemistry[M]. New York: Harper Collins College Publishers, 1995: 1159-1162.
    [30] G. D. Billing, K.V Mikkelsen. Introduction to molecular dynamics and chemical kinetics[M]. New York: John Wiley & Sons, Inc., 1996, 98-163.
    [31] S. lasstone, K.J. Laidler, H .Erying. Theory of rate processes[M]. New York: McGraw-Hill, 1941: 366-367.
    [32] R. Duncan. The dawning era of polymer therapeutics[J]. Nat. Rev. Drug. Discov., 2 2003,2: 347–360.
    [33] B. C. Garret, D .G .Truhlar. Generalized transition state theory classical mechanical theory and applications to collinear reactions of hydrogen molecules[J]. J. Phys.Chem., 1979, 83: 1052-1079.
    [34] B. C. Garrett, D. G. Truhlar. Criterion of minimum state density in the transition state theory of bimolecular reactions[J]. J. Chem. Phys., 1979, 70 ,1593-1598.
    [35] W. L. Hase. The criterion of minimum state density in unimolecular rate theory. An application to ethane dissociation[J] J. Chem. Phys., 1976, 64: 2442-2449.
    [36] M .Quack, J. Troe, Ber. Bunsenges. Unimolecular Processes V: Maximum free energy criterion for the high pressure limit of dissociation reactions[J]. Phys. Chem., 1977, 81: 329-337.
    [37] J. B. Collins, P. R. Schleyer, J. S. Binkley, J. A. Pople. Self- consistent molecular orbital methods, XVII: Geometries and binding energies of second-row molecules. A comparison of three basis sets[J]. J. Chem. Phys., 1976, 64: 5142-5151.
    [38] J. S. Binkley, J. A. Pople, W. J. Hehre. Self-consistent molecular orbital methods, 21: Small split-valence basis sets for first-row elements[J]. J. Am. Chem. Soc., 1980, 102: 939-947.
    [39] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, W. J. Hehre. Self-consistent molecular orbital methods, 22: small split-valence basis sets for second-row elements[J]. J. Am. Chem. Soc., 1982, 104: 2797-2803.
    [40] G. A. Petersson, M. A. Allaham. A complete basis set model chemistry, II: Open-shell systems and the total energies of the first-row atoms[J]. J. Chem. Phys., 1991, 94: 6081-6090.
    [41] M. J. Frisch, J. A. Pople, J. S. Binkley. Self-consistent molecular orbital methods, 25: supplementary functions for Gaussian basis sets[J]. J. Chem. Phys., 1984, 80: 3265-3269.
    [42] D. E. Woon, T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. II. The atoms aluminum through argon[ J].J. Chem. Phys.,1993,98 :1358-1371.
    [43] R. A. Kendall, T. H. Jr. Dunning, R. J. Harrison. Electron afinities of the first-row atoms revisited. Systemaitic basis sets and wave functions[J].J. Chem. Phys.,1992, 96: 6796-6806.
    [44] T.H. Dunning, Jr., "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen [J]. J. Chem. Phys., 1989, 90: 1007-1023.
    [45] K. A. Peterson, D. E. Woon, T. H. Dunning, Jr., Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction [J]. J. Chem. Phys., 1994, 100:7410-7415.
    [46] M. Born, R. Oppenheimer. Zur quatentheorie der molekeln[J]. Ann. Phys., 1927, 84: 457-458.
    [47] J. M. G. Cowie, Z. Hap. Poly(mono-n-alkyl itaconic acid esters): their preparation and some physical properties[J]. Br. Polym. J., 1977, 9: 241-245.
    [48] J. G. Popovi?, L. Katsikas, J. S. Velickovi?. The thermal degradation kinetics of poly(di-n-alkyl itaconates)[J]. J. Therm. Anal., 1992, 38: 953-959.
    [49] I. G. Popovi?, L. Katsikas, J. S. Velickovi?. The non-oxidative thermal degradation of poly(di- n- alkyl itaconates). I. Analysis of the thermolysis volatiles[J]. Polym. Degrad. Stab., 2005, 89: 153-164.
    [50] I. G. Popovi?, L. Katsikas, J. S. Velickovi?. The non-oxidative thermal degradation of poly(di-n- alkyl itaconates). II. Analysis of the polymer residue[J]. Polym. Degrad. Stab., 2005, 89: 165-174.
    [51] N. Grassie. Recent work on the thermal degradation of acrylate and methacrylate homopolymers and copolymers[J]. Pure. Appl. Chem., 1972, 30: 119-134.
    [52] N. Grassie. G. Scott. Polymer degradation and stabilization[M]. Cambridge: Cambridge University Press, 1985, 1-67.
    [53] I. C. McNeill. Thermal degradation. In: G. Allen, J. C. Bevington, G. C. Eastmond, Ledwith A, Russo S, Sigwalt P, editors. Comprehensive polymer science, Oxford: Pergamon Press, 1989, 6: 451-500.
    [54] K. J. L. Burag, S. Porter, J. F. Kelam. Biomaterial development for bone tissue engineering[J]. Biomaterials, 2000, 21: 2347–2359.
    [55] L. J. Suggs, J. L. West, A. G. Mikos. Platelet adhesion on a bioresorable poly (propy- lenefumarate–co-ethylene glycol) copolymer[J]. Biomaterials, 1999, 20(7): 683–690.
    [56] J. P. Fisher, D. Dean, A. G. Mikos. Photocrosslinking characteristics and mechanical properties of diethyl fumarate poly(propylene fumarate) biomaterials[J]. Biomaterials, 2002, 23(22): 4333–4343.
    [57] T. Otsu, H. Minai, N. Toyoda, T. Yasuhara. Radical high polymerization of dialkyl fumarates with bulky substituents leading to less-flexible rod-like polymers[J]. Makromol. Chem., 1985, 12: 133-142.
    [58] T. Otsu, M. Yoshioka, T. Sunagawa. Radical polymerization of isopropyl tert-butyl fumarate and maleate, and characterization of the resulting polymers[J]. J. Polym. Sci.. Part A Polym. Chem., 1992, 30: 1347-1354.
    [59] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38: 3098-3100.
    [60]赵清华,张绍文,李前树. 1,3,3-三硝基氮杂环丁烷的HONO消去反应机理的理论研究[J].北京理工大学学报, 2006, 26(2): 166-170.
    [61]刘俊伶,朱元强,李来才. HCO自由基与HO2自由基反应机理的理论研究[J].四川师范大学学报(自然科学版), 2006, 29(6): 726-731.
    [62] F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, E. Keinan. Decomposition of triacetone triperoxide is an entropic explosion[J]. J. Am. Chem. Soc., 2005, 127: 1146-1159.
    [63] R. Cohen, Y. Zeiri, E. Wurzberg, R. Kosloff. Mechanism of thermal unimolecular decomposition of TNT (2, 4, 6-Trinitrotoluene): A DFT study[J]. J. Phys. Chem. A., 2007, 111: 11074-11083.
    [64] K. Fukui, The path of chemical reactions, the IRC approach[J]. Acc. Chem. Res., 1981, 14: 363-368.
    [65] M. H. Gordon, J. A. Pople. A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations[J]. J. Chem. Phys., 1988, 89: 5777-5786.
    [66] P. Merino, T. Tejero, U. Chiacchio, G. Romeo, A. Rescifina. A DFT study on the 1,3-dipolar cycloaddition reactions of C-(hetaryl) nitrones with methyl acrylate and vinyl acetate[J]. Tetrahedron., 2007, 63: 1448–1458.
    [67] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople. GAUSSIAN 03, Revision A.9. Gaussian, Inc., Pittsburgh, PA, 2003.
    [68] R. Miranda, J. Yang, C. Roy, C. Vasile. Vacuum pyrolysis of PVC. I. Kinetic study[J]. Polym. Degrad. Stab., 1999, 64: 127-144.
    [69] T. Iida, M. Nakanishi, K. Goto. Investigations on poly (vinyl chloride). I. Evolution of aromatics on pyrolysis of poly (vinyl chloride) and its mechanism[J]. J. Polym. Sci., 1974, 12: 737-749.
    [70] W. H. Starnes Jr. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride)[J]. Prog. Polym. Sci., 2002, 27: 2133-2170.
    [71] K. L. Paciorek, R. H. Kratzer, J. Kaufman, J. Nakahara. Oxidative thermal decomposition of poly (vinyl chloride) compositions[J]. J. Appl. Polym. Sci., 1974, 18: 3723-3729.
    [72] Y. Shiraga, M. A. Uddin, A. Muto, M. Nakazaki, Y. Sakata. Boiling-point distributions and dechlorination of organic chlorine compounds in oil obtained from the degradation of PVC mixed plastic[J]. Energy Fuels, 1999, 13: 428-432.
    [73] R. Miranda, H. Rakdel, C. Roy, H. Darmstadt, C. Vasile. Vacuum pyrolysis of PVC II. Product analysis[J]. Polym. Degrad. Stab., 1999, 66: 107-125.
    [74] K. Kulesza, K. German. Chlorinated pyrolysis products of co-pyrolysis of poly(vinyl chloride) and poly(ethylene terephthalate)[J]. J. Anal. Appl. Pyrol., 2003, 67: 123-134.
    [75] A. A. Yassin, M. W. Sabaa. Degradation and stabilization of poly(vinylchloride)[J] J. Macromol. Sci., Macromol. Rev. Chem. Phys., 1990, 30: 491-558.
    [76] D. E. Winkler. Mechanism of polyvinyl chloride degradation and stabilization[J]. J. Polym. Sci.,1959, 35: 3-16.
    [77] K. S. Minsker. The general patterns of photooxidative degradation of aliphatic polyamides[J]. Int. J. Polym. Mater., 1994, 24: 235-251.
    [78] B. Iván. Thermal stability, degradation, and stabilization mechanisms of Polyvinyl chloride[J]. Adv. Chem. Ser., 1996, 249: 19-32.
    [79] I. Tvaroska, T. Bleha, L. Valko. On thermal dehydrochlorination of model compounds for PVC IV. MO Study of the catalytic effect of hydrogen chloride[J]. Polym. J., 1975, 7: 34-43.
    [80] L. Joseph Toto, O. Glyn Pritchard, K. Bernard. Transition state for 1, 2 hydrogen halide elimination from ethyl halides[J]. J. Phys. Chem., 1994, 98: 8359-8370.
    [81] R. S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions I [J]. J. Chem. Phys., 1955, 23(10): 1833-1840.
    [82] P. Valtazanos, S. F. Elbert, K. J. Ruedenberg. Ring opening of cyclopropylidenes to allenes: reactions with bifurcating transition regions, free internal motions, steric hindrances, and long-range dipolar interactions[J] J. Am. Chem. Soc., 1986, 108: 3147-3149.
    [83] M. Hirsch, W. Quapp, D. Heidrich. The set of valley-ridge inflection points on the potential energy surface of water [J]. Phys. Chem. Chem. Phys., 1999, 1: 5291-5299.
    [84] G. R. Unruh, D. M. Birney. The stereochemistry of the thermal cheletropic decarbonylation of 3-cyclopentenone as determined by multiphoton infrared photolysis/thermolysis[J]. J. Am. Chem. Soc., 2003, 125: 8529– 8533.
    [85] P. Caramella, P. Quadrelli, L. Toma. An anexpected bispericyclic transition structure leading to 4+2 and 2+4 cycloadducts in the endo dimerization of cyclopentadiene[J]. J. Am. Chem. Soc., 2002, 124: 1130-1131.
    [86] M. B. Reyes, E. B. Lobkovsky, B. K. Carpenter. Theoretical study of the pericyclic /pseudopericyclic character of the automerization of perfluorotetramethyl (dewar thiophene) exo-S-oxide[J]. J. Am. Chem. Soc., 2002, 124: 641-651.
    [87] K. Dees, D. W. Setser. Kinetic isotope effects in the unimolecular reactions of chemically activated chloroethane-d0 and -d6 and 1,2-dichloroethane- d0 and -d4 molecules[J]. J. Chem. Phys., 1968, 49: 1193-1206.
    [88] J. C. Hassler, D. W. Setser, RRKM calculated unimolecular reaction rates for chemically and thermally activated C2H5Cl, 1,1-C2H4Cl2, and 1,2-C2H4Cl2[J]. J. Chem. Phys., 1966, 45: 3246-3257.
    [89] R. W. Lenz, M. Vert. Preparation and properties of poly (β-malic acid): a functional polyester of potential biomedical importance[J]. Polym. Prep., 1979, 20 (1): 608–11.
    [90] K. Shimada, K. Matsushima. Protease inhibitor from penicillium cyclopium. I. Purification and partial characterization[J]. Agric. Biol. Chem., 1969, 33(4): 544–548.
    [91] H. Fischer, S. Erdmann, E. Holler. An unusual polyanion from physarum polycephalum that inhibits homologous DANN-polymerase a in vitro[J]. Biochemistry, 1989, 28(12): 5219–5226.
    [92] S. Cammas, P. Guérin, J. P. Girault, E. Holler, Y. Gache, M. Vert. Natural poly (L-malic acid): NMR shows a poly(3- hydroxy acid)-type structure[J]. Macromolecules, 1993, 26: 4681–4684.
    [93] E. Holler, G. Achhammer, B. Angerer, C. Braud, P. Guérin, M. Vert. Specific-inhibitionphysarum-polycephalum DANN polymerase-alpha-primase by poly (L-malate) and related polyanions[J]. Eur. J. Biochem., 1992, 206(1): 1–6.
    [94] M. Vert, R. W. Lenz. Preparation and properties of poly-β-malic acids: A functional polyester of potential biomedical importance[J].ACS Polym. Prep., 1979, 20: 608-611.
    [95] C. Braud, M. Vert. Degradation of poly(β-malic acid)-monitoring of oligomers formation by aqueous SEC and HPCE[J]. Polym. Bull., 1992, 29: 177-183.
    [96] P. Fournie, D. Domurado, P. Guérin, C. Braud, M. Vert, R. Pontikis. In vivo fate of repeat-unit-radiolabelled poly(?-malic acid), a potential drug carrier[J]. J. Bioact. Compat. Polym., 1992, 7: 113-129.
    [97] S. Cammas, I. Renard, V. Langlois, P. Guérin. Poly(β-malic acid): obtaining high molecular weights by improvement of the synthesis route [J]. Polymer, 1996, 37 (18): 4215-4220.
    [98] M. Vert. Chemical routes to poly(β-malic acid) and potential applications of this water-soluble bioresorbable poly(β-hydroxy alkanoate)[J]. Polym. Degrad. Stab., 1998, 59(1-3): 169-175.
    [99] S. Cammas-Marion, P. Guérin. 4-alkyloxycarbonyl-2-oxetanones and 3-alkyl-4–alkyl– oxycarbonyl- 2-oxetanones as versatile chiral precursors in the design of functionalized polyesters with a controlled architecture[J]. Des. Monomers Polym., 2000, 3 (1): 77-93.
    [100] C. Braud, C. Bunel, M. Vert. Poly(β-malic acid) : a new polymeric drug-carrier[J]. Polym. Bull., 1985, 13: 293-299.
    [101] C. Braud, M.Vert, Synthesis, characterization and biomedical applications of microbial polymalic [J]. Trend. Polym. Sci., 1993, 3, 57-65.
    [102] I. Tvaroska, T. Bleha, L. Valko. On thermal dehydrochlorination of model compounds for PVC IV. MO study of the catalytic effect of hydrogen chloride [J]. J. Polym., 1975, 7: 34-43.
    [103] A. Panchenko. DFT investigation of the polymer electrolyte membrane degradation caused by OH radicals in fuel cells[J]. J. Membrane. Sci., 2006, 278: 269-278.
    [104] J. A. Portilla-Arias, M. Garcia-Alvarez, A. M. De Liarduya, E. Holler, S. Munoz-Guerra. Thermal decomposition of fungal poly(β, l-malic acid) and poly(β,L-malate)s[J]. Biomacromolecules, 2006, 7: 3283-3290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700