用户名: 密码: 验证码:
大唐煤液化油主要热力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭直接液化是一种高效的洁净煤技术,对解决我国能源问题及保证能源安全具有重要意义。大规模煤炭直接液化技术的顺利实施,要求对煤液化油产品的基本性质具有足够的了解,以便为反应器的设计、液化产物的分离和提质加工以及整个工艺的优化等过程提供基础数据。煤液化油因芳香烃、氧、氮、硫等杂原子含量高而与石油馏分有所不同,因此不能直接套用对石油馏分现有的物化性质的研究结果。
     本论文主要对大唐煤液化油各窄馏分的蒸气压、比热和表面张力进行了测定和关联,并对各窄馏分的蒸发焓、焓进行了简单的推算。根据煤液化油的特点,结合各种测量技术优化选择了适用于煤液化油蒸气压、比热和表面张力的测量仪器。它们分别是,采用活塞三次膨胀法的MINIVAP VPS全自动蒸气压测定仪、DSC 204 HP phoenix型高压差示扫描量热仪和吊片法表面张力仪。
     实验测量前采用纯化学试剂苯、甲苯、环己烷和正庚烷对所用仪器的准确度和重现性进行了检验,表明该仪器完全适用于煤液化油性质的测量。在所测数据的基础上,考察了大唐煤液化油各窄馏分的蒸气压、比热和表面张力分别与温度的关联情况。可以看出,三种性质的关联对每个窄馏分基本适用,只有煤液化油芳香性及杂原子含量较高的几个窄馏分的蒸气压、比热和表面张力随蒸馏温度的变化出现异常。对大唐煤液化油蒸气压、比热和表面张力的研究得到如下结论:
     1.各窄馏分在20~60℃之间的蒸气压随测试温度的升高而增大,低沸点馏分的蒸气压随测试温度的升高变化趋势较大,而高沸点馏分的蒸气压随测试温度的升高变化趋势逐渐较小;蒸气压与温度的关联结果较好,各窄馏分均可以采用线性Clapeyron公式和非线性Antoine公式进行关联估算,尤其对DT110~DT240馏分;根据Clausis-Clapeyron方程和各窄馏分蒸气压与温度的关联结果,采用间接法估算了煤液化油各窄馏分的蒸发焓,其中采用Antoine公式估算蒸发焓效果较好;随煤液化油窄馏分蒸馏温度的升高,同一温度下蒸发焓基本上呈现上升的趋势,然而同一窄馏分的蒸发焓随温度的升高而减小。
     2.大唐煤液化油各窄馏分在30~80℃之间的比热随测试温度的升高逐渐增大,其中DT150馏分随温度升高其比热的增加趋势较大;对不同窄馏分比较而言,蒸馏沸点的温度越高其在同一测试温度下的比热也就越小,而DT260馏分例外的高于DT240馏分;大唐煤液化油各窄馏分的比热与温度可以使用二次多项式进行关联,在关联结果上可以对各窄馏分的焓进行简单的估算;各窄馏分的焓随温度升高逐渐增大,当T>298.15K时,在同一温度下随蒸馏温度的升高煤液化油的焓逐渐减少。
     3.大唐煤液化油各窄馏分在20~100℃之间的表面张力随测试温度升高而降低;在相同的测试温度下,不同馏分的表面张力随液化油沸点的升高逐渐增大,而DT180随沸点的升高其增大趋势大于DT200和DT220;纯物质表面张力与温度的简单线性关联式也基本适用于煤液化油,其中轻油馏分DT110~DT180和重油馏分DT280~DT360的表面张力与温度的线性关系效果较好。
The direct liquefaction technique of coal is a high-efficient coal cleaning technology. It is of great significance for the energy problem and energy security. To improve liquefied oil yield and quality it is necessary to optimize the design of operable and efficient processing steps for coal liquefaction plants, based on the basal physical and chemical data of coal liquefied fractions. Because of the high contents of the aromatic hydrocarbons and the hetero-atoms, such as oxygen, nitrogen and sulfur, coal liquids are different from petroleum, the existent experiential equations from petroleum fractions may be not entirely suitable to the coal liquids.
     Main thermodynamic properties of Datang coal liquid fractions, such as vapor pressure, enthalpy of vaporization, heat capacity, enthalpy and surface tension were studied in this paper. According to the characteristics of coal liquids, measuring instruments for vapor pressure, heat capacity and surface tension of coal liquid are selected by comparing a variety of measurement techniques. They are MINIVAP VPSH vapor pressure tester using the piston triple expansion, heat flux DSC 204HP phoenix and surface tensiometer model BZY-1 based on Wilhelmy plate method.
     Accuracy and reproducibility of the measuring instruments are tested by pure chemical reagents benzene, toluene, cyclohexane and n-heptane before experiment. The change rules of vapor pressure, heat capacity and surface tension with cutting temperatures of fractions and experimental temperatures are explored. On the basis of the experiment data, correlation of vapor pressure, heat capacity and surface tension of every narrow fraction for Datang coal liquid with experimental temperatures are discussed. These correlation equations are basically applied for correlation these properties of narrow coal liquid fractions. However, the some change trends of vapor pressure, heat capacity and surface tension with cutting fraction temperatures are abnormal, because of the high contents of the aromatic hydrocarbons and the hetero-atoms. Specific conclusions are shown as follows:
     1. Vapor pressure measurements are performed on the eight narrow boiling fractions by MINIVAP VPSH vapor pressure tester at the temperature of 293K. The vapor pressure of every coal liquid fraction increases with experimental temperature. The experimental temperature has greater impact on the vapor pressure of low boiling point fraction. Correlation results of vapor pressure for every narrow fraction is perfect by linear correlation Clapeyron equation and nonlinear correlation Clausis-Clapeyron equation, especially for fractions DT110~DT240. From the linear regression equation, Antoine’s equation and the Clausius-Clapeyron equation, the enthalpy of vaporization of every Datang coal liquid fraction at low pressure is estimated by indirect method, the Antoine’s equation can provides better estimates of the enthalpy of vaporization. At the same experimental temperature, the enthalpy of vaporization of every coal liquid fraction increases with the cutting temperature increased. However, the enthalpy of vaporization of every fraction gradually reduces with experimental temperature increase.
     2. Heat capacity measurements on the Datang coal liquid fractions DT150~DT300 are at the temperature of 303K to 353K by DSC 204 HP phoenix. The heat capacity of every fraction increases gradually with experimental temperature increase. The change trend of heat capacity with experimental temperature is more obvious for fraction DT150. At the same experimental temperature, the heat capacity is gradually reduces with the cutting temperature increased, except for DT260 fraction. Quadratic regression analysis can be used to correlate the heat capacity and experimental temperature for every Datang coal liquid fraction. The enthalpy of every Datang coal liquid fraction is calculated based on the correlation results. The enthalpy of every fraction gradually increases with experimental temperature increase. At the same experimental temperature, the enthalpy of every coal liquid fraction reduces with the cutting temperature increased at T>298.15K.
     3. Sruface tension measurements are performed on DT110~DT360 fractions by surface tensiometer model BZY-1 from 293.2K to 373.2K. The surface tension of every fraction decreases gradually with experimental temperature increase. At the same experimental temperature, the surface tension is gradually increases with the cutting temperature increase, except for DT200 and DT220 fractions. The linear regression result of surface tension for the light fractions DT110~DT180 and heavy fractions DT280~DT360 is more perfect.
引文
[1]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社, 2005: 123-237.
    [2]舒歌平,史士东,李克健.煤炭液化技术[M].北京:煤炭工业出版社, 2003: 85-94.
    [3]谢克昌.煤的结构与反应性[M].科学出版社, 2002: 68-76.
    [4]蔺华林,张德祥,徐熠等.煤液化模型分子结构的研究[J],石油化工, 2007,36(5): 513-518.
    [5] KhanM A, A hmad I, IshaqM etal. Spectral Characterization of Liquefied Products of Pakistani Coal[J],Fuel Proc Tech, 2004, 85(1) : 63-74.
    [6]马沛生.化工数据[M].北京:中国石化出版社,2003: 73-74,151-163,341-343.
    [7] Papa M. Ndiaye, Frederico W. Tavares, Irede Dalmolin, et al. Vapour pressure data of e-caprolactone, d-hexalactone, and c-caprolactone[J]. J. Chem. Thermodynamics, 2008, 40:437-441.
    [8] Ndiaye P M, Tavares F W, Dalmolin I, et al. Vapor Pressure Data of Soybean Oil, Castor Oil, and their Fatty Acid Ethyl Ester Derivatives[J]. J Chem Eng Data, 2005, 50: 330-333.
    [9]方文军,雷群芳,林瑞森.碳氢燃料的蒸气压与气-液平衡测定[J].浙江大学学报(理学版),2003,30(5):539-544.
    [10]邸友莹,王耿,谭志诚等. Therminol 50导热油饱和蒸气压的测定[J].西安交通大学学报. 2002, 36 (11): 1208-1210.
    [11]衣守志,王强,马沛生.饱和蒸气压测定方法评述[J].天津轻工业学院学报. 2001, (2): 1-4.
    [12]梁英华,马沛生.质量隙透法测定三种偏苯三酸酯的极低蒸气压[J].石油化工. 2000, 29(12): 939-941.
    [13]陈军,梁英华,马沛生.五种酯类化合物极微蒸气压的扭转法测定[J].化工学报. 1997, 48 (5): 622-625.
    [14] Piacente V, Scardala P, Ferro D, et al. Vaporization study of o-, m-, and p-chloroaniline by torsion–weighing effusion vapor pressure measurements [J]. Journal of Chemical andEngineering Data. 1985, 30(4): 372-376.
    [15]李丹明,刘京兰,房临河.应用材料可凝挥发物测试装置测量油脂饱和蒸气压[J].真空与低温. 2003, 9(4): 195-198.
    [16]韩利师.油饱和蒸气压的测试及自动平衡式真空微量天平[J].真空. 1997, (2): 18-21.
    [17]孙德尧,张福兴,张德禄等.油脂饱和蒸气压微机测试系统[J].分析仪器. 1996, (2): 7-10.
    [18]徐影萍.原油在不同温度下的蒸气压及其经验公式[J].油气储运. 1994, 14(3): 47-50.
    [19]徐影萍.原油饱和蒸气压测定方法实验研究[J].油气储运. 1982, 1(5): 53-56.
    [20] Koutek B, Hoskovec M, Vrkocova P, et al. Gas chromatographic determination of vapor pressures of pheromone-like compounds [J]. Journal of Chromatography A. 1996, 719(2): 391-400.
    [21] Price D M. Volatilisation, evaporation and vapour pressure studies using a thermobalance [J]. Journal of Thermal Analysis and Calorimetry. 2001, 64(1): 315-322.
    [22] Chatterjee K, Dollimore D, Alexander K. A thermal analysis study of hydroxyl benzoic acid derivatives using rising temperature thermogravimetry [J]. Journal of Thermal Analysis and Calorimetry. 2001, 63(3): 629-639.
    [23] Suceska M, Rajic M, Matecic-Musanic S, et al. Kinetics and heats of sublimation and evaporationof 1, 3, 3-trinitronzetidine (TNAZ) [J]. Journal of Thermal Analysis and Calorimetry. 2003, 74(3): 853-866.
    [24] Casserino M, Blevins D R, Sanders R N. An improved method for measuring vapor pressure by DSC with automated pressure control materials and technique [J]. Thermochimica Acta. 1996, 284(1): 145-152.
    [25] Boller A, Wiedemann H G. Vapor pressure determination by pressure DSC [J]. Journal of Thermal Analysis and Calorimetry. 1998, 53(2): 431-439.
    [26]张建侯,马沛生,徐明.两个液体蒸汽压关联方程式的提出—用于高压范围的考察[J].化工学报. 1986, 37(1): 69-79.
    [27] Miller D G. Derivation of two equations for the estimation of vapor pressures [J]. Phys Chem. 1964. 68(6):1399-1408.
    [28]卢焕章.石油化工基础数据手册.化学化工出版社,1982: 9-13,24-28.
    [29] Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids[M]. 5ed, McGraw-Hill, New York, 2001.赵红玲,王风坤,陈圣坤等翻译[M].气液物性估算手册,化学工业出版社, 2006:151-159,168-174.
    [30]马沛生.化工热力学[M].北京:化学工业出版社,2005: 268-271.
    [31] Horvath A L. Molecualar Design, Chemical Structure Generation from the Properties of Pure Organic Compounds.[M] Elsevier, Amsterdam, 1992.
    [32] Mackay D, Bobra A, Chan D W, Shiu W Y. Vapor Pressure Correlations for Low-Volatility Environmental[J]. ChemicalsEnviron Sci Technol, 1982, 16: 645.
    [33] Tsonopoulos C, Heidman J, Hwang S C. Thermodynamic and transport properties of coal liquids [M].1986:41-53, 99-113.
    [34] Lee B I, Kesler M G. Improve vapor pressure prediction [J]. Hydrocarbon Process. 1980, 59(8): 163-167.
    [35]李余增.热分析[M].清华大学出版社,1987:246-248.
    [36]杨长生,马沛生,夏淑倩. DSC法测定醋酸-水溶液的比热[J].高校化学工程学报. 2002, 16(5): 479-484.
    [37] Zaharescu T, Meltzer V, V?lcu R. DSC studies on specific heat capacity of irradiated ethylene–propylene elastomers―Ⅱ. EPDM [J]. Polymer Degradation and Stability. 1998, 61(3): 383-387.
    [38] Kubota H, Sotani T, Kunimoto Y. Isobaric specific heat capacity of difuoromethane at pressure up to 0.5MPa [J]. Fluid Phase Equilibria. 1995, 104: 413-419.
    [39] Hwang SC, Tsonopoulos C, Cunningham JR, et al. Density, viscosity, and surface tension of coal liquids at high temperatures and pressures [J]. Ind. Eng. Chem. Process Des. Dev. 1982, 21: 127~134.
    [40]常丽萍,李艳红,王升宝.胜利煤直接液化油窄馏分表面张力的测定及预测[J].煤炭学报. 2008, 33(12): 1415-1418.
    [41]Gray JA, Brady CJ, Cunningham JR, et al. Thermophysical properties of coal liquids. 1. Selected physical, chemical, and thermodynamic properties of narrow boiling range coal liquids [J]. Ing Eng Chem Process Des Dev, 1983, 22: 410-424.
    [42] Wilson GM, Johnston RH, Hwang SC, Tsonopoulos C. Volatility of coal liquids at hightemperatures and pressures [J]. Ind. Eng. Chem. Process Des. Dev. 1981, 20: 94-104.
    [43] Queimada AJ, Rolo LI, Caco AI, et al. Prediction of viscosities and surface tensions of fuels using a new corresponding states model [J]. Fuel, 2006, 85: 874-877.
    [44] ASTM D6667-4, Test Method for Determination of Total Volatile Sulfur in Gaseous Hydrocarbons and Liquefied Petroleum Gases by Ultraviolet Fluorescence[S]. An American National Standard, 2004.
    [45]凌烈祥.氧化燃烧—减压化学发光法测定轻质石油产品中微量氮[J].现代科学仪器, 2006, 2: 61-63.
    [46]杨慧娟.紫外荧光法测定合成气中痕量硫含量[J].炼油与化工, 2006, 17: 42-44.
    [47] ASTM D6897-3a, Standard Test Method for Vapor Pressure of Liquefied Petroleum Gases (LPG) (Expansion Method) [S]. An American National Standard, 2004.
    [48] SH/T 0769—2005,石油产品、烃类及烃类-含氧化合物混合物蒸气压测定法(三级膨胀法)[S].北京:中国石化出版社, 2006.
    [49]李艳红,王升宝,常丽萍.煤液化油蒸发焓的测定[J].洁净煤技术,2007.13(2):42-46.
    [50]方文军林瑞森.石油馏分恒压比热容与焓的研究[J].燃料化学学报, 1998.26(4):367-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700