用户名: 密码: 验证码:
在外加电解质对煤沥青水浆性质的影响及规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤沥青是煤焦油蒸馏提取馏分后的残留物,约占煤焦油的50%~60%,除用于制备电极沥青、道路沥青和建筑材料防腐外,还可用作燃料。以煤沥青粉为原料,借鉴成熟的水煤浆和油煤浆技术而开发的煤沥青水浆和煤沥青油浆是新型的浆体燃料。
     本文主要内容包括:(1)在煤沥青水浆制备过程中分别加入NaCl、CaCl2、AlCl3、Na2SO4、Na3PO4,研究外加电解质对煤沥青水浆的性质、分散剂在煤沥青表面的吸附特性和煤沥青表面的电化学性质的影响;(2)以煤沥青粉和重油为原料,研究煤沥青油浆的制备及影响规律。
     对于按级配1和级配2制得的煤沥青水浆,随Na3PO4溶液浓度的增大,煤沥青水浆的表观粘度一直呈上升趋势;对于按级配1制得的煤沥青水浆,随AlCl3和Na2SO4溶液浓度的增大,煤沥青水浆的表观粘度呈先下降后上升的趋势;其余情况下,煤沥青水浆的表观粘度均呈先上升后下降的趋势。对于按级配1和级配2制得的煤沥青水浆,电解质的加入都可使浆体的流变性和稳定性得到提高。从总体趋势分析,不论有无外加电解质,按级配2制得的煤沥青水浆的成浆性,流变性和稳定性均好于相应的按级配1制得的煤沥青水浆。
     随着分散剂浓度的增加,分散剂在煤沥青表面的吸附量增大到最大值后呈缓慢下降趋势。对于级配1的煤沥青粉,NaCl、CaCl2、AlCl3的加入都可使分散剂在煤沥青表面的吸附量增大,且三者的影响依次增强;Na2SO4、Na3PO4的加入均使分散剂在煤沥青表面的吸附量先增大后减小。对于级配2的煤沥青粉,NaCl的加入使分散剂在煤沥青表面的吸附量减小;Na2SO4的加入使分散剂在煤沥青表面的吸附量增大;CaCl2、AlCl3、Na3PO4的加入均使分散剂在煤沥青表面的吸附量先增大后减小。不论有无外加电解质,分散剂在级配2煤沥青粉表面的吸附量大于级配1。
     随着分散剂浓度的增加,煤沥青表面的Zeta电位增大到最大值后呈缓慢下降趋势。外加电解质对煤沥青表面Zeta电位的影响规律与对煤沥青水浆表观粘度的影响规律相反。
     煤沥青油浆的表观粘度和恩氏粘度都随着温度的升高而降低。对于表观粘度和恩氏粘度,在温度较低时,浓度对粘度的影响较大;而在温度较高时,浓度对粘度的影响较小。煤沥青粉添加量对煤沥青油浆的流变性影响不大,总体上接近于牛顿流体的流变行为;仅当煤沥青粉添加量为14%和16%时,煤沥青油浆呈现一定的“剪切稀化”流变行为。随着煤沥青粉添加量的增加,煤沥青油浆的低位发热量呈先减小后增大的趋势,当煤沥青粉添加量达到14%和16%时,煤沥青油浆的低位发热量较180#重油的低位发热量高。
Coal pitch is the residue of coal-tar distillation, and is about 50%~60% of coal-tar. It also can be used as fuel besides preparing electrode pitch, road pitch and antisepsis of building materials. Using medium temperature coal pitch as raw material, coal pitch water slurry (CPWS) developed from coal water slurry and coal pitch oil slurry (CPOS) developed from coal oil slurry are new slurry fuel.
     In this paper, effects of electrolytes (NaCl, CaCl2, AlCl3, Na2SO4 , Na3PO4) on the properties of CPWS, the dispersant adsorption amount on the surface of coal pitch, and the Zeta potential of coal pitch surface were studied. Preparation and influence law of CPOS prepared with coal pitch powder and heavy oil were also studied.
     For powder of gradation 1 and gradation 2, the apparent viscosity of CPWS increases with increasing the concentration of Na3PO4; for powder of gradation 1, the apparent viscosity decreases and then increases with increasing the concentration of AlCl3 and Na2SO4; the apparent viscosity increases and then decreases under other circumstance. For powder of gradation 1 and gradation 2, the rheological behavior and stability of CPWS improve when the electrolyte is added to the CPWS. As a whole, the slurry ability, the rheological behavior and the stability of CPWS prepared by powder of gradation 2 is respectively better than that of powder of gradation 1 with or without the electrolyte.
     The dispersant adsorption amount on the surface of coal pitch increases to the maximum and then decreases slowly with increasing the dispersant content. For powder of gradation 1, the adsorption amount of dispersant increases on the surface of coal pitch when NaCl, CaCl2 and AlCl3 is respectively added to the CPWS and the effect of three electrolytes increases in turn. The adsorption amount of dispersant increases and then decreases on the surface of coal pitch when Na2SO4 and Na3PO4 is respectively added to the CPWS. For powder of gradation 2, the adsorption amount of dispersant decreases when NaCl is added to the CPWS, the adsorption amount of dispersant increases when Na2SO4 is added to the CPWS, and the adsorption amount of dispersant increases and then decreases when CaCl2, AlCl3 and Na3PO4 is respectively added to the CPWS. The dispersant adsorption amount on the surface of powder of gradation 2 is more than that of powder of gradation 1 with or without the electrolyte.
     The Zeta potential of coal pitch surface increases to the maximum and then decreases slowly with increasing the dispersant content. The influence law of electrolytes on the Zeta potential of coal pitch surface is opposite to that of electrolytes on the apparent viscosity of CPWS.
     Both the apparent viscosity and Engler viscosity of the CPOS decrease with the increase of temperature. For both kinds of viscosity of the CPOS, the value at lower temperature changes more and changes less at higher temperature with the change of coal pitch content. As a whole, coal pitch content has little effect on the rheological behavior of the CPOS, and the CPOS shows Newton fluid behavior. The CPOS shows shear-thinning characteristics only when coal pitch content is 14% and 16%. Net calorific value of CPOS decreases and then increases with the increase of coal pitch content. Net calorific value of CPOS is bigger than that of 180# heavy oil when coal pitch content is 14% and 16%.
引文
[1]薛亚洲,柳正.当前我国煤炭经济形势分析与对策建议[J].中国矿业,2005,14(4):42-44.
    [2]李丹.能源问题:煤炭、石油与天然气[J].中国科技财富,2005,(8):40-45.
    [3]李璞,段慕松.洁净煤技术发展概况[J].洁净煤技术,2005,11(4):11-13.
    [4] Zhang Shaohuai, Hu Jian. Present situation and development tendency of China's petroleum market. Society of Petroleum Engineers (SPE),Proceedings of the International Meeting on Petroleum Engineering, Richardson, TX, USA,1995:111-126.
    [5]鞠海龙.当前国际政治形势与我国石油安全[J].思想教育导刊,2004,(11):34-37.
    [6]梁涛,邓生辉.构建中国石油安全战略体系思考[J].石油地质与工程,2006,20(6):100-102.
    [7]谷天野.煤炭洁净加工与高效利用[J].洁净煤技术,2006,12(4):88-90.
    [8] Dominguez A, Alvarez C R, Blanco G. Chromatographic evaluation of some selected polycyclic aromatic hydrocarbons of coal tars produced under different coking conditions and pitches derived from them [J]. Journal of Chromatography A ,1996,719(1):181-194.
    [9]严家伋.道路建筑材料(第二版)[M].北京,人民交通出版社,1986:102-106.
    [10] Scobbie E, Dabill D W, G roves J A. The development of an improved method for the determination of coal tar pitch volatiles(CTPV) in air [J]. The Annals of Occupational Hygiene, 1998, 42(1):45-59.
    [11]肖瑞华,白金锋.煤化学产品工艺学[M].北京,冶金工业出版社,2003:236-241.
    [12]许斌,刘建国,肖骏,等.中国炭材料用煤沥青的生产和应用[J].炭素科技,2004,14(3):14-22.
    [13] Mochida I. Carbonization of Pitch: Compatibility of Components in Carbonization [J]. Fuel, 1977, 56(1):49-56.
    [14]李铁虎,杨峥,郑修麟.碳/碳复合材料用基体沥青的改性研究[J].高技术通讯,1993,10(4):7-8.
    [15] EMMA SCOBBIE, DAVID W.DABILL, JOHN A.GROVES. The Development of anImproved Method for the Determination of Coal Tar pitch Volatiles(CTPV) in Air, Ann. occup. Hyg., 1998, 42(1):45-49.
    [16]园田晋.炭素:工业用结合剂的研究[M].吉林:吉林炭素厂编辑出版,1982:23-25.
    [17]上海化工学院编.煤化学和煤焦油化学[M].上海:上海人民出版社,1976:226-228.
    [18] Riggs D M. Polymer for fibers and elastomers, Washington, DC [J]. American Chemical Society, 1984:260.
    [19]弗·耶·普里瓦洛夫,米·阿·斯捷潘年科.煤沥青[M].吉林:吉林炭素厂编辑出版,1983.
    [20] Koichi Kanno, Kwang Eui Yoon, Juan J.Fernandez, etc. Effects of carbon black addition on the carbonization of mesophase pitch [J]. Carbon, 1994, 32(5):801-807.
    [21]陈壹华.煤沥青的改质及其制品应用特性[J].炭素,2004,2:30-34转42.
    [22]许斌,潘立慧.煤沥青资源的应用和制备.炭素科技,2003,13(2):30-41.
    [23]高碧霞.煤沥青高附加值产品开发的探讨[J].上海化工,2000,19:20-23.
    [24]刘佩正.煤沥青燃料组合物及其燃烧工艺[P].CN1071191A,1993-4-21.
    [25]赵立合,王恒,华奇平,等.沥青浆体燃料及其燃烧性能[J].钢铁,1998,33(1):62-64转13.
    [26]王长安,吴育良,许凯,等.影响乳化沥青稳定性的主要因素[J].新型建筑材料,2005,1:52-54.
    [27]何腾锋.乳化沥青生产工艺的优化[J].石油沥青,2004,18(4):39-41.
    [28]张恩业.乳化沥青的制备[J].化工时刊,2003,17(4):51-52.
    [29]王丽娜,范维玉,南国枝,等.沥青乳化剂及沥青乳液性能研究[J].石油大学学报(自然科学版),2002,26(6):99-109.
    [30]车泽永,王京东.沥青乳化燃料的研制[J].石油沥青,1995,6:19-25.
    [31]何军.煤沥青乳化用作燃料油的研究[J].煤化工,2003,3:20-22.
    [32]左小磊,陈晓青,周新林.废焦油沥青的回收利用研究[J].环境工程,2004,22(6):68-70.
    [33]罗运华,田原宇,叶智刚,等.沥青水浆不同结构分散剂的成浆性能研究[J].燃料化学学报,2003,31(4):338-341.
    [34]田原宇,程健,罗运华,等.双组分硬沥青水浆燃料的研制[J].石油炼制与化工,2004,35(5):40-43.
    [35]罗运华,田原宇,王立英,等.硬沥青水浆工业制浆工艺的研究[J].山西能源与节能,2003,3:10-11.
    [36]田原宇,贾生盛.粒度分布对沥青水浆性质的影响[J].现代化工,2003,23(9):39-41转44.
    [37]胡成洋,田原宇,王立英.硬沥青特性及外加阴离子对沥青水浆性质的影响[J].山西能源与节能,2003,3:37转39.
    [38]魏文珑,常宏宏,王志忠,杨怀旺,姚润生.中温煤沥青制粉工艺的研究[J].现代化工,2007,S:178-180.
    [39]常宏宏,魏文珑,延秀银,王志忠,杨怀旺,姚润生.煤沥青水浆的制备研究[J].现代化工,2007,27(7):28-31.
    [40]付贵祥,李新元.水煤浆技术的应用发展与研究[J].水力采煤与管道运输,2000,4:5-6.
    [41]张荣曾.水煤浆制浆技术[M].北京:科学出版社,1996.
    [42]李智伟.我国水煤浆燃烧技术与工业发展前景[J].云南冶金,2002,31(6):43–44.
    [43]范丽娟.水煤浆添加剂的研究进展[J].日用化学工业,2002,32(1):46-48.
    [44] Mishra S K, Senapatip P K. Rheological behavior of coal-water slurry [J]. Energy Sources, 2002, 24:159-167.
    [45]支献华.水煤浆稳定性的影响因素及评定方法[J].煤炭加工与综合利用,2000,(1):38-39.
    [46] G.Atesok, F.Boylu, A.A.Sirkeci, etc. The effect of coal properties on the viscosity of coal-water slurries [J]. Fuel, 2002, 81:1855-1858.
    [47] G. Atesok, H. Dincer, M. Ozer, etc. The effects of dispersants (PSS–NSF) used in coal–water slurries on the grindability of coals of different structures [J]. Fuel, 2005, 84:801–808.
    [48] Kaushal K.Tiwari, Sibendra K.Basu, Kumaresh C.Bit, etc. High-concentration coal–water slurry from Indian coals using newly developed additives [J]. Fuel Processing Technology, 2003, 85:31– 42.
    [49] Boylu F, Atesok G., Dincer H. The effect of carboxymethyl cellulose(CMC) on the stability of coal-water slurries [J]. Fuel, 2005, 84:315-319.
    [50] Qiu Xueqing, Zhou Mingsong, Yang Dongjie, etc. Evaluation of sulphonated acetone–formaldehyde (SAF) used in coal water slurries prepared from different coals [J]. Fuel, 2007, 86(10-11):1439-1445.
    [51]李永昕.超声辐照对水煤浆浆体各性质的影响规律及其作用机理研究[D].中科院山西煤化所.
    [52]李永昕,吉文欣.超声辐照前后水煤浆浆体的动电势变化研究[J] .燃料化学学报,2002,30(6):559-562.
    [53] Guo Zhaobing, Feng Ruo, Zheng Youfei, etc. Improvement in properties of coal water slurry by combined use of new additive and ultrasonic irradiation [J]. Ultrasonics Sonochemistry, 2007, 14(5):583-588.
    [54] Li Yong-Xin, Li Bao-Qing. Study on the ultrasonic irradiation of coal water slurry [J]. Fuel, 2000, 79:235–241.
    [55]李寒旭,汤永新,陆向阳,等.磁化煤对水煤浆性能的影响[J].煤炭技术,2003, 22(12):84-86.
    [56]朱宗军,邓成刚,李方柱,等.pH值对水煤浆静态稳定性的影响[J].洁净煤技术,2001,7(2):2-23.
    [57]周宏春,熊飞.我国水煤浆发展的市场前景及其政策性建议[J].中国煤炭,2003,29(8):8-11.
    [58]郭延红.煤浆燃料技术[J].延安大学学报,1996,15(2):52-55.
    [59]王志奇,李保庆.新型代油浆体燃料——油焦浆[J].煤炭转化,1998,21(4):37-40.
    [60]李裕襄.赴日考察水煤浆技术的几点体会[J].煤炭加工与利用,1989,3:30-33.
    [61]刘文旺.中国燃料油市场2007年回顾及2008年展望[EB/OL].http://www. yafco.com/uploadFiles/2008-03/1205282738203.doc, 2008-3.
    [62] Tsutsumi A,Yoshida K. Rheological Behaviors of Coal Solvent Slurries During Heating [J]. Energy and Fuel, 1986, 65:906-909.
    [63] Cohen A, Richon D. Rheological Properties of Coal Powder Solvent Nitrogen to 653 K for Two Different Coals [J]. Fuel, 1986, 65:117-121.
    [64] Okutani T, Yokoyama S, M aekaw Y. Viscosity of Coal Paste Under High Hydrogen Pressure [J]. Fuel, 1980, 59:67-69.
    [65] Sakaki T, Sh ibataM, Hirosue H. Effect of Coal Rank on Rheological Behavior ofCoal-solvent Slurries During Heating [J]. Energy and Fuel, 1995, 9:314-318.
    [66] Okutani T, Yokoyama S, Maekawa Y. Viscosity Changes in Coal Paste During Hydrogenation [J]. Fuel, 1984, 63:164-168.
    [67] Deng C R, NioT, Sanada Y, etc. Relationship Between Swelling of Coal Particles and Apparent Viscosity of Slurry During Coal Liquefaction for Akabira Coal/creosote Oil Slurry System [J]. Fuel, 1989, 68:1134-1138.
    [68]高晋生,常鸿雁,张德祥.煤直接液化中煤浆粘度变化研究进展[J].煤炭转化,2003,26(3):21-26.
    [69]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社,2005:268-273.
    [70]韩文煜,常鸿雁,张德祥,等.油煤浆粘温特性的初步研究[J].煤炭转化,2003,26(4):51-54.
    [71]王永刚,郝丽芳,熊楚安,等.常压升温下油煤浆表观粘度变化的研究[J].燃料化学学报,2007,35(5):513-517.
    [72]郝丽芳,王永刚,孙秀英,等.常压低温条件下油煤浆粘度变化的研究[J].煤炭转化,2006,29(2):28-31.
    [73]郝丽芳,王永刚,熊楚安.煤颗粒分布对油煤浆流变特性的影响[J].煤炭学报,2007,32(2):190-193.
    [74]肖乃友,张荣曾,李克健.神华煤直接液化油煤浆常温流变特性研究[J].煤炭转化,2007,30(3):31-33.
    [75]熊楚安,孙晓楠.双鸭山液化油煤浆表观粘度和粘-温特性的初步研究[J].煤炭工程,2008,3:79-81.
    [76]支献华.水煤浆稳定性的影响因素及评定方法[J].煤炭加工与综合利用,2000,1:38-39.
    [77]水煤浆质量试验方法[S].GB/T18856-2002.
    [78]常宏宏,魏文珑,延秀银,等.煤沥青水浆的制备研究[J] .现代化工,2007,27(7):28-31.
    [79]李继山,姚同玉.分光光度法测定阳离子表面活性剂在砂岩表面的吸附[J].日用化学工业,2005,35(3):188-191.
    [80]申元鹏,邹长军,罗强,等.溴百里酚蓝分光光度法测定乳化液中阳离子表面活性剂的研究[J].分析实验室,2007,26(S):302-305.
    [81]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001.
    [82]沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社,2004.
    [83]顾惕人,朱步瑶,李外郎,等.表面化学[M].北京:化学工业出版社,1999.
    [84]李永昕.超声辐照对水煤浆浆体各性质的影响规律及其作用机理研究[D].中国科学院山西煤炭化学研究所,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700