用户名: 密码: 验证码:
肉牛RXRG和MyoD1基因的克隆、SNPs筛查及其与肉质和双胎性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究分别以秦川牛、鲁西牛、西门塔尔牛和安格斯牛4个品种牛的514份血样和西门塔尔牛的组织样为材料,分别提取基因组DNA和RNA。运用生物信息学方法和同源序列克隆技术结合电子PCR (ePCR)、反转录PCR (RT-PCR)和限制性片段长度多态性PCR (PCR-RFLP),对牛的视黄素受体γ(RXRG)基因的cDNA序列和基因组DNA序列进行了克隆、鉴定与序列分析。运用测序和PCR-RFLP结合的方法对视黄素受体γ(RXRG)基因和生肌决定因子1 (MyoD1)基因的部分基因组DNA片段进行了单核苷酸多态检测,运用一般线性模型研究了MyoD1基因与上述6个品种牛部分生长与肉质性状的相关性,运用Logistic概率型非线性回归分析和卡方独立性检验研究了RXRG基因与上述6个品种牛双胎性状的相关性,得到了如下结果:
     (1)利用RT-PCR技术,对牛RXRG基因进行克隆,将得到的片段重组到PMD19-T载体进行序列测定。获得了一个长为1811 bp的cDNA片断。通过氨基酸序列分析发现,牛RXRG基因的该片段由10个外显子组成,编码463个氨基酸。与其他动物同源性比较表明,该基因与人、猪、猕猴、小鼠、大鼠在氨基酸序列上分别有89.5%、93.4%、87.2%、83.9%、85.2%的同源性。获得了牛RXRG基因的cDNA序列。组织表达谱分析表明,牛RXRG基因在肌肉中高度表达,在其他组织中不表达。
     (2)运用测序法寻找牛RXRG基因SNPs,筛查到一个新的多态位点A1941G,该位点位于3′非编码区。运用PCR-RFLP法验证并分析该位点在鲁西牛双胎群体和单胎群体及西门塔尔牛、安格斯牛和西蒙杂交牛单胎群体间的多态性,结果表明,在鲁西牛双胎和单胎群体中分布A、B两个等位基因,处于中度多态。经卡方适合性检验,鲁西双胎牛群体在该位点未达到Hardy-Weinberg平衡状态(P<0.05)。将鲁西牛群体的A1941G位点的基因型效应与双胎性状进行关联分析,卡方独立性检测结果显示,基因型分布在鲁西单、双胎牛群体上差异达到极显著水平(P<0.01)。
     (3)运用测序法寻找牛MyoD1基因SNPs,筛查到一个新的多态位点C1867T,该位点C-T突变引起甘氨酸/丝氨酸的转变。运用PCR-RFLP法验证并分析该位点在不同群体间的多态性,并与相应牛群体的胴体性状进行关联分析。结果显示,西门塔尔牛、鲁西牛群体的C1867T位点的突变达到了Hardy-Weinberg平衡状态,而秦川牛未达到平衡状态。不同基因型对肉牛的背膘厚影响差异极显著(P<0.01),对大腿肉厚的影响显著(P<0.05),对日增重、屠宰率、肌间脂肪、大理石花纹、嫩度的影响差异不显著。
514 blood samples from 4 cattle populations-Qinchuan, Luxi, Simmental, and Angus were collected to extract genomic DNA, and some tissues samples from Simmental were taken to extract total RNA in this study. Then the isolation, identification and biologic information sequence analysis to the bovine RXRG gene and MyoD1 gene for the cDNA sequence and genomic sequence was performed by homology cloning and bioinformatics approach combined with electronic-PCR technique, RT-PCR and PCR-RFLP. And then, SNPs within some genomic fragments of the two gene were detected by sequencing. Finally, the association between RXRG and MyoD1 gene with some bovine twinning trait and meat quality traits in 6 populations were investigated. The main results were as follows:
     1. Bovine RXRG gene cDNA by RT-PCR, the product was cloned in PMD19-T vector. The sequencing result showed that the fragment sequence coincided with the prediction, which is 1811 bp long. The analysis of amino acid sequence indicated that cattle RXRG gene consisted 10 exons and coded 463 amino acids. Homologous comparison with some animals indicated that cattle RXRG cDNA shared 89.5%, 93.4%, 87.2%, 83.9%, 85.2% similarity in nucleic acid sequence with human, pig, macaca, mouse and rattus. The cDNA of RXRG gene was cloned. RXRG cDNA was found in muscle tissue by the analysis of its expression in various tissues, but didn’t be found in other tissues.
     2. A new SNP of cattle RXRG gene A1941G was detected by sequencing at 3′UTR. Different genotypes were determined in Luxi monotocous cows, Luxi twinning cows, Simmental cows, Angus cows and Simmental×Mongolia cows by restriction fragment length polymorphism (PCR-RFLP). The value of polymorphism information content indicated that this was a moderate polymorphism in Luxi monotocous cows and Luxi twinning cows. Theχ2 test indicated that the polymorphic locus in Luxi twinning cows did not fit Hardy-Weinberg equilibrium (P<0.05). Theχ2 test of associational analysis between genotypic distribution and twinning or monotocous trait in Luxi cows showed that the difference was very significant (P<0.01).
     3. Based on gene pooling and sequencing, a new SNPs was found on the bovine MyoD1 gene, its transition C-T leads to a reaplacement of glicine with serine. Polymorphism and relationship with the carcass traits was analysised by PCR-RFLP in different populations. The transition of this locus fit in with Hardy-Weinberg equilibrium in Simmental cattle and Luxi cattle, but not in Qinchuan cattle. Statistical analysis revealed higher value in back fat and thickness of thigh (P<0.05), not in average daily growth, yield of carcass, intramuscular fat, marbling and yenderness.
引文
[1] Krawetz S A, Womble D D. Design and implementation of an introductory course for computer applications in molecular genetics[J]. Molecular Biotechnology, 2001, 17(1):27-41.
    [2] Achard F, Vaysseix G, Barillot E. XML, bioinformatics and data integration[J]. Bioinformatics, 2001, 17(2):115-125.
    [3] 何志颖,胡以平.EST 技术及其在基因全长 cDNA 克隆上的应用策略[J].国外医学,遗传学分册,2002, 25(2): 67-69
    [4] Brookes A J. The essence of SNPs [J]. Gene, 1999, 234(2):177-186
    [5] Chmurzynska A.The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism[J]. J Appl Genet, 2006, 47(1):39-48
    [6] Veerka mp J H ,et al. Cytoplas mic fatty acid- binding proteins :their structure and genes[J]. Prog Lipid Res, 1995, 34(1):17-20.
    [7] Schaap F G, van der Vusse G J, Glatz JF .Fatty acid-binding proteins in the heart[J]. Mol Cell Biochem, 1998, 180(1-2):43-51.
    [8] Frank G S ,et al .Fatty acid binding protein in the heart[J].Molecular and Cellular Biochemistry, 1998, 180:43-51.
    [9] Gerben F,Harders F,Ueerkamp J. Effect of genetic variants of the heart fatty acid binding protein gene on intramuscular fat and performance traits in pig[J]. J. Anim. Sci, 1999, 77:846-852.
    [10] Gerbens F, et al .A dimorphic microsatellite in the porcine H-FABP gene at chromosome 6[J].Animal Genetics, 1998, 29:398-413.
    [11] Gerbens F, et al. Associations of heart and adipocyte fatty acid- binding protein gene expression with intramuscular fat content in pigs[ J].Journal of Animal Science, 2001, 79(2) :347-54.
    [12] 李武峰,许尚忠,曹红鹤.等,23 个杂交牛种 H-FABP 基因第二内含子的遗传变异与肉品质性状的相关分析[J].畜牧兽医学报,2004, 35(3), 252-255.
    [13] 郭松长,氟烷基因、心肌脂肪酸结合蛋白基因对猪部分经济性状影响的研究[D].湖南农业大学硕士学位论文,2003.
    [14] Gerbens F,Rettenberger D,Lenstra JA,et al. Characterization,chromosomal localization,and genetic variation of porcine heart fatty acid-binding protein gene[J].Mammalian Genome, 1997, 8:328- 332.
    [15] Schaap F G, van der Vusse G J, Glatz JF .Fatty acid-binding proteins in the heart[J]. Mol Cell Biochem, 1998, 180(1-2):43-51.
    [16] Christopher G, Norbert H,Haunerland D. Fatty acid binding protein,a major protein in the flight muscle of migrating Western Sandpipers.Comparative Biochemistry and Physiology, 1998, 119 :549-555.
    [17] GerbenS F,Koning D J,Harders FL,et al. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs[J]J Anim Sci, 2000, 78:552-559.
    [18] 李祯,储明星,曹红鹤等. 中外 11 个猪种 A-FABP 基因微卫星遗传变异的研究[J]. 遗传, 2004,26(4) :473- 477.
    [19] Koohmaraie M: The role of Ca2+-dependent proteases (calpains) in post mortem proteolysis and meattenderness[J]. Biochimie 1992, 74:239-245.
    [20] Shackelford SD, Koohmaraie M, Miller MF, etal. An evaluation of tenderness of the longissimus muscle of Angus by Hereford versus Brahman crossbred heifers[J]. J Anim Sci 1991, 69:171-177.
    [21] Johnson DD, Huffman RD, Williams SE, Hargrove DD.Effects of percentage Brahman and Angus breeding, age-season of feeding and slaughter end point on meat palatability and muscle characteristics[J]. Anim Sci, 1990, 68(7):1980-1986.
    [22] Calkins, CR and SC Seideman. Relationships among calcium-dependent. protease, cathepsins B and H, meat tenderness and the response of muscle to aging[J]. J Anim Sci, 1988, 66:1186-1193.
    [23] Bindon B. Industry outcomes of the Cooperative research center for cattle and Beef quality.Availableat:www.beef.crc.org.au/Publications/Latest_Publications/.Feeder2002/Session6/6a.html. Accessed: 2003, 3, 9.
    [24] Chung,HY, ME Davis,and HC Hines.Relationship of two PCR-RFLP in the bovine calpastatin gene with calpastatin activity,meat tenderness,and carcass traits.Ohio State University Research and Reviews[C]:Beef and Sheep, 2001, Circ: 181-01.
    [25] M.E.Davis,Wheeler TL.Meet tenderness and the calpain proteolytic system in longissimus muscle of young bulls and steers[J]. J Anim Sci, 1993, 71(6):1471-6.
    [26] Palmer BR, Roberts N,Hickford JG,Bickerstaffe R. PCR-RFLP for MspI and NcoI in the ovine calpastatin gene[J]. J Anim Sci, 1998, 208(2):1499-500.
    [27] Casas E,White SN,Wheeler TL,Shackelford S Koohmaraie DM, Riley DG, Chase C C,Johnson DD,and Smith TPL. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits[J]. J Anim.Sci, 2006, 84:520-525.
    [28] Li JN, Mahmoud MA, Han WF, etal. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia[J]. Experimental Cell Reserch, 2000, 261(1):159-165
    [29] Foretz M, Guichard P, Ferre P, etal. SREBP-1 is a major meditor of insulin action on the hepatic expression of glucokinase and lipogenesis related genes[J]. Proc Natl Acad Sci, 1999, 96:12737-12742
    [30] Becard D, Hainault I, Azzout-Marniche D, etal. Adenovirus-mediated overexpression of sterol regulatory element binding protein-1 cmimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice[J]. Diabetes, 2001, 50:2425-2430.
    [31] Fleischmann M, Iynedjian PB. Regulation of sterol regulatory-ele ment binding protein 1 gene expression in liver[J]. Biochem J, 2000, 349: 13-17.
    [32] Kotzka J, Muller-Wieland D, Koponen A, etal. ADD1/SREBP-1c mediates insulin-induced gene expression linked to the MAP kinase pathway[J]. Biochem Biophys Res Commun, 1998, 249(2):375-379.
    [33] 陈杰,赵茹茜,等. ADD1 基因 PCR-SSCP 标记与猪肌内脂肪含量及背膘厚的关系[J]. 南京农业大学学报, 2004, 27(3): 66-69.
    [34] 李长龙. 猪 ADD1 基因的克隆及其与肉质性状关系的研究[D]. 东北农业大学, 2004.
    [35] 李长龙. H-FABP、MC4R、ADD1 基因多态性在 3 个猪群中分布及其与肌内脂肪和背膘的相关研究[J]. 遗传, 2006, 28(2): 159-164.
    [36] Davis G H, Fennessy P F. Evidence for the presence of a major gene influencing ovulation rate on the X chomosome of sheep[J]. Biol Reprod, 1991, 44(4):620–624.
    [37] Duble J L, Wang P, Elvin J. The bone morphogenetic protein 15 gene is X linked and expressed in oocytes[J]. Molecular Endocrinology, 1998, 12:1809–1817.
    [38] Gallowary S M.Mutations in an oocyte–derived growth differention factor gene(BMP15) cause increased ovulation rate and infertility in a dosagesensitive manner[J]. Nature Genetics, 2000, 25:279–283.
    [39] Shackell G H, Hudson N L, Health D A. Plasma gonadotropin concentrations and ovarian characteristics in Iverdale ewes that are heterozygous for a major gene on the X chromosome that influences ovulation rate[J]. Biol Reprod, 1993, 48:1150–1156.
    [40] McLeod B J, Kyle S E, Ramsay M R. Hormone secretion patterns associated with increased ovulation rates or with ovarian dysfunction in Iverdale ewes[J]. Animal proc, 1995, 55:304–330.
    [41] Otsuka F, Yamamoto S, Erickson G F. Bone morphogenetic protein–15 inhibits FSH action by suppressing FSH receptor expression[J]. J Biol Chen, 2001, 276:22387–11392.
    [42] Juengel J L, Quirke L D, Tisdall D J. Gene expression in abnormal ovarian structures of ewe homozygous for the Iverdale prolificacy gene[J]. Biol Reprod, 2000, 62:1467–1478.
    [43] Hanvahan J P, Gregan S M, Mulsant P, et al. Mutations in the genes for oocyte derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep(Ovisaries)[J]. Bid Reprod, 2004, 70:900–909.
    [44] Kirsch T, Sebald W, Dreyer M K. Crystal structure of the BMP2–BRIA ectodomain complex[J]. Nature Structural Biol, 2000, 7:492–496.
    [45] Griffith D L, Keck P C, Sampath T K, et al. Three dimensional structure of recombinant human osteogenic protein 1:structural paradigm for the transforming growth factor beta superfamily[J]. Proc Natl Acad Sci USA, 1996, 93:878–883.
    [46] Mittl P R, Priestle J P, Cox D A. The crystal structure of TGF–beta3 and comparison to TGF–beta2: implications for receptor binding[J]. Protein Sci, 1996, 5:12611271.
    [47] Henry I, Puech A, Antignac C, et al. Subregional mapping of BWS, CTSD, MYOD1, and a T-ALL breakpoint in 11p15 [J]. Cytogenet. Cell Genet, 1989, 51: 1013 -1019.
    [48] Gessler, M., Hameister, H., Henry, I, et al. The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome[J]. Hum. Genet, 1990, 86: 135-138.
    [49] Rexroad CE 3rd, Bennett GL, Stone RT, Keele JW, Fahrenkrug SC, Freking BA, Kappes SM, Smith TP. Comparative mapping of BTA15 and HSA11 including a region containing a QTL for meat tenderness[J]. Mamm Genome, 2001, 12(7):561-565.
    [50] Ryan A M, Schelling CP, Womack JE, Gallagher DS .Chromosomal assignment of six muscle-specific genes in cattle[J]. Anim Genet, 1997, 28(2):84-87.
    [51] Napolitano F, Catillo G, Lucioli S, Carretta A, Di Giacomo A,. Rossi G, Moioli BM. Evidence for quantitative trait. locus for conformation traits on chromosome 19 in beef. cattle[J]. Journal of Animal Breeding and Genetics, 2001, 118:119-124.
    [52] Beever, JE, SR Fisher and HA Lewin. Polymorphism identification in cattle ACADM, AT3, IL10, MYOG and TSHB[J]. Animal Genetics, 1997, 28:373-374.
    [53] Hughes S M, Running without regulators[J]. Nature, 1992, 360:536-537
    [54] Tajbakhsh S, et al. Redefining the genetic hierarchies controling skeletal myogenesis:Pax-3 and Myf-5act upstream of MyoD[J]. Cell. 1997, 89:127-138.
    [55] Green S. PPAR: a mediator of peroxisome proliferator action[J]. Mutat Res, 1995, 333(1-2):101-109.
    [56] Drogemuller C, Kempers A. A TaqI PCR-RFLP at the bovine myogenic factor (MYF5) gene[J]. Anim Genet. 200, 31(2):146-147.
    [57] Konll A, Nebola M, Dvorak J,et al. Detection of a Ddel PCR RFLP within intron 1 of the porcine MyoD1(MYF3)locus[J]. Anim Genet, 1997, 28(4):321.
    [58] P. Urbaski, J. Kury. Two new SNPs within exon 1 of the porcine MYOD1(MYF3) gene and their frequencies in chosen pig breeds and lines[J]. J Anim Genet, 2004, 121:204-208.
    [59] 田璐,MyoD 和 DGAT1 基因对牛胴体性状影响的分析[D] 太谷: 山西农业大学. 2005
    [60] Collins M D, Mao E. Teratology of retinoids[J]. .Annu Rev Pharmacol, 1999, 39: 399-430.
    [61] Clagett-Dame M, Plum L A. Retinoid-regulated gene expression inneural development[J].Cril Rev Eukaryot Gene Expr, 1997, 7 :299-342.
    [62]董青, 单保恩. SYK 乳腺癌相关基因研究领域中的新分子[J]. 中国免疫学志, 2004, 20:216-219.
    [63] Leid M, Kastner P, Durand B, et al. Retinoids acid signal transduction pathways[J]. Ann N Y Acad Sci, 1993, 684: 19-34.
    [64]Michaille J J, BlanchetS, Kanzler B, Garnier J M, et al. Characterization of cDNAs encoding the chick retinoic acid receptor γ and preferential distribution of retinoic acid receptor γ transcripts during chick skin development[J]. Developmental Dynamics, 1994, 201: 334-343.
    [65] 吴乔, 苏文金. 视黄素受体结构及其一些生物学特性[J]. 细胞生物学杂志, 1999, 2: 62-67.
    [66] Lohnes D, Kastner P, Dierich A, et al. Function of retinoic acid receptor(in the mouse) [J]. Cell, 1993, 73: 643-658.
    [67] Chambon, P. A decade of molecular biology of retinoic acid receptors[J]. FASEB, 1996, 10, 940-954.
    [68] Messer L, Wang L, Legault C, Rothschild M F. Mapping and investigation of candidate genes for litter size in French Large White pigs[J]. Animal Geneti, 1996, 27 (Suppl. 2) :101-119.
    [69] 郭晓红,储明星,周忠孝,方丽,叶素成.小尾寒羊高繁殖力候选基因 RARG 的研究[J].畜牧兽医学报,2006,37(8),756-760.
    [70] 张英汉.论牛的肉用、役用经济类型划分的意义和方法(BPI 指数)[J].黄牛杂志, 2001, 27(2):1-5.
    [71] Clagett-Dame M, Plum L A. Retinoid-regulated gene expression in neural development[J]. Cril Rev Eukaryot Gene Expr, 1997, 7:299-342.
    [72] Davies P J, Nagy L. Retinoid X receptors: X-ploring their (patho) physiological functions[J]. Cell Death and Differentiation, 2004, 11(2):126-143
    [73] Foster P G, Hickey D A. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions [J]. Molecular Evolution, 1999, 48: 284-290.
    [74] Jones A C, sampson J R, Cheadle J P. Low level mosaicism detectable by DHPLC but not by direct sequencing[J]. Hum Mutat, 2001, 17(3): 233-234.
    [75] Shiman S, Pisante-Shabm A, Yakir B. Quantitative technologies for allele frequency estination of SNPs in DNA pools[J]. Mol Cell Probes, 2002, 16:429-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700