用户名: 密码: 验证码:
氧化硅基陶瓷的湿化学制备与微波介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,用于基板的低介电常数类微波介质材料引起了极大的关注。微波基板材料要求低的介电常数(εr),高Q·f值以及近零谐振频率温度系数(τf)。二氧化硅陶瓷是一种高性能微波基板材料,介电常数低、介电损耗低、勺小,机械强度高、与银化学兼容性好、无毒、原料来源丰富、成本低廉,作为微波基板和LTCC设备具有广阔的应用前景。但存在其烧结温度过高、谐振频率温度系数不近零、出现微裂纹等问题。本文利用溶胶-凝胶(Sol-Gel)、水热(Hydro thermal method)、溶剂热法(Solvent thermal method)等湿化学方法制备出SiO2微纳米粉体,并用这种粉体制备出二氧化硅基微波介质陶瓷。研究了SiO2陶瓷烧结特性、相结构的演化、微观显微组织的变化、密度变化以及微波介电性能随烧结温度和测量温度的变化关系。Si02单相陶瓷的烧结温度从1675℃降到了1550℃,将其Q·f从80400GHz提高到92400GHz,发现了Si02陶瓷的Q·f值对温度的敏感性并用复合介电模型给出了解释;利用SiO2-TiO2核壳结构将陶瓷的烧结温度降到了1200℃,调节了τf值近零,同时保持了较高的品质因数;利用Li2Ti03添加获得了鳞石英相的微波介电性能,将陶瓷的烧结温度降到了1050℃,调节了τf值近零;硼酸添加将0.9SiO2-0.1TiO2陶瓷的烧结温度降到950℃,调节了τf值近零,同时将Q·f值提高到78000GHz,实现了与Ag共烧;研究了Si02陶瓷的老化、高低温激光拉曼光谱和工艺改进。本文主要研究成果分如下五个部分。
     第一部分,用Sol-Gel法制备SiO2陶瓷以及微波介电性能研究,通过正硅酸乙酯(TEOS)的水解-缩聚反应,分别在酸性溶液和碱性溶液环境下利用乙醇和水的混合溶液在室温下制备出了单分散高比表面积非晶态二氧化硅纳米块和纳米球,并且用制备出的二氧化硅纳米块和纳米球为原料制备了SiO2陶瓷。用二氧化硅纳米块制备的Si02陶瓷在1250℃以上均为方石英相,在1600℃烧结的陶瓷片的密度为2.03g/cm3(相对密度85%),Q·f值68000GHz,介电常数3.13,谐振频率温度系数-14.2ppm/℃。另外,发现样品的Q·f值随测量温度的升高而明显增加。采用碱性溶液环境中制备的Si02粉体制备的陶瓷的致密度和微波介电性能发生明显改善,在1550℃烧结3小时的样品得到了优异的微波介电性能。Si02陶瓷的Q·f值在室温下达到92400GHz,高于固相法制备的性能。研究发现,陶瓷的Q·f值在从80℃降温到室温后的测量值明显高于原先在室温下测量的值,但是小于80℃下的测量值。Q·f值对温度的敏感性用复合介电模型给出了解释。
     第二部分,以前一部分介绍的单分散高比表面积非晶态二氧化硅纳米球为核分别利用静电吸附沉积法和溶胶凝胶-溶剂热法在二氧化硅表面包覆一层二氧化钛,合成单分散、高比表面积SiO2@TiO2复合微球,研究用复合微球制备的SiO2@TiO2复相陶瓷的微波介电性能。用静电吸附沉积法得到的复合粉体包覆效果不好,均匀性较差,用此粉体制备的陶瓷的微波性能都比较低。溶胶凝胶-溶剂热法可以得到非常均匀的复合粉体,分散性好,包覆效果比较好,十到几十纳米的二氧化钛纳米颗粒均匀包裹在直径为500-600纳米的二氧化硅微球上,得到了核壳结构。用这种具有核壳结构的粉体制备了(1-x) SiO2-xTiO2复相微波介电陶瓷,得到了谐振频率温度系数近零的陶瓷,Q·f=4O5OO GHz,并且将烧结温度从1550℃降到了1200℃。
     第三部分,分别利用钛酸锂和硼酸对前述Si02陶瓷进行掺杂改性进一步降低烧结温度以实现与金属电极共烧之目的。实验结果表明钛酸锂的添加不仅把烧结温度从1200℃降到了1050℃,而且调节了二氧化硅的τf值。(1-x) SiO2-xLi2TiO3陶瓷在1050℃烧结具有较好的微波性能:εr=3.22, τf=0.2ppm/℃, Q·f=10280GHz;硼酸的添加不仅把0.9SiO2-0.1TiO2复相陶瓷的烧结温度降到了950℃,而且使Q·f值从40500GHz提高到78000GHz,同时保持了τf值近零。Ag粉与0.9SiO2-0.1TiO2+10wtH3BO3在950℃共烧实验并没有检测到第二相出现,说明与金属Ag电极的化学兼容性好。
     第四部分,研究了二氧化硅微波介电陶瓷的介电频谱、老化及高低温激光拉曼光谱,同时优化了制备工艺。研究表明:Si02微波介电陶瓷的介电常数在低频下几乎为常数,大约4.2,比微波频段的介电常数稍大;SiO2微波介电陶瓷的微波性能随着岁月流逝不但没有降低反而明显改善,搁置2年后的SiO2方石英相微波介电陶瓷经退火处理后其微波介电性能下降。
     第五部分,研究了镁橄榄石粉体的纯相制备方法,首次用一种简单方法制备了纯相镁橄榄石粉体,用此纯相粉体制备了硅酸镁微波介电陶瓷。以纯相硅酸镁为基础,利用静电吸附沉积法和热溶剂法制备了Mg2Si04@CaTi03复合结构,研究了Mg2Si04@CaTi03复相陶瓷的微波介电性能。得到勺近零的Mg2SiO4@CaTiO3复合陶瓷,1300℃烧结得到的Q·f=19000GHz。
Nowadays, low permittivity microwave materials have attracted much attention for their applications as substrate in microwave integrated circuits. The microwave substrate material should have a low permittivity (εr), high Q·f value and near zero temperature coefficient of resonant frequency (τf). Among the microwave substrate materials, SiO2-based composite was used in the field of microwave substrates due to its excellent chemical and thermal stabilities. It's attractive advantages such as low dielectric constant, low dielectric loss, low τf, high mechanical strength, chemical compatibility with Ag metal electrodes, no toxicity, and abundant raw materials source and low cost constituents make the SiO2ceramic as potential candidates for substrate and LTCC devices. However, the main disadvantages of SiO2ceramics are its high sintering temperature, not near zero τf and microscopic cracks limiting its practical application.
     SiO2nanospheres were synthesized by wet chemical methods, such as the Sol-Gel, hydrothermal method, and solvent thermal method, and then the powders were used as raw material to fabricate the SiO2based ceramics. The phase-formation and transformation, sintering behavior, microstructures, and dielectric properties of SiO2based ceramics were investigated in detail. The SiO2ceramics sintered at1550℃exhibited excellent microwave properties of εr~3.52, Q·f·92400GHz and τf~-14.5ppm/℃. The optimum sintering temperature of SiO2ceramics was reduced125℃by aqueous Sol-Gel process compared to a conventional solid-state method. The Q·f and εr values of SiO2ceramics are sensitive to the measured temperatures, which was explained by a simple composite dielectric model. TiO2coated SiO2powders were prepared by a SGS and were used as raw material to fabricate the (1-x) SiO2-xTiO2(0.1≤x≤0.3) ceramics. The0.85SiO2-0.15TiO2ceramics sintered at1200℃possess excellent microwave properties of εr~5.4, Q·f~40500GHz and τf near to0ppm/℃. The optimum sintering temperature of ceramics was reduced475℃compared to a conventional solid-state method. The sintering temperature of0.9SiO2-0.1TiO2ceramic is lowered from1200℃/3h to950℃16h by the addition of H3BO3.0.9SiO2-0.1TiO2composite ceramics mixed with10wt%H3BO3sintered at950℃/16h posses a excellent microwave dielectric properties of εr~4.67, Q·f~78000GHz and τf -0.7ppm/℃. From the X-ray diffraction and EDS analysis of cofired ceramics, the H3BO3added0.9SiO2-0.1TiO2powders does not react with Ag at950℃. The aging property, high-low temperature Raman spectra and the improvement for preparation of SiO2ceramics were investigated. The principal expariment results were shown as follows.
     In the first part, SiO2nanoblocks and nanospheres were synthesized using a Stober method by hydrolysis and condensation of TEOS (tetraethylorthosilicate Si(OC2H5)4) at room temperature under the acidic and alkaline conditions respectively. The powders used as raw materials to fabricate SiO2ceramics. The SiO2ceramics using nanoblock sintered at above1250℃are to be the cristobalite phase, and when the sintering temperature reaches to1600℃, have the density of2.03g/cm3(relative density of85%).The ceramics exhibited microwave dielectric properties of εr~3.13, Q·f~68000GHz and τf~-14.2ppm/℃measured at room temperature. In addition, it was found that the Q·f values of specimens increased significantly with the increase of sintering temperature. The density and microwave dielectric properties of fabricated ceramics using SiO2powder prepared in alkaline environment got improved apparently, and reached up to the optimized values of microwave dielectric properties(εr·3.52, Q·f~92400GHz and τf~-14.5ppm/℃) for specimens sintered at1550℃for3h. The optimum sintering temperature of SiO2ceramics was reduced (125℃) by aqueous sol-gel process compared to a conventional solid-state method. Microwave dielectric properties of SiO2ceramics were firstly measured at varying temperatures from room temperature to80℃.We found that the Q-f values are sensitive to the measurement temperature, due to contribution from silica medium, void volume and adsorbed water. The Q·f values measured at room temperatures after cooling down from80℃are obviously higher than those measured at original room temperatures, but lower than the ones measured at80℃.
     In the second part, SiO2@TiO2composite microspheres were prepared using electrostatic adsorption deposition method and sol-gel process under solvothermal conditions (SGS). Fabricatinging composites with electrostatic adsorption deposition method exhibited a not good coating effect, and then led a poor uniformity and also relatively lower microwave dielectric properties. TiO2coated SiO2powders with homogeneous coating were prepared by a Sol-Gel process under solvothermal conditions and were used as raw material to fabricate the (1-x) SiO2-xTiO2(0.1≤x≤0.3) ceramics. The0.85SiO2-0.15TiO2ceramics sintered at1200℃possess excellent microwave dielectric properties of εr~5.4, Q·f~40500GHz and τf near to0ppm/℃. The optimum sintering temperature was reduced475℃compared to that by a conventional solid-state method.
     In the third part, using a conventional solid-state reaction method, SiO2ceramics with addition of Li2TiO3were synthesized and their phase evolution, chemical reactions, microstructure and microwave dielectric properties were studied. The microwave dielectric properties of SiO2ceramics with addition of Li2TiO3strongly depend on the formation and the decomposed of Li2(TiO)(SiO4) intermediate phase. The tridymite phase was formed for all samples sintered above1150℃and its microwave dielectric properties were reported for the first time (εr=2.58,Q·f=258OO GHz, τf=-17.8ppm/℃). The promising ceramics of0.945SiO2-0.055Li2TiO3sintered at1050℃were found to possess good microwave dielectric properties:εr=3.21,Q·f=10180GHz and τf~0.17ppm/℃. The sintering temperature of0.9SiO2-0.1TiO2ceramic is lowered from1200℃/3h to950℃/6h by the addition of H3BO3.0.9SiO2-0.1TiO2ceramics with10wt%H3BO3sintered at950℃/6h possesses excellent microwave dielectric properties of εr~4.67, Q·f~78000GHz and τf~0.7ppm/℃. From the X-ray diffraction and EDS analysis of cofired ceramics, the H3BO3added0.9SiO2-0.1TiO2ceramic does not react with Ag at950℃.
     In the fourth part, the aging property, high-low temperature Raman spectra, and the improvement for preparation process of SiO2ceramics were investigated. Experimental results indicated that the εr value of SiO2ceramics was almost constant approximately equal to4.2at low frequency, slightly bigger than that of the former. After two years aging, microwave dielectric properties of SiO2ceramic did not decrease, nevertheless improved apparently compared to those as-sintered samples, but the annealing led to a decline in Q·fvalue.
     In the fifth part, the forsterite powders of pure phase were synthesized with a simple method for the first time, and were used as raw materials to fabricate the Mg2SiO4ceramics.The Mg2SiO4@CaTiO3composite ceramics were prepared with electrostatic adsorption-deposition and solvent thermal methods, and their microwave dielectric properties were also investigated. Although the τfof Mg2SiO4@CaTiO3could reach to near zero, its sintering temperature was very high (1300℃), and the Q·f value was equal to19000GHz.
引文
[1]Kim W.S., Ki m E. S., Yoon K. H., Effects of Sm3+substitution on dielectric properties of Ca1-xSm2x/3TiO3 ceramics at microwave frequencies, J. Am. Ceram. Soc.,1999,82:2111-2115.
    [2]Subodh G.., Jams J., Sebastian M. T., et al, Structure and microwave dielectric properties of Sr2+nCe2Ti5+nO15+3n (n≤10).
    [3]Lee M. K., Chung J. H., Ryu K. W., et al Microwave dielectric properties of Ba(Mg,Ta)O3-Ba(Co,Nb)O3 ceramics, Proc. Intl. Symp. Insulating Materials, Toyahashi, Japan, (1998) pp:139-142.
    [4]Wu H., Daves P. K., Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3 microwave dielectrics. Ⅳ. Tuning τf and the part size dependence of Q·f. J. Am. Ceram. Soc.,2006,89:2271-2278.
    [5]Solomon S., Kumar M., Surendran K. P., et al. Synthesis, characterization and propertes of [Re1-xREx]TiNbO6 dielectric ceramics, Mater. Chem. Phys., 2001,67:291-293.
    [6]Surendran K. P., Solomon S., Varma M. R., et al. Microwave dielectric properties of RETiTaO6 (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, Al, and In ceramics, J. Mater. Res.,2002,17:2561-2566.
    [7]Jancar B., Suvorov D., Valant M., et al. Characterisation of CaTiO3-NdAlO3 dielectric ceramics, J. Eur. Ceram. Soc.,2003,3:1391-1400.
    [8]Tsunooka T.,Sugiyma H.,Kakimoto K.,et al.Zero temperature coefficient and sinterability of forsterite ceramics by rutile addition,J.Ceram.Soc.Jpn.,2004, 112:S1637-S1640.
    [9]Guo,Y.,Ohsato H.,Kakimoto K.,Characterization and dielectric behaviour of willemite and TiO2 doped willemite at millimeterwave frequency,J.Eur.Ceram. Soc.,2006,26:1827-1830
    [10]Kim M.H.,Lee J.C.,Cheon C.I.,et al.Crystal structure and low temperature cofiring ceramic property of(1-x)(Li,Re)W2O8-xBaWO4 ceramics(Re=Y,Yb) Jpn.J.Appl. Phys.,2006,45:7397-7400.
    [11]Ogawa H., Taketani H., Kan A., et al. Evalution of electronic state of Mg4 (Nb2-xSbx)O9 microwave dielectric ceramics by first principal calculation method, J.Eur.Ceram.Soc.,2005,25:2859-2863.
    [12]Akinori Yoshida, Hirotaka Ogawa, Akinori Kan, Takashi Kondo Sintering time dependence of microwave dielectric properties and crystal structure in Y2BaZnO5 ceramic, Journal of the European Ceramic Society 25 (2005) 2897-2900.
    [13]Kan A., Ogawa H., Ohsato H., Relationship between bond strength and microwave dielectric properties of corundum type (Mg4-xCox) Nb2O9 and Mg4 (Nb2-yTay)O9 solid solutions, J. Ceram. Soc. Jpn. Supl.,2004,112 (1):S1622-S1626.
    [14]X.C. Wang, W. Lei, R. Ang, W.Z. Lu, "ZnAl2O4-TiO2-SrAl2Si2O8 low-permittivity microwave dielectric ceramics," Ceram. Int.39(2013)1707-1710.
    [15]D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, "Microwave Dielectric Ceramics in Li2O-Bi2O3-MoO3 System with ultra-Low Sintering Temperatures," J. Am. Ceram. Soc.,93 [4] 1096-1100 (2010).
    [16]D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X. G. Wu, L. Shui, X. Yao, "Microwave Dielectric Properties of Li2WO4 Ceramic with Ultra-Low Sintering Temperature," J. Am. Ceram. Soc.,94 [2] 348-350 (2011)
    [17]K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, "Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications," Eur. Phys. J. B 41,301-306 (2004).
    [18]K. T. Wu, Y. Yuan, S.R. Zhang, X.Y. Yan, Y.R. Cui, " ZrTi2O6 filled PTFE composites for microwave substrate applications," J. Polym. Res. (2013) 20:223
    [19]Nijesh K. James, K. Stanly Jacob, K.P. Murali, R. Ratheesh, " Ba(Mgi/3Ta2/3)O3 filled PTFE composites for microwave substrate applications, " Mater. Chem. Phys.,122 507-511(2010).
    [20]Nijesh K. James, S. Rajesh, K. P. Mural, K. Stanly Jacob, R. Ratheesh, "Preparation and microwave characterization of BaWO4 filled Polytetra fluoroethylene laminates for microwave substrate applications," J Mater Sci. Mater Electron 21 1255-1261(2010).
    [21]Cockayne E., Burton B. P., Phonons and static dielectric constant in CaTiO3 from first principles, Phys. Rev. B,2000,62 (6):3735-3743.
    [22]Fennie C.J., Rabe K.M., Structural and dielectric properties of Sr2TiO4 from first principles, Phys. Rev. B,2003,68(18):4111(1)-4111(9).
    [23]Wang X., Vanderbilt D., First-principles perturbative computation of phonon properties of insulators in finite electric fields, Phys. Rev. B,2006,74 (5):4304 (1)-4304(11).
    [24]Zhao X., Vanderbilt D., First principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide, Phys. Rev. B,2002,65 (23):3106 (1)-3106(4).
    [25]Bernardini F., Fiorentini V., Vanderbilt D., Polarization-based calculation of the dielectric tensor of polar crystals, Phys. Rev. B,1997,79 (20):3958-3961.
    [26]Cai Y., Zhang L., Zeng Q., et al. First principle study of vibrational and dielectric properties of Si3N4, Phys. Rev. B,2006,74 (17):4301(1)-4301(4).
    [27]Dai Y.D., Zhao G.H., Liu H.X., First principle study of the dielectric properties of Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3, J. Appl. Phys.,2009,105 (3): 034111(1)-034111(9).
    [28]Kamba S., Hughes H., Noujni D., et al. Relationship between microwave and lattice vibration properties in Ba (Zn1/3Nb2/3)O3-based microwave dielectric ceramics, J. Phys. D,2004,37:1980-1986.
    [29]Jacobson A.J., Collins B.M., Fender B.E.F., A powder neutron and X-ray diffraction determination of the structure of Ba3Ta2Zn09:an investigation of perovskite phases in the system Ba-Ta-Zn-O and the preparation of Ba2TaCdO5 and Ba2CeIn05.5, Acta. Cryst. B.,1976,32:1083-1087.
    [30]Moreira R.L., Dias A., Polarized micro-Raman spectroscopy of oriented A (B'1/3B"2/3) O3 powders and microwave ceramics, J. Eur. Ceram. Soc.,2005,25 (12):2843-2847
    [31]Kamba S., Hughes H., Noujni D., et al. Relationship between microwave and lattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectric ceramics, J. Phys. D,2004,37 (14):1980-1986
    [32]Petzelt J., Setter N., Far infrared spectroscopy and origin of microwave losses in low-loss ceramics, Ferroelectrics.,1993,150:89-102
    [33]E. S. Kim, D. H. Kang, Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1-xO2(B5+=Nb, Ta) ceramics Ceram. Int.34 (2008)883-888
    [34]R. D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides [J], Journal of Applied Physics,1993,73(1):348-366.
    [35]Shannon R.D., Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys.,1993,73(1):348-366.
    [36]李标荣,王筱珍,张绪礼,无机电介质[M],武汉:华中理工大学出版社,1995,154-165
    [37]Ohsato H., Tsunooka T.,Sugiyama T., et al.Forsterite ceramics for millimeterwave dielectrics[J]. J.Electroceram.,2006,17(2-4):445-450.
    [38]Ohsato H.,Science of tungsten bronze-type like Ba6-3XR8+2xTi18O54(R=rare earth)microwave dielectric solid solutions[J],J.Eur.Ceram.Soc.,2001,21(15): 2703-2711.
    [39]Dias A., Ciminelli S.T., Matinaga F.M., et al. Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics[J], J.Eur.Ceram.Soc.,2001,21:2739-2744
    [40]Redfern S.A.T.,Harrison R.J.,O'Neill H.S.C.,et al. Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600℃ from in situ neutron diffraction, Am.Mineral.,1999,84:299-310.
    [41]Ahn C.W.,Jang H.J.,Nahm S.,et al.Effects of microstructure on the microwave dielectric properties of Ba(Co1/3Nb2/3)O3 and (1-x)Ba(Co1/3Nb2/3)O3/x Ba(Zn1/3Nb2/3)O3 ceramics[J]. J.Eur.Ceram.Soc.,2003,23:2473-2478
    [42]张迎春,铌钽酸盐微波介质陶瓷材料[D],北京:科学出版社,2005,38-40.
    [43]Cheng H.F.,Chia C.T.,Liu H.L.,et al.Spectroscopic characterization of Ba(Mg1/3Nb2/3)O3 dielectrics for the application to microwave communication[J]. J. Electromagnet. Wave.,2007,21(5):629-636.
    [44]Webb S.J., Breeze J., Scott R.I., et al. Raman spectroscopic study of gallium-doped Ba(Zn1/3Ta2/3)O3[J], J.Am.Ceram.Soc.,2002,85:1753-1756.
    [45]Bosman A. J., Havinga E. E., Temperature dependence of dielectric constant of cubic ionic compounds[J], Phys. Rev.,1963,129 (4):1593-1599.
    [46]P.Liu, Y.He, J.P.Zhou, C.H.Mu, and H.W.Zhang, Dielectric relexation and giant dielectric constant of Nb-doped CaCuTi4O12 ceramics under dc bias voltage [J]. Phys. Status. Solidi. A 206,562-566 (2009).
    [47]Aslan K, Wu M, Lakowicz J R, et al. Fluorescent core-shell Ag@ SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms[J]. Journal of the American Chemical Society,2007,129(6):1524-1525.
    [48]Arvand M, Hassannezhad M. Magnetic core-shell Fe3O4@ SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid[J]. Materials science & engineering. C, Materials for biological applications,2014,36:160-167.
    [49]Anees A. Ansari, Tarique N. Hasan, Naveed A. Syed, In-vitro cyto-toxicity, geno-toxicity, and bio-imaging evaluation of one-pot synthesized luminescent functionalized mesoporous SiO2@Eu(OH)3 core-shell. Nanomedicine[J]. Nanotechnology, Biology and Medicine,9 (2013) 1328-1335.
    [50]M. Cerneaa, B.S. Vasileb, A. Bonia, A. Iugaa. Synthesis, structural characterization and dielectric properties of Nb doped BaTiO3/SiO2 core-shell heterostructure[J]. J. Alloys Compd.587 (2014) 553-559.
    [51]曹茂盛,陈笑,杨郦主编.材料合成与制备方法[M].哈尔滨:哈尔滨工业大学出版社,2008.12.100-105.
    [52]李凤生,刘宏英,陈静等.微纳米粉体技术理论基础[M].科学出版社.beiji北京:科学出版社.2010,51-63.
    [53]徐廷献等,电子陶瓷材料[M].天津:天津大学出版社,1993,238-239.
    [54]Bieringer M, Moussa S M, Noailles L D, et al. Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-8[J]. Chemistry of materials,2003,15(2):586-597.
    [55]R.J. Cava. Dielectric materials for Applications in Microwave Communications [J].J.Mater.chem.2001,11(11):54-62
    [56]S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina[J], J. Am. Ceram. Soc.80 (1997) 1885-1888.
    [57]Lin Cheng, Peng Liu, Xiao Ming Chen. Fabrication of nanopowders by high energy ball milling and low temperature sintering of Mg2SiO4 microwave dielectrics[J]. Journal of Alloys and Compounds.2012,373-377.
    [58]P.J. Heaney, Structure and chemistry of the low-pressure silica poly-morphs[J], Rev. Mineral. Geochem.29 (1994) 1-40.
    [59]Gun S. Kim, Sang H. Hyun,* and Hyung H. Park, Synthesis of Low-Dielectric Silica Aerogel Films by Ambient Drying, J. Am. Ceram. Soc.,84 [2] (2001) 453-55
    [60]Jin bin Lin, Hong ling Chen, Yong bing Yuan. Mechanochemically conjugated PMHS/nano-SiO2 hybrid and subsequent optimum grafting density study [J]. Applied Surface Science,2011,9024-9033
    [61]J.Q.Li, F.D.Luo, M. Zhu, WC Zhou; Preparation and dielectric properties of porous silicon nitride ceramics[J]. Trans. Nonferrous Met. Soc. China,16 (2006), 487-489
    [62]Baheiraei N, Moztarzadeh F, Hedayati M. Preparation and antibacterial activity of Ag/SiO2 thin film on glazed ceramic tiles by sol-gel method[J]. Ceramics International,2012,38(4):2921-2925.
    [63]Sebastian M T, Jantunen H. Low loss dielectric materials for LTCC applications:a review[J]. International Materials Reviews,2008,53(2):57-90.
    [64]陈艳,吴孟强,张树人,等.低介熔融石英陶瓷制备及其介电性能研究[J].电子元件与材料,2010,11:005.
    [65]Fang Y, Li L, Xiao Q, et al. Preparation and microwave dielectric properties of cristobalite ceramics[J]. Ceramics International,2012,38(6):4511-4515.
    [66]Synthesis and characterization of SiC nano powder with low residual carbon processed by sol-gel method[J]. Powder Technology,219(2012):202-210.
    [67]DEEPIKA KANDPAL1, SUCHITA KALELE,S K KULKARNI, Synthesis and characterization of silica-gold core-shell (SiO2@Au) nanoparticles[J]. Indian Academy of Sciences, Vol.69, No.2 2007,277-283.
    [68]Jianguo Liu, Xiangxin Han, Xiumin Jiang, Hui Wang, Zhigang Cui. Thermal expansion characteristics of quartzite particles up to 1600℃[J]. Chemical Engineering and Processing:Process Intensification.48 (2009) 885-891.
    [69]By Salvador Eslava, Mikhail R. Baklanov,* Jone Urrutia, Christine E. A. Kirschhock, Karen Maex, and Johan A. Martens, Nanoporous Organosilicate Films Prepared in Acidic Conditions Using Tetraalkylammonium Bromide Porogens[J]. Adv. Funct. Mater.2008,18,3332-3339.
    [70]Fabbri A, Fen-Chong T, Coussy O. Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials [J]. Cold Regions Science and Technology,2006,44(1):52-66.
    [71]Abraham R, Kuryan S, Isac J, et al. Yttrium barium copper oxide-filled polystyrene as a dielectric material[J]. Journal of applied polymer science,2011, 120(4):2233-2241.
    [72]Chen W, Shen P L, Lu J X, et al. Kinetic Study of Portland Cement Hydration with Ground Penetrating Radar[J]. Key Engineering Materials,2013,539:25-29.
    [73]Wei Chen, Peiliang Shen, Zhonghe Shui. Determination of water content in fresh concrete mix based on relative dielectric constant measurement[J]. Construction and Building Materials.2012,34:306-312.
    [74]Xiaowei Yin, Yeye Xue, Litong Zhang, Laifei Cheng. Dielectric, electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites[J]. Ceramics International,2012,38(3), 2421-2427.
    [75]Aparicio S, Alcalde R, Garcia B, et al. Microwave dielectric spectroscopy of 2-pyrrolidone+ water mixtures[J]. Chemical Physics Letters,2007,444(4): 252-257.
    [76]Sheen J, Hong Z W, Liu W, et al. Study of dielectric constants of binary composites at microwave frequency by mixture laws derived from three basic particle shapes[J]. European Polymer Journal,2009,45(4):1316-1321.
    [77]Cha-um W, Rattanadecho P, Pakdee W. Experimental analysis of microwave heating of dielectric materials using a rectangular wave guide (MODE:TE io)(Case study:Water layer and saturated porous medium)[J]. Experimental Thermal and Fluid Science,2009,33(3):472-481.
    [78]He Z, Ma J, Zhang R. Investigation on the microstructure and ferroelectric properties of porous PZT ceramics[J]. Ceramics international,2004,30(7): 1353-1356.
    [79]Chevereau E, Zouaoui N, Limousy L, et al. Surface properties of ceramic ultrafiltration TiO2 membranes:Effects of surface equilibriums on salt retention[J]. Desalination,2010,255(1):1-8.
    [80]Anderson M A, Gieselmann M J, Xu Q. Titania and alumina ceramic membranes[J]. Journal of Membrane Science,1988,39(3):243-258.
    [81]Ohko Y, Tatsuma T, Fujii T, et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles[J]. Nature Materials,2003,2(1):29-31.
    [82]Hirakawa T, Kamat P V. Charge separation and catalytic activity of Ag@ TiO2 core-shell composite clusters under UV-irradiation[J]. Journal of the American Chemical Society,2005,127(11):3928-3934.
    [83]Peng Liu, Hirotaka Ogawa, Eung Soo Kim, Akninori Kan. Low-temperature sintering and microwave dielectric properties of Ca(Li1/3Ta2/3)O3-δ-CaTiO3 ceramics[J]. J. Eur. Ceram. Soc.,23 (2003):1391-2417-2421.
    [84]Guo-hua Chen n, Mei-zhenHou,YunYang. Microwave dielectric properties of low-fired Li2TiO3 ceramics doped with Li2O-MgO-B2O3 frit[J]. Materials Letters 89(2012)16-18.
    [85]Dong-Wan Kim, Kyung Hyun Ko, Do-Kyun Kwon, and Kug Sun Hong. Origin of Microwave Dielectric Loss in ZnNb2O6-TiO2[J]. J. Am. Ceram. Soc.,85 [5] (2002) 1169-72.
    [86]赵丽,多孔氧化物微球的制备与表征[D]武汉,2006,武汉理工大学博士学位论文。
    [87]ZHOU Qian, DONG Peng, Preparation of ordered arrays of PS/TiO2 core-shell microspheres and hollow TiO2 microspheres[J]. CIESC Journal 60 (4) (2009):1035-1039
    [88]Baheiraei N, Moztarzadeh F, Hedayati M. Preparation and antibacterial activity of Ag/SiO2 thin film on glazed ceramic tiles by sol-gel method[J]. Ceramics International,2012,38(4):2921-2925.
    [89]Hu C, Liu P. Preparation and microwave dielectric properties of SiO2 ceramics by aqueous Sol-Gel technique[J]. Journal of Alloys and Compounds,2013,559: 129-133.
    [90]Ortiz-Landeros J, Gomez-Yanez C, Lopez-Juarez R, et al. Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods [J]. Journal of Advanced Ceramics,2012,1(3):204-220.
    [91]SELMI F A, AMARAKOON V R W. Sol-gel coating of powders for processing electronic ceramics[J]. Journal of the American Ceramic Society,1988,71(11): 934-937.
    [92]Park J S, Han Y H. Nano size BaTiO3 powder coated with silica[J]. Ceramics international,2005,31(6):777-782.
    [93]Jo S K, Park J S, Han Y H. Effects of multi-doping of rare-earth oxides on the microstructure and dielectric properties of BaTiO3[J]. Journal of Alloys and Compounds,2010,501(2):259-264.
    [94]Park J S, Yang M H, Han Y H. Effects of MgO coating on the sintering behavior and dielectric properties of BaTiO3[J]. Materials chemistry and physics,2007, 104(2):261-266.
    [95]Chung C C, Jean J H. Aqueous Synthesis of Y2O2S:Eu/Silica Core-Shell Particles[J]. Journal of the American Ceramic Society,2005,88(5):1341-1344.
    [96]Jimmy C Y, Zhang L, Yu J. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration[J]. New journal of chemistry,2002,26(4):416-420.
    [97]Yu J, Zhao L, Cheng B. Facile preparation of monodispersed SiO2/TiO2 composite microspheres with high surface area[J]. Materials chemistry and physics,2006, 96(2):311-316.
    [98]Chen J F, Wang J X, Liu R J, et al. Synthesis of porous silica structures with hollow interiors by templating nanosized calcium carbonate[J]. Inorganic Chemistry Communications,2004,7(3):447-449.
    [99]Kimura I, Isono Y, Tanaka M. Preparation of titania microballoons by sol-gel process in reverse dispersion[J]. Materials research bulletin,2005,40(7): 1202-1209.
    [100]Han J, Kumacheva E. Monodispersed silica-titanyl sulfate microspheres[J]. Langmuir,2001,17(25):7912-7917.
    [101]Holgado M, Cintas A, Ibisate M, et al. Three-Dimensional Arrays Formed by Monodisperse TiO2 Coated on SiO2 Spheres[J]. Journal of colloid and interface science,2000,229(1):6-11.
    [102]Dutoit D C M, Schneider M, Baiker A. Titania-silica mixed oxides:I. Influence of sol-gel and drying conditions on structural properties[J]. Journal of Catalysis, 1995,153(1):165-176.
    [103]Khalil K, Elsamahy A A, Elanany M S. Formation and Characterization of High Surface Area Thermally Stabilized Titania/Silica Composite Materials via Hydrolysis of Titanium (IV)< i> tetra-Isopropoxide in Sols of Spherical Silica Particles[J]. Journal of colloid and interface science,2002,249(2): 359-365.
    [104]Retuert J, Quijada R, Fuenzalida V M. Titania coatings on high and low surface area spherical silica particles by a sol-gel method[J]. J. Mater. Chem.,2000, 10(12):2818-2822.
    [105]Han J, Kumacheva E. Monodispersed silica-titanyl sulfate microspheres[J]. Langmuir,2001,17(25):7912-7917.
    [106]Yu J, Zhao L, Cheng B. Facile preparation of monodispersed SiO2/TiO2 composite microspheres with high surface area[J]. Materials chemistry and physics,2006, 96(2):311-316.
    [107]Anjana P S, Sebastian M T. Microwave Dielectric Properties and Low-Temperature Sintering of (1-x) CeO2-xBaTi4O9 Ceramics[J]. International Journal of Applied Ceramic Technology,2008,5(1):84-93.
    [108]Yoon S H, Choi G K, Kim D W, et al. Mixture behavior and microwave dielectric properties of (1-x) CaWO4-xTiO2[J]. Journal of the European Ceramic Society, 2007,27(8):3087-3091.
    [109]Yan M F, Ling H C. Low sintering temperature, high dielectric constant and small temperature coefficient dielectric compositions[J]. Materials chemistry and physics,1996,44(1):37-44.
    [110]Cheng L, Liu P, Chen X M, et al. Fabrication of nanopowders by high energy ball milling and low temperature sintering of Mg2SiO4 microwave dielectrics [J]. Journal of Alloys and Compounds,2012,513:373-377.
    [111]Tseng W J, Chao P S. Synthesis and photocatalysis of TiO2 hollow spheres by a facile template-implantation route[J]. Ceramics International,2013,39(4): 3779-3787.
    [112]Liang J, Lu W Z, Wu J M, et al. Microwave dielectric properties of Li2 TiO3 ceramics sintered at low temperatures[J]. Materials Science and Engineering:B, 2011,176(2):99-102.
    [113]Anjana P S, Sebastian M T, Axelsson A K, et al. Microwave dielectric properties of CeO2-0.5 AO-0.5 TiO2(A= Ca, Mg, Zn, Mn, Co, Ni, W) ceramics[J]. Journal of the European Ceramic Society,2007,27(12):3445-3452.
    [114]Yoon S H, Choi G K, Kim D W, et al. Mixture behavior and microwave dielectric properties of (1-x) CaWO4-x TiO2[J]. Journal of the European Ceramic Society, 2007,27(8):3087-3091.
    [115]Yan M F, Ling H C. Low sintering temperature, high dielectric constant and small temperature coefficient dielectric compositions[J]. Materials chemistry and physics,1996,44(1):37-44.
    [116]Templeton A, Wang X, Penn S J, et al. Microwave dielectric loss of titanium oxide[J]. Journal of the American Ceramic Society,2000,83(1):95-100.
    [117]Haga K, Ishii T, Mashiyama J, et al. Dielectric properties of two-phase mixture ceramics composed of rutile and its compounds[J]. Japanese journal of applied physics,1992,31 (part 1):3156-3159.
    [118]Yoon S O, Yoon J H, Kim K S, et al. Microwave dielectric properties of LiNb3 Og ceramics with TiO2 additions[J]. Journal of the European Ceramic Society,2006, 26(10):2031-2034.
    [119]Shan W, Chen L, Chu Y, et al. Synthesis of a fully capped mesoporous silica and its hybrids with extremely low dielectric constant and loss[J]. Microporous and Mesoporous Materials,2013,176:199-208.
    [120]Vasilopoulou M, Douvas A M, Argitis P. Photo-patternable fluorinated polyhedral oligomeric silsequioxane-functionalized (POSS-F) polymeric materials with ultra low dielectric constants[J]. Materials Chemistry and Physics, 2012,135(2):880-883.
    [121]Navamathavan R, Nirmala R, Kim C Y, et al. A study on structural and electrical properties of low dielectric constant SiOC (-H) thin films deposited via PECVD[J]. Journal of Physics and Chemistry of Solids,2012,73(5):641-645.
    [122]Kim H, Ha M H, Jung D, et al. Effects of He (90%)/H2(10%) plasma treatment on electric properties of low dielectric constant SiCOH films[J]. Materials Research Bulletin,2012,47(10):3008-3010.
    [123]Kim E S, Kim S H, Lee B I. Low-Temperature Sintering and Microwave Dielectric Properties of CaWO4 Ceramics for LTCC Applications [J]. Journal of the European Ceramic Society,2006,26(10-11):2101-2104
    [124]Zhou D, Randall C A, Pang L X, et al. Microwave dielectric properties of (ABi)1/2MoO4(A= Li, Na, K, Rb, Ag) type ceramics with ultra-low firing temperatures[J]. Materials Chemistry and Physics,2011,129(3):688-692.
    [125]M.T. Sebastian, H. Jantunen, Lim J B,Jeong Y H,Nguyen N H,et al. LowTemperature Sintering of the Ba_2Ti_9O_(20)Ceramics[J]. Int. Mater. Rev.53 (2008) 57.
    [126]Lim J B, Jeong Y H, Nguyen N H, et al. Low temperature sintering of the Ba2 Ti9 O20 ceramics using B2O3/CuO and BaCu (B2O5) additives[J]. Journal of the European Ceramic Society,2007,27(8):2875-2879.
    [127]Randall C. Bi-pyrochlore and zirconolite dielectrics for integrated passive component applications[J]. Am. Ceram. Soc. Bull.,2003,82(11):9101-9108.
    [128]Axelsson A K, Alford N M N. Bismuth titanates candidates for high permittivity LTCC[J]. Journal of the European Ceramic Society,2006,26(10):1933-1936.
    [129]Valant M, Suvorov D. Chemical Compatibility between Silver Electrodes and Low-Firing Binary-Oxide Compounds:Conceptual Study[J]. Journal of the American Ceramic Society,2000,83(11):2721-2729.
    [130]Zhou D, Randall C A, Baker A, et al. Dielectric Properties of an Ultra-Low-Temperature Cofiring Bi2Mo2O9 Multilayer[J]. Journal of the American Ceramic Society,2010,93(5):1443-1446.
    [131]Umemura R, Ogawa H, Yokoi A. Low-Temperature Sintering Microwave Dielectric Property Relations in Ba3 (VO4)2 Ceramic [J]. Journal of Alloys and Compounds,2006,424:388-393.
    [132]周长亮,基于介电频谱特性的低压橡胶绝缘电缆老化程度评估方法研究[D],大连:2012,大连理工大学博士学位论文.
    [133]Perrotta, A. J., Grubbs, D. K., Martin, E. S., Dando, N. R., Mckinstry, H. A.and Huang, C. Y., Chemically stabilization of cristobalite [J]. J. Am. Ceram.Soc., 1989,72,441-447.
    [134]Sharma S K, Mammone J F, Nicol M F. Raman investigation of ring configurations in vitreous silica[J].1981.
    [135].W. Pabst, E.Gregorova, J.Kutzendorfer. Elastic anomalies in tridymite and cristobalite-based silica materials [J]. Ceramics International40 (2014)4207-4211.
    [136]D.D. Goller, R.T. Phillips, I.G. Sayce.Structural relaxation of SiO2 at elevated temperatures monitored by in situ Raman scattering[J]. Journal of Non-Crystalline Solids 355 (2009) 1747-1754
    [137]Can Xu, Xiao-Fang Zhang, Liang Chen, Juan Cao. Effect of polar groups on Raman spectrum of one dimension SiO2 nanowires [J]. Journal of Molecular Structure:THEOCHEM 851 (2008) 35-39.
    [138]T. Deschamps, C. Martinet, D. de Ligny, J.L. Bruneel, Champagnon. Low-frequency Raman scattering under high pressure in diamond anvil cell:Experimental protocol and application to GeO2 and SiO2 boson peaks [J] Journal of Non-Crystalline Solids 358 (2012) 3156-3160.
    [139]Osman San, Cem ozgur, Preparation of a stabilized cristobalite ceramic from diatomite [J]. Journal of Alloys and Compounds 484 (2009) 920-923.
    [140]Duffrene L, Kieffer J. Molecular dynamic simulations of the α-β phase transition in silica cristobalite [J]. Journal of Physics and Chemistry of Solids,1998,59(6): 1025-1037.
    [141]Takada A, Richet P, Catlow C R A, et al. Molecular dynamics simulation of temperature-induced structural changes in cristobalite, coesite and amorphous silica[J], Journal of Non-Crystalline Solids,2008,354(2):181-187.
    [142]Mitchell M B D, Jackson D, James P F. Preparation and characterisation of forsterite (Mg2SiO4) aerogels[J]. Journal of non-crystalline solids,1998,225: 125-129.
    [143]Maliavski N I, Dushkin O V, Markina J V, et al. Forsterite powder prepared from water-soluble hybrid precursor [J]. AIChE journal,1997,43(S11):2832-2836.
    [144]赵麒植,张树人,唐斌,等.非化学计量比制备纯MgTiO3和Mg2SiO4及其性能[J].材料科学与工程学报,2009,27(4):561-563.
    [145]Tsai M T. Characterization of nanocrystalline forsterite fiber synthesized via the sol-gel process[J]. Journal of the American Ceramic Society,2002,85(2): 453-458.
    [146]Mitchell M B D, Jackson D, James P F. Low-density forsterite (Mg2Si04) powders prepared from modified alkoxides[J]. Journal of sol-gel science and technology,2003,26(1-3):777-782.
    [147]Mitchell M B D, Jackson D, James P F. Preparation and characterisation of forsterite (Mg2SiO4) aerogels[J]. Journal of non-crystalline solids,1998,225: 125-129.
    [148]Maliavski N I, Dushkin O V, Markina J V, et al. Forsterite powder prepared from water-soluble hybrid precursor [J]. AIChE journal,1997,43(S11):2832-2836.
    [149]赵麒植,张树人,唐斌,等.非化学计量比制备纯MgTiO3和Mg2Si04及 其性能[J].材料科学与工程学报,2009,27(4):561-563.
    [150]Tsai M T. Characterization of nanocrystalline forsterite fiber synthesized via the sol-gel process[J]. Journal of the American Ceramic Society,2002,85(2): 453-458.
    [151]Mitchell M B D, Jackson D, James P F. Low-density forsterite (Mg2SiO4) powders prepared from modified alkoxides[J]. Journal of sol-gel science and technology,2003,26(1-3):777-782.
    [152]Wang H, Zhang Q, Yang H, et al. Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol-gel process[J]. Ceramics International,2008, 34(6):1405-1408.
    [153]Lv Y, Zuo R, Yue Z. Structure and microwave dielectric properties of Ba3(VO4)2-Zn2-xSiO4-x ceramic composites[J]. Materials Research Bulletin, 2013,48(6):2011-2017.
    [154]Yoon S O, Shim S H, Kim K S, et al. Low-temperature preparation and microwave dielectric properties of ZBS glass-Al2O3 composites[J]. Ceramics International,2009,35(3):1271-1275.
    [155]Murali K P, Rajesh S, Jacob K S, et al. Preparation and characterization of cordierite filled PTFE laminates for microwave substrate applications [J]. Journal of Materials Science:Materials in Electronics,2010,21(2):192-198.
    [156]Rajesh S, Murali K P, Ratheesh R. Preparation and characterization of high permittivity and low loss PTFE/CaTiO3 microwave laminates[J]. Polymer Composites,2009,30(10):1480-1485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700