用户名: 密码: 验证码:
大蒜素对左室重构和心肌纤维化的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血压病(Hypertension,HT)是全球性常见病和多发病,严重损害人们的身心健康,心脏是高血压最常损害的靶器官之一。长期慢性压力超负荷必将引起心脏结构和功能的适应性改变即心脏重塑,主要表现为左室肥厚(LVH)。虽然左室肥厚初期是对心脏负荷增加的适应性改变,以平衡心肌应激的增加,但长期的负荷应激终至适应不良性肥厚。现在认为左室重构不仅是心肌细胞实质成分的变化,还有心肌间质成分和血管成分的变化。心肌间质成分相对于实质成分的不成比例增生,构成心肌结构的异质性,即心肌纤维化,是高血压性心脏病(hypertension heart disease, HHD)心肌重塑的主要病理特征之一,是出现心律失常、心力衰竭、心脏性猝死等并发症的决定因素。
     心肌发生纤维化时最主要的病理改变为细胞外基质(ECM)的大量积聚。在心脏中,ECM含量最多的是胶原蛋白,其不成比例的堆积或纤维化对组织硬度具有决定作用。心脏成纤维细胞在局部神经体液因子的作用下过度激活,是胶原分泌增多的主要原因,但其发生机制尚未完全阐明。
     本研究致力于探讨左室重构过程中心肌纤维化的发生机制并寻求有效的药物干预手段。全文共分为以下五部分:
     第一部分大蒜素对压力负荷大鼠左室重构的影响
     目的:观察压力负荷大鼠左室重构模型情况及大蒜素对其的影响。
     方法:将90只SD雄性大鼠随机分为6组:假手术组(Sham)、模型组(Control)、大蒜素注射液组( Garlicin 1 )、大蒜素口服组( Garlicin 2 )、川芎嗪组(Tetramethylpyrazine,TMP)、氯沙坦组( Losartan ),每组15只。以腹主动脉缩窄方法制备压力负荷性左室重构模型。于术后3天开始给药,给药30天。给药结束后行心脏超声检查;其后采血样用于后续的生化检测,取心脏作组织形态学检查。
     结果:腹主动脉缩窄30天造成的压力超负荷大鼠左室重构模型经超声心动检测证实腹主动脉缩窄引起的心肌肥厚属于向心性肥厚,室壁增厚而室腔容积减少,心室的收缩功能尚处于代偿阶段。各给药组同模型组比较室壁有不同程度的减轻(室壁厚度:Control组>Garlicin 2组>Garlicin 1组/TMP组>Losartan组>sham组)但是除losartan组收缩期左室后壁厚度外(P<0.05),均未出现明显统计学差异,增大样本量有可能出现。模型组心脏体重指数高于假手术组(P<0.05),氯沙坦组明显低于模型组(P<0.05),两个大蒜素组和川芎嗪组较模型组有降低趋势,但没有出现统计学差异。从病理形态来看,光镜下假手术组心肌纤维排列整齐,心肌细胞大小正常,模型组心肌纤维排列紊乱,细胞横径稍大,各药物治疗组有不同程度的改善。电镜下见假手术组细胞为正常超微结构,模型组的细胞超微结构的改变主要为:心肌细胞变大、线粒体变性、肌原纤维变性、细胞核不规则等,各治疗组也有所改善。
     结论:大蒜素注射液与川芎嗪注射液有相似的抑制左室重构作用,但其效果不如氯沙坦。大蒜素口服组的疗效不如大蒜素注射液。
     第二部分大蒜素对压力负荷大鼠心肌纤维化的影响
     目的:观察压力负荷大鼠左室重构过程中的心肌纤维化及大蒜素对其的影响。
     方法:检测左室心肌羟脯氨酸(HOP)、血清胶原代谢物Ⅰ型前胶原羧基端肽(PⅠCP)及Ⅲ型前胶原氨基端肽(PⅢNP)、血清透明质酸(HA)及层粘蛋白(LN)。对心肌组织进行苦味酸天狼猩红染色,计算左室心肌胶原容积分数(CVF,%)和血管周围胶原面积(PVCA,%);制备电镜标本观察心肌胶原纤维和超微结构。
     结果:模型组心肌羟脯氨酸明显增多,说明胶原的合成增加;同时,通过天狼猩红染色观察到心肌纤维被胶原纤维栅栏状包绕,CVF和PVCA较假手术组明显增高,呈间质纤维化和血管周围纤维化现象,属反应性纤维化阶段。血清中PⅠCP、PⅢNP、LN、HA较假手术组均明显增高,,也说明腹主动脉缩窄造成的压力负荷大鼠存在心肌纤维化现象。阳性药物氯沙坦与模型组相比,可抑制心肌羟脯氨酸,减少心肌胶原(P<0.05),并降低血清PⅠCP、PⅢNP、LN(P<0.001或P<0.05),降低CVF和PVCA(P<0.05),减少心肌胶原的排列紊乱。大蒜素注射液和川芎嗪注射液均可降低血清PⅠCP、PⅢNP和HA的增多(P<0.05),降低PVCA(P<0.05),可改善血管周围胶原的增生和排列紊乱。大蒜素口服仅能改善PⅠCP、PⅢNP(同模型组相比P<0.05)。
     结论:大蒜素注射液对腹主动脉缩窄导致的心肌反应性纤维化有一定的抑制作用。大蒜素口服后对心肌纤维化也有一定的作用。
     第三部分大蒜素对压力负荷大鼠AngⅡ和SOD、MDA的影响
     目的:观察大蒜素对压力负荷大鼠AngⅡ和SOD、MDA的影响。
     方法:通过制备腹主动脉缩窄造成的压力负荷大鼠动物模型,检测大蒜素对血浆和心肌中AngⅡ,血清中SOD活性和MDA含量。
     结果:腹主动脉缩窄后,模型组比假手术组的血浆和心肌AngⅡ含量升高(P<0.05),其均值可达假手术组的2倍以上。氯沙坦治疗后血浆中AngⅡ均值水平较模型组升高;心肌组织中的AngⅡ却出现降低趋势(P>0.05)。川芎嗪组、Garlicin 1组的血浆中AngⅡ水平较模型组明显降低(P<0.05),余未出现统计学差异。SOD活力在模型组中有降低趋势(Control组:Sham组,P=0.06);各药物治疗后均有不同程度的提高,其中,Losartan组和TMP组较模型组的总SOD活力明显提高(P<0.05),Garlicin 1组也有较为明显的提高,但是未出现统计学差异(P=0.07)。MDA含量的变化在模型组较假手术组增高(P<0.05),四个治疗组与模型组相比出现明显的降低(P<0.05)。
     结论:压力负荷使大鼠AngⅡ增高,导致RAAS的激活。大蒜素可降低压力负荷导致的循环和心肌局部的AngⅡ异常增高,而口服大蒜素使AngⅡ降低的程度不大。大蒜素能够通过抑制血清MDA、提高SOD活力,减轻左室重构过程中的过氧化损伤。
     第四部分大蒜素对成纤维细胞增殖和胶原分泌的影响
     目的:观察大蒜素对成纤维细胞增殖和胶原分泌的影响,探讨抗纤维化作用机理。
     方法:以NIH3T3细胞为模型,通过H3-thymidine DNA掺入量测定大蒜素对NIH3T3细胞DNA合成的影响;DNA ladder检测细胞凋亡情况;碱消化法检测细胞培养液中羟脯氨酸含量;荧光免疫染色方法检测NIH3T3细胞Ⅰ型胶原蛋白的表达。
     结果:大蒜素作用于NIH3T3细胞24h,在0.2-5ug/ml范围内剂量依赖的抑制NIH3T3细胞的DNA合成;但没有观察到DNA ladder。大蒜素可使细胞培养液中的羟脯氨酸含量减少,Ⅰ型胶原蛋白的表达减少。
     结论:大蒜素对NIH3T3细胞生长增殖有抑制作用,减少细胞胶原的分泌,减少Ⅰ型胶原的表达,可能是大蒜素抗纤维化的作用机理之一。
     第五部分大蒜素对TGF-β1及其信号传导系统的影响
     目的:探讨大蒜素对心肌纤维化过程中TGF-β1及其信号传导的影响。
     方法:采用ELISA方法检测压力负荷大鼠模型血清TGF-β1含量,通过免疫组化方法检测心肌TGF-β1表达,并通过图像分析计算阳性表达的面积(Area)、平均光密度(Density)和IOD值。采用Real-time PCR方法检测TGF-β1下游信号心肌Smad2、Smad7 mRNA表达的变化。同时通过体外实验Mv1Lu-(CAGA)12-Luc(稳定转染TGF-β1信号响应基因片段的细胞系)荧光酶活性的变化进一步验证大蒜素对TGF-β1信号传导系统的影响。
     结果:模型组同假手术组比较血清TGF-β1水平明显升高,氯沙坦组同模型组相比TGF-β1水平明显下降, Garlicin 1、Garlicin 2和TMP组的血清同模型组相比TGF-β1水平明显下降,同假手术组比较仍存在明显的升高。免疫组化观察TGF-β1蛋白阳性表达为棕黄色沉积,主要在大鼠心肌间质中表达。经图像分析模型组同假手术组比较存在统计学意义上的升高。氯沙坦组、大蒜素注射液组、川芎嗪组同模型组相比Area和IOD两个方面都出现了明显的降低,而大蒜素口服组仅Area值表现出统计学意义上的降低。
     Real-time PCR结果显示模型组的Smad2表达量比假手术组上调了1.18倍,而Smad7下调了0.55倍。氯沙坦组与模型组相比Smad2下调至0.63倍,而Smad7仍下调至0.88倍;川芎嗪组与模型组相比Smad2下调至0.49倍, Smad7上调至1.40倍;大蒜素注射液组与模型组相比Smad2下调至0.75倍,Smad7上调至1.27倍;大蒜素口服组与模型组相比Smad2下调至0.71倍,而Smad7却下调至0.72倍。体外实验Mv1Lu-(CAGA)12-Luc细胞荧光酶活性在2ng/mL TGF-β刺激的情况下,大蒜素的中剂量(1ug/mL)组表现出对荧光素酶活性的明显抑制,其抑制率达20%左右,增大剂量至5ug/mL时此作用减弱。大蒜素药物血清在大中小三个剂量组与药物直接作用表现出相同的趋势,大剂量组甚至有增强荧光素酶活性的趋势。
     结论:压力负荷可使大鼠TGF-β1信号传导通路活化,心肌TGF-β1蛋白、Smad2 mRNA的表达上调,而Smad7 mRNA表达下调;大蒜素可在一定程度上缓解该信号传导通路的异常。大蒜素可调节细胞TGF-β1报告系统的荧光素酶活性,提示大蒜素可调节TGF-β1信号传导通路,在一定剂量时可抑制TGF-β1信号传导通路的活化。
Hypertension is one kind of common, frequently-occurring disease, which seriously impairs people's healthy in mind and body. The heart is one of impaired target organ in hypertension-related complications. Lasting pressure overload leads to adaptive change of heart structure and function, that is heart remodeling which mainly character is left ventricular hypertrophy (LVH). The adaptational process at initial stages of LVH is arm to balance increased stress on cardiac muscle, but extended overload stress leads to maladjust.
     Scholars and researchers consider LVH not only changes on cardiac myocytes, but also on cardiac interstitium and blood vessels. Inproportional proliferation of Cardiac interstitium constituent relative to substance constructs myocardium structural hetertogneity, that is myocardial fibrosis. Myocardial fibrosis is fibrous tissue accumulation or collagen contents alteration in heart tissue, and is the characteristic pathological change in LVH and hypertension heart disease(HHD). Excess cardiac fibrosis is a major determinant that contributes to the progression of arrhythmia, heart failure and cardiac sudden death in HHD. However, mechanisms of which are not well addressed.
     The present study was carried out to investigate the mechanisms responsible for myocardial fibrosis in left ventricular remodeling (LVR) and seek for effective pharmaceutical intervention. The whole study included five parts as follows:
     PartⅠ: Effects of Garlicin on Cardiac Hypertrophy of Pressure Overload Rat
     Objective: To establish animal models of cardiac hypertrophy of pressure overload rats and observe effects of garlicin treated.
     Methods: Pressure overloaded myocardial hypertrophy was produced by banding of aorta abdominalis in male SD rats.The 90 rats randomized to 6 groups,they were groups of Sham, Control, Garlicin 1, Garlicin 2, Tetramethylpyrazine(TMP), Losartan, respectively. The rats were administered with drugs 3d after operation, They were examined by echocardiography on after 30 days treatment, then were sacrificed. Portions of heart were processed for histological and morphological examination,blood samples were obtained to conduct subsequent biochemical analysis.
     Results:LVH and dysfunction were verified by echocardiography. systolic function of left ventricular is on compensation phase, myocardial hypertrophy of this model belongs to concentric hypertrophy, the thickness of ventricular wall increased and volume decreased. Garlicin treatment could lead to certain lessening. Heart weight/body weight lowered in comparison with controls, LVH was seen in hearts of rats on 30 days after operation, Garlicin treated could ameliorate this pathological change.
     Conclusion:It showed that Garlicin can prevent cardiac remodeling of hypertrophy cardium induced by pressure over-load including myocardial hypertrophy.。
     PartⅡ:Effects of Garlicin on Myocardial Fibrosis of Pressure Overload Rats
     Objective: To observ effects of garlicin on myocardial fibrosis of pressure overload rats.
     Methods: We detected hydroxyproline(HOP) of left ventricular and carboxy terminal propeptide of procollagen type I (PⅠCP), amino terminal propeptide of procollagen type III(PⅢNP), hyaluronic acid (HA), laminin(LN) of serum. hearts were processed for histological and morphological examination.
     Results: Histological and serological findings showed that was reparative fibrosis, promotion of synthesis and lightened degradation of cardiac collagens were presented in heart tissue of model rats. Garlicin treatment could reduce HOP of left ventricular, PⅠCP, PⅢNP and HA of serum in comparison with controls. Garlicin could also ameliorate collagen surrounding blood vessel in heart histologically.
     Conclusion: It showed that Garlicin can prevent myocardial fibrosis of hypertrophy cardium induced by pressure over-load.
     PartⅢ: Decreasing AngⅡand Ameliorating Peroxidative Stress of Pressure Overload Rats by Garlicin treatment
     Objective: To observ effects of Garlicin on AngⅡand SOD, MDA of pressure overload rats.
     Methods:we detected AngⅡo f blood plasma and left ventricular and superoxide anion (SOD) and malondialdehyde (MDA) of serum.
     Results: Pressure overload could induce increasing AngⅡstandard of blood plasma and left ventricular on SD rats. Garlicn could decrease circulating and regional abnormal AngⅡ. SOD activity of models decreased and MDA content of models increased in comparison with sham group. Pressure overload resulted in peroxidative damage in myocardial fibrosis. Garlicn could inhibit MDA and enhance SOD.
     Conclusion: Garlicn could decrease circulating and regional abnormal AngⅡ. Pressure overload resulted in peroxidative damage in myocardial fibrosis. Garlicn could inhibit MDA and enhance SOD.
     PartⅣEffects of Garlicin on Fibroblasts Proliferation and Collagen Excrete
     Objectiv: Investigating the effects of Garlicin on fibroblasts proliferation and collagen excretion to explore its anti-fibrosis mechanisms. the effects of garlicin on fibroblasts proliferation and collagen synthesis, to explore its anti-fibrosis mechanism.
     Methods: The rate of proliferation is determined by the incorporation of H3-thymidine into NIH3T3 cellular nucleic acids. We observed apoptosis on NIH3T3 cells through DNA ladder experiment. TypeⅠcollagen expression was detected by immunofluorescent microscopy. Analysising of hydroxyproline in cell culture medium based alkaline hydrolysis.
     Results: Garlicin could inhibit DNA synthesis in NIH3T3 fibroblasts and TypeⅠcollagen expression from 0.2 ug/ml to 5ug/ml. Garlicin also reduced hydroxyproline in cell culture medium. But we could not obserse apoptosis through DNA ladder experiment.
     Conclusion: Garlicin could depress fibroblasts expressing typeⅠcollagen and proliferating.
     PartⅤ: Influence of Garlicin on TGF-β1 Signal Transmit Passway Involvement in Myocardial Fibrosis
     Objectiv: Investigating the influence of garlicin on TGF-β1 signal transmit passway involvement in myocardial fibrosis.
     Methods: detecting TGF-β1 of serum by ELISA and TGF-β1 protein expression on rats’heart by immunohistochemistry. Testing Smad2 and Smad7 mRNA expression in heart by Real-time PCR. At the same time, garlicin effected on TGF-β1 signal transmit passway was evaluated by a luciferase assay using Mv1Lu-(CAGA)12-Luc cell line responsing to TGF-β.
     Results: TGF-β1 of serum and TGF-β1 protein expression on rats’heart all increased in model group than sham group. Garlicin could inhibited the abnormal enhancement. Real-time RT- PCR result manifested Smad2 mRNA up-regulated and Smad7 mRNA down-regulated. Garlicin treatment could inhibit Smad2 and promoted Smad7 and lead to TGF-β1 inclining to normal standard. In vitro experiment, the luciferase activity responding to TGF-βwas inbibited obviously in 1ug/mL garlicin group under the stimulation of 2ng/mL TGF-β1 and Its inhibition ratio was about 20%. the larger dose (5ug/mL) weakened this effect.
     Conclusion: Pressure overload activated TGF-β1 signal transmit passway of rats. Garlicin could relieve this passway in certain degree.
引文
1. 祝善俊, 徐成斌主编. 心力衰竭基础与临床. 人民军医出版社. 2001:7-14.
    2. Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic dysfunction. Herz. 2002; 27(2):92-8
    3. 顾东风, 黄广勇, 何江, 等. 中国心力衰竭流行病学调查及其患病率. 中华心血管病杂志. 2003;31(1): 3-6
    4. Tsutsui H. Novel pathophysiological insight and treatment strategies for heart failure. Circ J. 2004;68(12):1095-1103
    5. 邓玮, 陈庆伟.心力衰竭与心肌胶原纤维. 心血管康复医学杂志. 2004;13(2): 200-201
    6. 李丹, 范哲, 李广生. 心肌纤维化的调控因素. 心血管病学进展. 2004; 25(4):253-257
    7. 史载祥, 廖家祯. 潜在性心功能不全的诊断与治疗. 北京中医学院学报. 1981; 4(2): 54-56 心功能
    8. 陈可冀, 史载祥主编. 实用血瘀证学. 人民卫生出版社. 1999;17-27.
    9. Querejeta R,Varo N,Lopez B,et al.Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation, 2000;101:1729-1735
    10. Pauschinger M, Knopf D, Petschauer S,et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation,1999; 99: 2750-2756
    11. 崔华, 夏红梅, 范利. 动脉粥样硬化兔左心室与心肌纤维化关系的对比研究. 中国微循环. 2005; (9)2:76-78.
    12. 韩丽华, 王振涛, 吴鸿, 等. 益气活血方对心梗后左室重构大鼠血 PCⅢ、TNFα、ET1的影响. 上海中医药杂志. 2004; 38( 9):50-52.
    13. 周迎春, 赵锋利, 陈镜合, 等. 开心胶囊对大鼠心梗后左室非梗塞区胶原改建的影响. 广州中医药大学学报. 2002; 19(3):204-206.
    14. 王健, 余蓉, 许香广. 益气活血法对冠心病心肌纤维影响的观察. 湖北中医杂志. 2004; 26(5):13-14
    15. 王华军, 谢良地, 姚恩辉, 等. 通心络治疗对自发性高血压大鼠心肌纤维化的影响. 中西医结合心脑血管病杂志. 2003; (1) 4:189-190.
    16. 武多娇, 洪华山, 江琼. 麝香保心丸对自发性高血压大鼠心肌纤维化的影响研究. 中成药. 2004; 26(增刊) :75.
    17. 蔡辉, 胡婉英, 王艳君, 等. 鹿角方逆转充血性心力衰竭大鼠心肌纤维化的机理研究. 广州中医药大学学报. 2002; 19( 3):199-203.
    18. 蔡辉, 胡婉英, 王艳君. 鹿角方对压力负荷增加大鼠心肌Ⅰ型和Ⅲ型胶原mRNA表达的影响. 河北中医药学报. 2001; 16( 2):4-7.
    19. 沈雁,曹洪欣. 温阳活血化痰法抗心肌纤维化作用及机制研究.辽宁中医杂志.2005, 32(6):523-524.
    20. 李敬孝, 袁立霞, 王加志, 等. 保心降压康对压力负荷增加大鼠心肌间质胶原的影响. 中医药信息. 2003; 20( 6):62-63.
    21. 李建平, 严灿, 邓中炎, 等. 活血祛痰治法及其组方预防自发性高血压大鼠心肌纤维化的实验研究. 中医研究. 1999; 12(6):9-11.
    22. 李绍生, 李兰荪, 郭文仪, 等. 复方鳖甲软肝片对心肌成纤维细胞增殖影响的研究. 现代中西医结合杂志. 2003; 12(23) :2516-2522
    23. 布伦, 李兰荪, 郭文怡, 等. 复方鳖甲软肝方对自发性高血压大鼠心室重构及左室功能的影响. 心脏杂志. 2004; 16(2): 106-108.
    24. 胡世云, 赵立诚, 冼绍祥,等. 天麻钩藤饮干预肾血管性高血压大鼠心肌胶原重构的研究. 中医药学刊. 2004; 22(9): 1658-1660.
    25. 宋德明, 苏海, 吴美华, 等. 川芎嗪、丹参对心肌成纤维细胞胶原合成和细胞增殖的影响中国中西医结合杂志,1998;18(7):423-425.
    26. 唐忠志, 唐瑛. 丹参对自发性高血压大鼠左室心肌病变及血液流变学的影响. 第四军医大学学报. 2004; 25(2):100-103.
    27. 唐忠志, 郑智, 唐瑛, 等.丹参对自发性高血压大鼠心肌纤维化的逆转作用及其机制研究. 华中科技大学学报(医学版). 2002; 31(3): 292-294.
    28. 侯云生, 何振山, 齐书英, 等. 黄芪对急性心肌梗死后左室重构的实验研究. 中国急救医学. 2000; 20( 7):381-383.
    29. 张召才, 杨英珍, 李双杰, 等. 黄芪甲苷对病毒性心肌炎小鼠心肌纤维化的影响. 中国新药与临床杂志. 2003; 22(9):515-519.
    30. 胡迎春, 欧阳静萍, 李艳琴, 等.苦参碱对醛固酮诱导大鼠心肌成纤维细胞细胞周期和增殖细胞核抗原表达的影响. 武汉大学学报(医学版). 2004; 25( 3): 225-227.
    31. 周艳芳, 欧阳静萍, 周成慧, 等. 苦参碱对心肌成纤维细胞细胞周期的影响及其机制. 武汉大学学报(医学版). 2004; 25( 3):221-223.
    32. 周成慧, 欧阳静萍, 周艳芳, 等. 苦参碱诱导血管紧张素Ⅱ作用的心肌成纤维细胞凋亡. 武汉大学学报(医学版), 2004; 25(4):375-379.
    33. 吴珂, 欧阳静萍, 王保华, 等. 苦参碱对血管紧张素Ⅱ诱导新生大鼠心肌成纤维细胞增殖和胶原合成的影响. 武汉大学学报(医学版), 2004; 25 ( 3):235-238.
    34. 任海玲, 江时森, 谢渡江, 等. 中药川芎嗪对慢性压力超负荷大鼠心肌纤维化的干预作用. 中国临床康复. 2003; 7(12):1748-1749.
    35. 高瞻, 朱妙章, 周士胜, 等.木黄酮对心肌成纤维细胞增殖的影响. 中国药理学与毒理学杂志. 2001;15(2):159-160.
    36. 徐毅, 周承愉, 李云霞. 粉防己碱对血管紧张素Ⅱ促进心肌成纤维细胞增殖的抑制作用. 中国应用生理学杂志. 1996;12(3):198-202.
    1. Keiji M, Masahiko S, Takane H, Two major Smad pathways in TGF-βsuperfamily signaling. Genes Cells. 2002 Dec;7(12):1191-204.
    2. Massagué, J. TGF-βs?ignal transduction. Annu. Rev.Biochem. 1998; 67, 753–791.
    3. Wrana J.L., Attisano L., Wieser R., etal. Mechanism of activation of the TGF-β receptor. J .Nature. 1994; 370:341–347.
    4. Heldin C, Miyazono K, Dijke P. ?TGF-βsignalling from cell membrane to nucleus through SMAD proteins. Nature. 1997; 390: 465–471.
    5. Qin B, Lam S, Correia J, etal. Smad3 allostery links TGF-βr?eceptor kinase activation to transcriptional control. Genes Dev. 2002; 16: 1950–1963.
    6. Moustakas A, Souchelnytskyi S, Heldin C. Smad regulation in TGF-βs?ignal transduction. J. Cell Sci. 2001; 114: 4359–4369.
    7. Kawabata M, Inoue H, Hanyu A, etal. Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J. 1998b:17: 4056–4065.
    8. Dennler S, Itoh S, Vivien D, etal. Direct binding of Smad3 and Smad4 to critical TGFb-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998; 17: 3091–3100.
    9. Zawel L, Le D, Buckhaults P, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell. 1998; 1: 611–617.
    10. Chen C, Kang Y, MassaguéJ. Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor growth-b arrest program. Proc. Natl. Acad. Sci. USA. 2001; 98:992–999.
    11. Yagi, K., Furuhashi, M., Aoki, H., et al. c-myc is a downstream target of Smad pathway. J. Biol. Chem. 2002; 277: 854–861.
    12. Stroschein S, Wang W, Zhou S, et al. Negative feedback regulation of TGF-βs?ignaling by the SnoN on coprotein. Science. 1999; 286: 771–774.
    13. Kang H, Lin H, Hu Y, et al. From transforming growth factor-b signaling to androgen action: Identification of Smad3 as an androgen receptor coregulator in prostate cancer cells. Proc. Natl. Acad. Sci. USA. 2001; 98: 3018–3023.
    14. Chipuk J, Cornelius S, Pultz N, et al. The androgen receptor represses transforming growth factor–βs?ignaling through interaction with Smad3. J. Biol. Chem. 2002; 277: 1240–1248.
    15. Kato Y, Habas R, Katsuyama Y, et al. A component of the ARC/Mediator complex required for TGF-β/Nodal signaling. Nature. 2002; 418: 641–646.
    16. Liberati N, Datto M, Frederick J, et al. Smads bind directly to the Jun family of AP-1 transcription factors. Proc. Natl. Acad. Sci. USA 1999; 96: 4844–4849.
    17. Zhang Y, Feng X, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 1998; 394: 909–913.
    18. Feng X, Liang Y, Liang M, et al. Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15Ink4B. Mol. Cell. 2002; 9: 133–143.
    19. Hocevar B, Smine A, Xu X, et al. The adaptor molecule Disabled-2 links the transforming growth factor-βr?eceptors to the Smad pathway. EMBO J. 2001; 20: 2789–2801.
    20. Matsuda T, Yamamoto T, Muraguchi A, et al. Cross-talk between transforming growth factor-βa?nd estrogen receptor signaling through Smad3. J. Biol. Chem. 2001; 276: 42908–42914.
    21. Song C, Tian X, Gelehrter T, Glucocorticoid receptor inhibits transforming growth factor-βs?ignaling by directly targeting the transcriptional activation function of Smad3. Proc. Natl. Acad. Sci. USA. 1999; 96: 11776–11781.
    22. Lopez-Rovira T, Chalaux E, Rosa J, et al. Interaction and functional cooperation of NFκB with Smads. J. Biol. Chem. 2000; 275: 28937–28946.
    23. Fu M. Zhang J, Zhu X, et al. Peroxisome proliferatoractivated receptor  ?inhibits transforming growth factorβ- induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3. J. Biol.Chem. 2001; 276: 45888–45894.
    24. Tsukazaki T, Chiang T, Davison, et al. SARA, a FYVE domain protein that recruits Smad2 to the TGF-βr?eceptor. Cell 1998;11: 779–791.
    25. Verschueren K, Remacle J, Collart C, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5 -CACCT sequences in candidate target genes. J. Biol. Chem. 1999;274: 20489–20498.
    26. Akiyoshi S, Inoue H, Hanai J, et al. c-Ski acts as a transcriptional co-repressor in transforming growth factor-βsignaling through interaction with Smads. J. Biol. Chem. 1999; 274: 35269–35277.
    27. Leong G, Subramaniam N, Figueroa J, et al. Ski interacting protein interacts with Smad proteins to augment transforming growth factor-β-dependent transcription. J. Biol. Chem. 2001; 276: 18243–18248.
    28. Zhang Y, Chang C, Gehling D, et al. Regulation of Smad degradation andactivity by Smurf2, an E3 ubiquitin ligase. Proc. Natl. Acad. Sci.USA 2001;98: 974–979.
    29. Lin X, Liang M, FengX. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in TGF-βs?ignaling. J. Biol. Chem. 2000; 275: 36818–36822.
    30. Stroschein S, Wang W, Zhou S, et al. Negative feedback regulation of TGF-βs?ignaling by the SnoN oncoprotein. Science 1999;286: 771–774.
    31. Feng X, Zhang Y, Wu R, et al. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β- induced transcriptional activation. Genes Dev. 1998; 12: 2153–2163.
    32. Shen X, Hu P, Liberati N, et al. TGF-β-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREBbinding protein. Mol. Biol. Cell 1998; 9: 3309–3319.
    33. Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol. 2002 Feb;118(2):211-5.
    34. Ichiro Manabe, Takayuki Shindo, Ryozo Nagai. Gene Expression in Fibroblasts and Fibrosis: Involvement in Cardiac Hypertrophy. Circulation Research 2002; 91:1103-13.
    35. Clancy RM, Buyon JP. Clearance of apoptotic cells: TGF-beta in the balance between inflammation and fibrosis. J Leukoc Biol. 2003 Dec;74(6):959-60.
    36. Zhang H, Phan S. Inhibition of Myofibroblast Apoptosis by Transforming Growth Factorβ1. Am. J. Respir. Cell Mol. Biol., 1999; 21(6): 658-665
    37. Massague J. How cells read TGF-β signals. Nat Rev Mol Cell Biol.2000;1:169–178.
    38. Swaney JS, Roth DM, Olson ER, etal. Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc Natl Acad Sci USA, 2005; 102(2) :437-42.
    39. Stratton R, Rajkumar V, Ponticos M, et al. Prostacyclin derivatives prevent the fibroticresponse to TGF-beta by inhibiting the Ras/MEK/ERK pathway. FASEB J. 2002 Dec; 16(14): 1949-51.
    40. Ghosh AK, Yuan W, Mori Y, et al. Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional coactivators. J Biol Chem. 2001;276(14):11041-8.
    41. 祝善俊, 徐成斌主编. 心力衰竭基础与临床. 人民军医出版社. 2001:7-14.
    42. Border W, Noble N. Transforming growth factor in tissue fibrosis. N Engl J Med. 1994;331:1286–1292.
    43. Blobe G, Schiemann W, Lodish H. Role of transforming growth factor- ?in human disease. N. Engl. J. Med. 2000; 342: 1350–1358.
    44. Petrov V, Fagard R, Lijnen P. Stimulation of collagen production by transforming growth factor-beta1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension. 2002 Feb;39(2):258-63.
    45. Eghbali M, Tomek R, Sukhatme VP, etal. Differential effect of transforming growth factor-beta1 and phobolmyristate aetateo cardial fibroblasts: regulation of fibrillar collagen mRNAs and expression early transcription factors〔J〕.Cardiovasc Res, 1991; 69:483-490.
    46. Li P, Petrov V, Rumilla K, etal. Transforming growth factor beta1 promotes contraction of collagen gel by cardia fibroblasts through their differentiation into myofibroblasts [J]. Methods Find Exp Clin Pharma col, 2003; 25(2): 79-[86.
    47. Johannes W, MLevent A, Magnus A, etal. Ischemia induced transplant arteriosclerosis in the rat [J]. Arterioscler Thromb Vasc Biol, 1996, 16:1516.
    48. Overall C, Wrana J, Sodek J. Transforming growth factor-beta regulation of collagenase,
    72 kDa-progelatinase, TIMP and PAI-1 expression in rat bone cell populations and human fibroblasts. Connect Tissue Res. 1989;20(1-4):289-94.
    49. Sun Y, Zhang J, Zhang JQ, etal. Local angiotensinⅡand transforming growth factor-β1 in renal fibrosis of rats [J]. Hypertension, 2000, (5):1078-1084.
    50. McAnulty RJ, Campa JS, Cambrey AD, et al. The effect of transforming growth factor beta on rates of procollagen synthesis and degradation in vitro. Biochim Biophys Acta. 1991;1091(2):231-5.
    51. Villarreal F, Dillmann W. Cardiac hypertrophy-induced changes in mRNA levels for TGF-β1, fibronectin, and collagen. Am J Physiol. 1992;262:H1861–H1866.
    52. Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor-_1 and repair in the infarcted heart. J Mol Cell Cardiol. 1998;30:1559–1569.
    53. Hao J, Ju H, Zhao S, et al. Elevation of expression of Smads 2, 3, and 4, décor in and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol. 1999 Mar;31(3):667-78.
    54. Rosenkranz S, Flesch M, Amann K, et al. Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1. Am J Physiol. 2002; 283: H1253–H1262.
    55. Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-β function blockingprevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002; 106:130–135
    56. Schultz J, Witt S, Glascock B, et al. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest. 2002; 109: 787–796
    57. Kawano H, Do YS, Kawano Y, etal. AngiotensinⅡhas multiple prebrothic effects in human cardiac fibroblasts [J]. Circulation, 2000; 1 (10) :1130-1137.
    58. Pinto YM, Philipp T, Engler S, etal. Reduction in left ventricular messenger RNA for transforming growth factor-β1 attenuates left ventricu fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2) 27 rat. [J]. Hypertension, 2000; 36 (5): 747-54.
    59. Schultz J, Witt S, Glascock B, et al. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clinical Invest, 2002; 109 (6): 787-796.
    60. Chen K, Mehta JL, Li D, et al. Transforming growth factor beta receptor endoglin is expressed in cardiac fibroblasts and modulates profibrogenic actions of angiotensin II. Circ Res. 2004 Dec 10; 95(12):1167-73
    61. Akiyama-Uchida Y, Ashizawa N, Ohtsuru A, et al. Norepinephrine enhances fibrosis mediated by TGF-beta in cardiac fibroblasts. Hypertension. 2002 Aug;40(2):148-54.
    62. Ammarguellat F, Larouche L, Schiffrin EL. Myocardial fibrosis in docasalt hypertensive rats effect of endothelin ETA receptor antagonism [J]. Circulation, 2001; 103(2) :319-324.
    63. Pinto Y, Philipp T, Engler S, et al. Reduction in left ventricular messenger RNA for transforming growth factorβ1 attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen27) rat [J]. Hypertension. 2000, 36(5):747-754.
    64. Li J, Petrov V, Runilla K, et al. transforming growth factor beta1 promotes contraction of collagen gel by cardia fibroblasts through their differentiation into myofibroblasts [J]. Methods Find Exp Clin Pharma col. 2003; 25(2):79 86.
    65. Okuno M, Akita K, Moriwaki H,Prevention of rat hepatic fibrosis by the protease inhibitor, camostetmesilate, via reduced generation of active TGF-β. Gastroenterology. 2001 Jun; 120(7): 1784-800.
    66. Brooks W, Conrad C. Myocardial fibrosis in transforming growth factor beta(1) heterozygous mice. J Mol Cell Cardiol. 2000 Feb;32(2):187-95.
    67. Yu C, Tipoe G, Wing-Hon L, et al. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol. 2001 Oct;38(4):1207-15.
    68. 黄荣杰, 刘唐威, 庞玉生. 牛磺酸对扩张型心肌病大鼠左心室肌转化生长因子 β1 表达的影响. 现代诊断与治疗. 2004; 15(2):83-85.
    69. Yamamoto H, Ueno H, Ooshima A, et al. Adenovirus-mediated transfer of a truncated transforming growth factor-beta (TGF-beta) type II receptor completely and specifically abolishes diverse signaling by TGF-beta in vascular wall cells in primary culture. J BiolChem. 1996 Jul 5;271(27):16253-9.
    70. Laping N, Grygielko E, Mathur A, et al. Inhibition of transforming growth factor (TGF)  -1-induced extracellular matrix with a novel inhibitor of the TGF- t?ype I receptor kinase activity: SB-431542. Mol. Pharmacol. 2002; 62: 58–64.
    71. Inman G, Nicolas F, Callahan J, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor- s? uperfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 2002; 62: 65–74.
    72. Okada H, Takemura G, Kosai K, et al. Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation. 2005 May 17;111(19):2430-7.
    73. Ikeuchi M, Tsutsui H, Shiomi T, et al. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res. 2004 Dec 1;64(3):526-35.
    74. 吴晓玲, 曾维政, 王丕龙. TGFβ-Smad 信号转导通路与肝纤维化. 世界华人消化杂志. 2003; 11(10):1601-1605
    75. Kanasaki K, Koya D, Sugimoto T, et al. N-Acetyl-seryl-aspartyl-lysyl-proline inhibits TGF-beta-mediated plasminogen activator inhibitor-1 expression via inhibition of Smad pathway in human mesangial cells. J Am Soc Nephrol. 2003 Apr;14(4):863-72.
    76. Yang F, Yang XP, Liu YH, etal. Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension. 2004;43(2):229-36.
    77. Peng H, Carretero OA, Brigstock DR, etal. Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension. 2003;42(6):1164-70.
    78. Boer R, Pokharel S, Flesch M, etal. Extracellular signal regulated kinase and SMAD signaling both mediate the angiotensin II driven progression towards overt heart failure in homozygous TGR(mRen2)27 J Mol Med. 2004 Oct;82(10):678-87.
    79. Dixon I, Hao J, Keid N, et al. Effect of chronic AT1 receptor blockade on cardiac Smad overexpression in hereditary cardiomyopathic hamsters. [J].Cardiovasc Res. 2000; 46(2): 286-297.
    80. 邓长柏, 杨作成. 转化生长因子 β1 在心肌纤维化中的作用. 医学综述. 2004; 10(11): 662-663.
    81. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004 Aug 15;63(3):423-32
    1. Yunzeng Z, Issei K, Tsutomu Y, et al. Cell type-specific angiotensinⅡ-evoked signal transduction pathways. Circ Res, 1998;82:337
    2. Filex JAR,Yao S and Karl TW. Myocardial fibrosis associated with aldosterone or angiotensin II administration: attenuation by calcium channel blockade. J Mol cell cardiol,1998;30:475
    3. Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiaovasc Res,2000; 46 (2): 264-8
    4. Brilla CG. Aldosterone and myocardial fibrosis in heart failure. Herz,2000;25(3):299-306
    5. Kobori H, Lchihara A, Miyashits Y, et al. Local rennin-angiotensin system contributes to hyperthyroidism-induced cardial hypertrophy. J Endocrinol, 1999;160: 43-47
    6. Sun Y, Zhang J, Lu L, et al. Aldosterone-induced inflammation in the rat heart: Role of oxidative stress. Am J Pathol 2002; 161:1773-1781
    7. Schmidt BMW, Schmieder RE. Aldosterone-induced cardiac damage: focus on blood pressure independent effects. Am J Hypertens 2003;16:80-86
    8. Farquharson CAJ, Struthers AD. Spironolactone improves nitric oxide bioactivity, endothelial dysfunction and reduces vascular angiotensinI/angiotensin II conversion in patients with chronic heart failure. Circulation 2000;101, 594-597
    9. Struthers AD. Evidence for myocardial synthesis of aldosterone producing myocardial fibrosis in man. Clinical Science 2002; 102, 387
    10. Stockand JD and Meszaros JG. Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling. Am J Physiol Heart Circ Physiol. 2003; 284: 176-184
    11. Hara K, Kobayashi N, Nakano S,et al. Effect of TCV-116 on endothelin-1 and PDGFA-chain expression in angiotensin Ⅱ-induced hypertensive rats. Hypertens Res, 2001; 24(1):55-64
    12. Diez C, Nestler M, Friedrich U, et al. Down-regulation of Akt/PKB in senescent cardic fibroblasts impairs PDGF-induced cell proliferation. Cardiovasc Res, 2001; 49(4): 731-40
    13. Lijnen PJ, Petrov VV, Fargard RH. Induction of cardiac fibrosis by transforming growthfactor-beta(1). Mol Genet Metab, 2000; 71(1-2):418-35
    14. Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure overloaded rats. Circulation, 2002; 106(1): 130-5
    15. Taniyama Y, Morshita R, Nakagami H, et al. Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation, 2000; 102(2): 246-52
    16. 荆志成, 程显声, 杨英珍, 等. 病毒性心肌炎急性期预防性干预心脏间质纤维化的实验研究. 中华医学杂志, 1998; 78: 699-701
    17. 荆志成,程显声,杨英珍. 氯沙坦干预病毒性心肌炎恢复期、慢性期心脏胶原表达及心功能的实验研究. 中华心血管病杂志, 1999; 27(2):140-143
    18. Pauschinger M, Knopf D, Petschauer S, et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation,1999; 99: 2750-2756
    19. Kawai C. From myocarditis to cardiomyopathy: Mechanisms of inflammation and cell death: Learning from the past for the future. Circulation, 1999; 99(8): 1091-1100
    20. Scott RL, Ratliff NB, Starling RC, et al. Recurrence of giant cell myocarditis in cardiac allograft. J Heart Lung Transplant, 2001; 20(3):375-80
    21. Aiello VD, Reis MM, Benvenuti LA, et al. A possible role for complement in the pathogenesis of chronic Chagasic cardiomyopathy. J Pathol, 2002; 197(2): 224-9
    22. Nicotti A,Heudes D,Mandet C,et al.Inflammatory cells and myocardial fibrosis:spatial and temporal distribution in renovascular hypertensive rats. Cardiovasc Res,1996;32(6):1096-107
    23. Hong BK, Kwon HM, Byun KH, et al. Apoptosis in dilated cardiomyopathy.Korean J Intern Med, 2000; 15(1):56-64
    24. Li PF, Dietz R, Von Harsdorf R. Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta1 in cardiac fibroblasts. FEBS Lett, 1999; 448(2-3): 206-10
    25. Hsueh EJ, Califf RM, Weisman HF, et al. Integrins, adhesion, and cardiac remodeling. Hypertention, 1998; 31(1pt 2): 176-180
    26. Liu SK, Magid NR, Fox PR, et al. Fibrosis, myocyte degeneration and heart failure in chronic experimental aortic regurgitation. Cardiology, 1998; 90(2):101-9
    27. Truter S, Kolesar J, Dumlao T, et al. Abnormal gene expression of cardiac fibroblasts in experimental aortic regurgitation. Am J Ther, 2000; 7:237-243
    28. MacKenna D, Dolfi F, Vuori K, et al. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependant and matrix-specific in rat cardiac fibroblasts. J Clin Invest, 1998; 101:301-310
    1. Harunobu A. Brenda LP. Hiromichi M. et al..Recent Advances on the Nutritional Effects Associated with the Use of Garlic as a Supplement [J].American Society for Nutritional Sciences.2001: 955~962.
    2. 于新蕊, 丛月珠.大蒜的化学成分及其药理作用研究进展. [J].中草药.1994,25,3:158~160
    3. Harunobu A, Brenda L, Hiromichi M et al. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131: 955S–962S.
    4. 苟萍.蒜氨酸酶的研究[J].生物学通报.2004;3 (8): 9~10.
    5. Miron T, Rabinkov A, Mirelman D, et al.A Spectrophotometric Assay for Allicin and Alliinase(Alliin lyase) Activity: Reaction of 2-Nitro-5-thiobenzoatewith Thiosulfinates. Anal Biochem. 1998, 265 (2):317-325.
    6. Lawson L D, Wang Z J. Low allicin realease from garlic supplements: Amajor problem due to the sensitivities of alliinase activity. J. Agric. Food Chem. 2001, 49, 2592-2599.
    7. Lawson L D, Wang Z J, Papadimitriou D. Allicin realease under simulated gastrointestinal conditions from garlic powder tablets emplowed in clinical trials on serum cholesterol. Planta Med. 2001, 67, 13-18.
    8. Rabinkov A, Miron T, Konstantinovski L, et al. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim Biophys Acta. 1998,1379(2):233-44.
    9. Ledezma E, Apitz-Castro R. Ajoene the main active compound of garlic (Allium sativum). Rev Iberoam Micol. 2006 Jun;23(2):75-80.
    10. 符晓静, 孙君社.大蒜活性成分阿霍烯的研究概况[J].食品研究与开发.2005. 26(2): 34-37
    11. 罗丹,方峰.大蒜有效成分的药理作用研究进展.医药导报.2004;23(6): 379~381
    12. 日本药学会第 125 次年会论文摘要.国际中医中药杂志.2006;28(3): 77
    13. 常军民, 向阳, 美丽万.蒜氨酸在大鼠的药代动力学研究[J].中成药.2004:26(3):184~186.
    14. Larry D, Christopher D. Composition, Stability, and Bioavailability of Garlic Products Used in a Clinical Trial. J. Agric. Food Chem. 2005, 53, 6254-6261.
    15. Larry D, Jonathan W. Allicin and Allicin-Derived Garlic Compounds Increase Breath Acetone through Allyl Methl Sulfide: Use in measuring Allicin Bioavailability. J. Agric. Food Chem. 2005, 53, 1974-1983.
    16. 大蒜中 S-烯丙基半胱氨酸的药代动力学〔英〕/Nagac S…//Planta Med 一 1994,60(3):214-217.
    17. Germain E, Auger J, Giniess C, et al. In vivo metalism of diallyl disulphide in the rat:identification of two new metabolites. Xenobiotica. 2002, 32,1127-1138
    18. Germain E, Chealier J, Teyssier C, et al. Hepatic metabolism of diallyl disulphide in rat and man. Xenobiotica. 2003, 1185-1199.
    1. Collucci WS. Molecular and cellular mechanism of myocardial failure. Am J Cardi, 1997,80: 15L-25L.
    2. Sabbath H, Shrove VG. Apoptosis in heart failure. Prog. Cardiovsc Dis. 1998, 40: 549-562.
    3. Levy D, Anderson KM, Savage D,et al. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors: The Framingham heart study. Ann Int Med. 1988;108: 7?13.
    4. Klingbeil AU, Schneider M, Martus P, et al. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003; 115: 41?46.
    5. Schmieder RE, Martus P, Klingbeil A. Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 1996; 275: 1507?1513.
    6. Ghali JK, Liao Y, Simmons B, Cooper RS, et al. The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med. 1992; 117: 831?836.
    7. Drazner MH, Rame JE, Marino EK, et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol 2004;43: 2207?2215.
    8. Diamond JA, Phillips RA. Hypertensive heart disease. Hypertens Res. 2005;28(3):191-202.
    9. Devereux RB, de Faire U, Fyhrquist F, et al. Blood pressure reduction and antihypertensive medication use in the losartan intervention for endpoint reduction in hypertension (LIFE) study in patients with hypertension and left ventricular hypertrophy. Curr Med Res Opin. 2007 Feb;23(2):259-70.
    10. 周俊, 李东野, 陈清枝.氯沙坦与赖诺普利对大鼠压力负荷性心血管重构的影响. 国外医学.心血管疾病分册, 2003,30(1): 43-46
    11. Palmieri V, Okin P.M, Bella J.N, et al. Electrocardiographic strain pattern and left ventricular diastolic function in hypertensive patients with left ventricular hypertrophy: The LIFE study. Hypertens. 2006,24(10):2079-2084.
    12. Günter B, Stephan R, Karin J, et al. Blockade of the Renin Angiotensin System in Cardiac Pressure-Overload Hypertrophy in Rats. Hypertension. 1995;25:250~259.
    1.Burlew BS,Weber KT.Cardiac fibrosiS as a cause of diaStoliC dysfunction.Herz.2002:27(2):92~98
    2.TsutSUi H.Novel pathophysiological insight and treatment Strategies forheart failure.CirC J.2004:68(12):1095~ l103
    3.张海啸,史载祥.中西医结合防治心肌纤维化的研究进展.中国中西医结合杂志.2006,26(9):860~864
    4.Harunobu A. Brenda LP.Hiromichi M. et al.Recent Advances on theNutritional EffectS Associated with the Use of Garlic as a Supplement[J].American Society for Nutritional Sciences.2001:955~962.
    5.lopes JDM,Oomes RAS,Hial R,et al.Corrlations between the collagen contentof the human left ventricular myocardium,measured by biochemical andmorphometriC methods.Arq Bras Cardiol.2002.79:666~700
    6.蔡辉.补肾复元方逆转压力负荷增加大鼠心肌纤维化的研究.博士后出站工作报告.
    7.张运,徐瑞.心肌纤维化-心力衰竭治疗的新靶标.中华医学杂志.2006,86(17) 1155~1157.
    8.Begofia L,Ram6n Q,Javier D.Usefulness of Serum Carboxy Terminal Propeptide of Procollagen Type I in Assessment of the Cardioreparative AbilitY OfAntihypertensive Treatment in Hypertensive Patients. Circulation,2001:104:286~291.
    9.李慧,彭玲,刘富深,等.血清中HA、LN的水平对慢性心衰及心肌纤维化的诊断意义.实用心脑肺血管病杂志.2001,9(1):12~13.
    10.Patino MG,Neiders ME,Andreana S,et al.Collagen as an inplantable materialin medicine and dentistry.J Oral lmplantol.2002,28:220~225
    11.孔璐, 王继峰,周子悦等。碱解法测定组织羟脯氦酸的实验研究。中国骨质疏忪杂志,2003,9(4):319-322
    12.Whittaker P,Kloner RA,Boughner DR,etaL.Quantitative assessme ofmyocardial collagen with picrosiriUS red staining and Circular polarizedlight.BasiC Res Cardiol,1994,89:397~410.
    13.周俊,李东野,陈清枝.大鼠压力负荷性心肌肥厚与氯沙坦及赖诺普利的预防作用.中国临床康复.2005,9(19):35~37
    14.Gǔnter B,Stephan R,Karin J,et al.Blockade 0f the Renin Angiotensin System in Cardiac Pressure- Overload Hypertrophy in Rats.Hypertension.1995;25:250~259.
    15. 杨丽蓉, 徐晓玉, 陈刚. 川芎嗪注射液对血管内皮细胞DNA合成的影响. 中国药房200,15(12):765~766
    16.胡世云, 范武庆, 赵立诚, 等. 单味中草药干预脏器纤维化的研究概况. 中国中西医结合杂志. 2002; 22:396~398
    1) Funck RC, Wilke A, Rupp H, Maisch B, et al. Cardiac structure-function relationship andthe renin-angiotensin-aldosterone system in hypertensive heart disease .[J] Herz. 1995;20(5):330-9.
    2) TaniyamaY, GriendlingKK. Rcellular mechanisms [J] Hypertension. 2003, 42(6)∶1075.
    3) Varagic J, Frohlich ED. Local cardiac renin-angiotensin system: Hypertension andcardiac failure [J]. J Mol Cell Cardio, l2002, 34(11): 1435-1442.
    4) Glennon PE, Sugden PH, Poole-wilson PA. Cellular mechanisms of cardiac hypertrophy[J]. Br Heart J, 1995, 73: 496-499.
    5) Grabtree GR. Genetic signals and specific outcomes: signaling through Ca2+,calcineurinandNF-AT[J].Cel,l1999,96(5):611-614.
    6) Kudoh S, Komuro I, Mizuno T, etal. AngiotensinⅡ stimulates c-jun NH2-terminalkinase in cultured cardiac myocytes of neonatal rats[J]. Circ Res, 1997, 80:139-146.
    7) Pelouch Vhypertension, right ventricular hypertrophy, and fibrosis: effect of enalapril [J].Cardiovasc Drug Ther, 1997, 11(2): 177-185.
    8) NicolettA, HeugesD, HinglaisN, etal. Left ventricular fibrosis in renovascularhypertensive rats: effect of losartan and spironolactone [J]. Hypertension, 1995, 26:101-111
    9) Baker KM, Booz GW, Dostal DE. Cardiac actions of Angiotensin-Ⅱ: role of an intracardiac renin-angiotensin system [J]. An-nu Rev Physiol, 1992, 54: 227-241
    10) Sadoshima J, Izumo S. Molecular characterization of AngiotensinⅡ-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: acritical role of the AT1 receptor subtype [J]. Circ Res, 1993, 73(3): 413-423
    11) Dorn GW, Brown JH. Gq signaling in cardiac adaptation and maladaptation [J]. Trends f NADPH oxidase in the vascular hypertrophic ere hypertension in normal rats [J]. Hypertension, 2000, 36(1): 22) Cardiovasc Med, 1999,9(1~ 2): 26-34
    12) Zou Y, Komuro I, Yamazaki T, etal. Cell type-specific angiotensnⅡ-evoked signal transduction pathways: Critical roles of Gβγ subunit, Src family, and Rasin cardiac fibroblasts [J]. Circ Res, 1998, 82(3): 337-345
    13) Kawano H, Cody RJ, GrafK, etal. AngiotensinⅡ enhances integrin and alpha-act in inexpression in adult rat cardiac fibroblasts [J]. Hypertension, 2000, 35(1pt2): 273-279
    14) Naftilan AJ, Pratt RE, Eldridge CS, etal. Angiotensin II induces c-fos expression in smoothmuscle via transcriptional con-trol [J]. Hypertension, 1989, 13(6pt2): 706-711
    15) Wang HD, Xu S, Johns DG, etal. Role oand oxidative stress response to AngiotensinⅡin mice [J]. Circ Res, 2001, 88(9): 947-953
    16) Mizuno K, Tani M, Hashimoto S, et al. Effects of losartan, a nonpeptide angiotensin II receptor antagonist, on cardiac hypertrophy and the tissue angiotensin II content in spontaneously hypertensive rats [J]. Life Sci. 1992;51(5):367-74.
    17) McCord JM. Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem. 1993; 26(5):351-7.
    18) Vaziri ND, Wang XQ, Oveisi F, et al. Induction of oxidative stress by glutathione depletion cause sev142-146.
    19) Nakagami H, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy [J]. J Mol Cell Cardiol, 2003, 5(7)∶ 851-859.
    20) 吴扬,刘霞.卡托普利防治心肌肥厚效应与心肌肌球蛋白重链基因表达及儿茶酚胺氧自由基代谢的关系 [J]. 临床心血管病杂志, 2003, 19(2)∶103-105.
    21) Amin JK, Xiao L, Pimentel DR, et al. Reactive oxygen species mediate alpha adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes [J]. J Mol Cell Cardiol, 2001, 33∶131-139. MacCarthy PA, Grieve DJ, Li JM, et al. Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation. 2001 Dec 11;104(24):2967-74.
    23) Li DY, Zhang YC, Philips MI, et al. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells byangiotensin II type 1 receptor activation.Circ Res.1999;84(9):1043-9.
    24)Sawyer DB,Siwik DA,Xiao L,et al.Role of oxidative stress in myocardial hypertrophyand failure.J Mol Cell Cardiol.2002;34(4):379-88.
    25)Berry C,Hamilton CA,Brosnan MJ,et al.Investigation into the sources of superoxide inhuman blood vessels:angiotensin II increases superoxide production in human internalmammary arteries.Circulation.2000;10l(18):2206-12.
    26)张久亮,史载祥,黄力.大蒜素清除氧自由基的实验研究.中日友好医院学报,2002;16(5-6):298-300
    27) Harunobu A,Brenda LP,Hiromichi M,et al.Recent Advances on the Nutritional EffectsAssociated with the Use of Garlic as a Supplement[J].American Society for NutritionalSciences.2001:955~962.
    28) 日本药学会第125次年会论文摘要.国际中医中药杂志.2006;28(3):77
    1. 史载祥.后再灌注时代难题的中西医结合治疗思考.[J]中西医结合心脑血管病杂志.2005,3卷(1):2-5.
    2. 朱兰香,陈卫昌,刘世增,等.大蒜素对实验性大鼠肝纤维化的作用研究.[J]中华消化杂志,2003,23(7):441-443.
    3.Powell DW, Mifflin RC,Valentich JD,et al.Myofibroblasts,I:paracrine cells importantin health and disease.Am J Physiol.1999;277:C1-C1.
    4.孔璐,王继峰,周子悦,等.碱解法测定组织羟脯氨酸的实验研究.[J]中国骨质疏松杂志,2003,9(4):319-322.
    5. 高春芳,陆伦根主编.纤维化疾病的基础和临床.上海科学技术出版.2004,第l版,3-6.
    6.Verrecchia F,Mauviel A.Transforming growth factor-beta signaling through the Smadpathway:role in extracellular matrix gene expression and regulation.J Invest Dermatol. [J]2002 Feb;118(2):21l-5.
    7.Ichiro M,Takayuki S,Ryozo N.Gene Expression in Fibroblasts and Fibrosis:Involvement in Cardiac Hypertrophy,Circ Res.2002;91(12):1103-13.
    8.Tomasek JJ,Gabbiani G Hinz B,Chaponnier C,Brown RA.Myofibroblasts andmechano.regulation of connective tissue remodelling.Nat Rev Mol Cell Biol.2002:3:349-363.
    9.Maisch B.Extracellular matrix and cardiac interstitium:restriction is not a restrictedphenomenon.Herz.1995;20:75-80.
    10.Sata M,Saiura A,Kunisato A,Tojo A,Okada S,Tokuhisa L Hirai H,Makuuchi M,HirataY Nagai R.Hematopoietic stem cells differentiate into vascular cells that participate inthe pathogenesis of atherosclerosis.Nat Med.2002;8:403-409.
    11.Sun Y,Weber KT.Infarct scar:a dynamic tissue.Cardiovasc Res.2000;46:250-256.
    12.Bouzegrhane F,Thibault G Is angiotensin II a proliferative factor of cardiac fibroblasts?Cardiovasc Res.2002;53:304-312.
    13.宋健,张兴荣,张贤康,等.苦参素对成纤维细胞增殖及IV型原胶原mRNA表达的影响.第二军医大学学报.1999Jun;20(6):356-359
    14.Narayanan AS,Whithey J,Souza A,et al.Effect of gamma-interferon on collagensynthesis by normal and fibrotic human lung fibroblasts[J].Chest,1992,101(5):1326-1331
    15.Spinale FG.Matrix metalloproteinases:regulation and dysregulation inthe failing heartCirc Res.2002;90:520-530.
    16.Burlew BS,Weber KT.Cardiac fibrosis as a cause of diastolic dysfunction.Herz. 2002:27:92-98.
    82.Ichiro Manabe,Takayuki Shindo,Ryozo Nagai.Gene Expression in Fibroblasts and Fibrosis:Involvement in Cardiac Hypertrophy.Circulation Research 2002;9l:1103-13.
    83..Rosenkranz S.TGF-betal and angiotensin networking in cardiac remodeling.Cardiovasc Res.2004 Aug 15;63(3):423-32.
    84.邓长柏,杨作成.转化生长因子βl在心肌纤维化中的作用.医学综述.2004;10(11):662-663.
    85.Massagué,J.TGF-βsignal transduction.Annu.Rev.Biochem.1998;67,753-791.
    86. Qin B,Lam S,Correia J,etal.Smad3 allostery links TGF-βreceptor kinase activation to transcriptional control.Genes Dev.2002;16:1950-1963.
    87.Heldin C,Miyazono K,Dijke P.TGF-βsignalling from cell membrane to nucleus through SMAD proteins.Nature.1997;390:465-471.
    88.Moustakas A,Souchelnytskyi S,Heldin C.Smad regulation in TGF-βsignal transduction. J.Cell Sci.2001:114:4359-4369.
    89. Kawabata M,Inoue H,Hanyu A,etal.Smad proteins exist as monomers in vivo and undergo homo-and hetero--oligomerization upon activation by serine/threonine kinase receptors.EMBo J.1998b:17:4056-4065.
    90.Petrov V Fagard R,Lijnen P.Stimulation of collagen production by transforming growth factor-betal during differentiation of cardiac fibroblasts to myofibroblasts.Hypertension. 2002 Feb;39(2):258-63.
    91 Overall C,Wrana J,Sodek J.Transforming growth factor-beta regulation of collagenase,
    92 kDa-progelatinase,TIMP and PAl-1 expression in rat bone cell populations and human fibroblasts.Connect Tissue Res.1989;20(1-4):289-94.
    93.Sun Y Zhang J,Zhang JQ,etal.Local angiotensin II and transforming growth factor-β1 in renal fibrosis of rats[J].Hypertension,2000,(5):l078-1084.
    94.McAnulty RJ,Campa JS,Cambrey AD,et al.The effect of transforming growth factor beta on rates of procollagen synthesis and degradation in vitro.Biochim Biophys Acta. 1991:1091(2):231-5.
    95.Villarreal F.Dillmann W.Cardiac hypertrophy-induced changes in mRNA levels for TGF-β1,fibronectin,and collagen.Am J Physiol.1992;262:H1861-H1866.
    95.Sun Y,Zhang JQ,Zhang J,Ramires FJ.Angiotensin II,transforming growth factor-β1 and repair in the infarcted heart.J Mol Cell Cardiol.1998;30:1559-1569.
    96.Hao J,Ju H,Zhao S,et al.Elevation of expression of Smads 2,3,and 4,décor in and TGF-beta in the chronic phase of myocardial infarct scar healing.J Mol Cell Cardiol. 1999 Mar;31 (3):667-78.
    97.Rosenkranz S,Flesch M,Amann K,et al.Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF- β1.Am J Physiol.2002;283: H1253-H1262.
    98.Kuwahara F,Kai H,Tokuda K,et al.Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfimction in pressure-overloaded rats. Circulation.2002;106:130-135
    99.Schultz J,Witt S,Glascock B,et al.TGF-βl mediates the hypertrophic cardiomyocyte growth induced by angiotensin II.J Clin Invest.2002;109:787-796
    100.Dennler S,Itoh S,Vivien D,etal.Direct binding of Smad3 and Smad4 to criticalTGFb-inducible elements in the promoter of human plasminogen activator inhibitor-type l gene.EMBO J.1998;17:3091-3100.
    101.Zawel L,Le D,Buckhaults P,et al.Human Smad3 and Smad4 are sequence-specific transcription activators.Mol.Cell.1998;1:611-617.
    102.Chen C,Kang Y,MassaguéJ.Defective repression of c-myc in breast cancer cells:a lossat the core of the transforming growth factor growth-b arrest program.Proc.Natl.Acad.Sci.USA.2001:98:992-999.
    103.Yagi,K.,Furuhashi,M.,Aoki,H.,et al.c-myc is a downstream target of Smad pathway.J Biol.Chem.2002;277:854-861.
    104.Xin H,Xu X,Chang Z,et al.CHIP controls the sensitivity of transforming growth factor-beta signaling by modulating the basal level of Smad3 through ubiquitin.mediated degradation.[J] J Biol Chem.2005,27:280(21):20842-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700