用户名: 密码: 验证码:
始旋链霉菌基因组重排育种、普那霉素发酵条件优化及高产机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普那霉素(pristinamycin)是由始旋链霉菌(Streptomycespristinaespiralis)产生的一种链阳性菌素类(Streptogramin)抗生素,包含普那霉素Ⅰ(PⅠ)和普那霉素Ⅰ(PⅡ)两类化合物,对大多数革兰氏阳性菌,如MRSA、MRSE等均具有较强的杀菌活性,且抗生素后效应较长,被视为治疗顽固性革兰氏阳性菌感染的特选药物。目前,普那霉素已经在国外实现商品化生产,我国还未进行工业生产。因此,作为药效优良的抗生素,对普那霉素进行深入的研究和开发具有重要意义。
     本论文以提高普那霉素的发酵水平为目标,对始旋链霉菌的基因组重排、高产菌株培养基成分和培养条件优化以及高产菌产物合成分子机理等进行了深入细致的研究,获得了如下主要研究结果:
     1.以S.pristinaespiralis 0957作为原始菌株,利用紫外诱变获得四株普那霉素产量和耐受性都有所提高的菌株作为基因组重排的出发菌株。对始旋链霉菌原生质体制备和再生过程进行了研究,确定了合适的制备方案为:添加0.6%的甘氨酸到种子培养基中培养菌丝,用2%的溶菌酶在32℃下酶解1.5h。始旋链霉菌的原生质体制备率和原生质体再生率分别达到了95.8%和18.1%。
     2.对四株出发菌株(M-23、M-79、M-113和M-156)连续以原生质融合的方式进行基因组重排,然后以普那霉素自身耐受性的提高作为筛选依据,获得了一株高产突变菌株G4-17,它的原生质体对普那霉素耐受性高达100μg/mL,摇瓶培养时普那霉素产量达到0.89g/L,比产量最高的亲本菌株提高了89.4%,比原始出发菌株提高了145.9%。通过连续传代实验,确定高产菌株G4-17的遗传稳定性良好。
     3.研究了S.pristinaespiralis G4-17菌株的摇瓶发酵条件,通过正交设计对发酵培养基进行了优化;考察了摇瓶培养条件对菌体生长和产物合成的影响。优化后的发酵培养基组成为:可溶性淀粉3.0%、蔗糖1.0%、葡萄糖0.5%、麦芽糖0.8%、黄豆饼粉1.2%、蛋白胨0.4%、鱼粉1.2%、酵母粉0.6%、(NH_4)2SO_4 0.2%、MgSO_4 0.35%、KH_2PO_4 0.02%、CaCO_30.4%、NaNO_3 0.075%;优化的摇瓶培养条件为:初始pH值为6.5,在25mL/250mL三角瓶中以6%接种量接入经过36h培养的种子培养液,在25℃、220rpm条件下进行培养60h,S.pristinaespiralis G4-17的普那霉素产量达到了1.21g/L,比优化前的产量(0.89g/L)提高了40.0%。在5-L发酵罐上,优化后的培养条件更有利于高产菌种G4-17合成,G4-17在培养60h时普那霉素产量达到最大值1.237g/L。
     4.利用ApaⅠ/TaqⅠ双酶切的AFLP技术对3支筛选出的普那霉素高产菌株以及它们的原始菌株CGMCC 0957进行了遗传多态性研究。结果显示,高产菌株间具有类似的AFLP指纹图谱,相比而言,高产菌株与原始菌株间的AFLP指纹图谱差异稍大。因此,在这些高产菌株特别是产量水平类似的菌株中存在类似的变异机理导致了普那霉素的产量提高。另外,AFLP分析还表明基因组重排技术较传统诱变育种更容易使微生物菌株产生基因组水平的变异,因此,利用基因组重排技术进行微生物育种工作较传统诱变育种技术更为有效。
     5.利用RT-PCR技术检测了普那霉素生物合成相关基因及其抗性基因在高产菌株G4-17和原始菌株CGMCC 0957表达的丰度变化,分析了这些基因表达水平与合成普那霉素的关系。结果显示PⅠ组分生物合成相关基因snbA在高产菌株的整个发酵进程中始终保持高丰度表达,而原始菌株只在发酵前期(24~48h)高丰度表达,随后逐渐降低。因此snbA基因的持续高表达与高产菌株的PⅠ组分高产密切相关。PⅡ组分生物合成基因snaB基因在在这两个菌株的发酵过程中表达丰度变化与snbA基因的表达变化类似,表明snaB基因的持续高表达与高产菌株的PⅡ组分高产密切相关。其它两个PⅡ组分生物合成基因snaA、snaC在高产菌株和原始菌株的发酵过程中无明显差异。研究还发现,对普那霉素产生抗性的ptr基因在高产菌株的整个发酵进程中表达丰度较高,而在原始菌株中仅在发酵中后期(48~96h)保持较高丰度表达。因此,ptr基因在高产菌株开始合成普那霉素之前就已经高表达,从而建立起了自我保护性抗性,这种抗性的提前建立与普那霉素高产密切相关。另外,普那霉素生物合成的调控基因spbR在高产菌株和原始菌株发酵过程中的基因表达丰度没有显著变化,表明这个调控基因的表达与普那霉素产量变化无显著相关性。
     6.利用蛋白质组学的一些基本研究手段对始旋链霉菌细胞裂解方法,裂解液的选择进行了实验比较,结果发现,液氮研磨法和硫脲裂解液更适合始旋链霉菌细胞内总蛋白的提取;对不同发酵时间高产菌株和原始菌株、抗生素产生前期与抗生素产生高峰期始旋链霉菌细胞内总蛋白含量和种类的差异进行了比较,结果发现,高产菌株G4-17总蛋白质含量高于原始菌株CGMCC 0957,同一菌株在发酵生产前期的蛋白质含量比后期高。
Pristinamycin which produced by streptomyces pristinaespiralis is a streptogramin of natural origin comprising two components, prsitinamycin I and prsitinamycin II. Pristinamycin not only has strong antibacterial activity against gram-positive bacteria, including methicillin-resistant strains of Staphylococcus aureus and Staphylococcus epidermidis, but also exhibits a prolonged post-antibiotics effect. So it is considered as the specially selected medicament against the stubborn gram-positive infection. Pristinamycin has been commercially produced in overseas and have not been accomplished in China currently. Therefore, it is very valuable to investigate and develop pristinamycin further as a new generation of antibiotic.
     The aim of this work is to increase the productivity of pristinamycin fermentation. After thorough and particularity study in strain improvement by genome shuffling, medium composition and culture condition optimization, pristinamycin productivity is increased greatly. Moreover, molecular mechanisms of yield enhancement of pristinamycin and proteomics in Streptomyces pristinaespiralis were anlaysed in the paper.
     The main research contents and results are as follows:
     1. Streptomyces pristinaespiralis CGMCC 0957, used as an original strain, was stepwise treated with ultraviolet light (UV). Four mutant strains with higher yield and tolerance of pristinamycin were selectively starting strain of genome shuffling. Then the formation and regeneration of protoplasts were studied. When streptomyces pristinaespiralis were cultured with 0.6 % glycine in advance and treated with 2% lysozyme for 1.5h at 32℃, the protoplast formation rate was 95.8%. The protoplast regeneration was 18.1%.
     2. Four mutant strain, M-23、M-79、M-113、M-156, were subjected for recursive protoplast fusion and selection for improved resistance to the product antibiotic in a genome shuffling format. A 100-μg/mL pristinamycin resistant recombinant, G 4-17, was obtained after four rounds of protoplast fusion, and its production of pristinamycin reached 0.89 g/L, which was increased by 89.4% and 145.9% in comparison with that of the highest parent strain M-156 and the original strain CGMCC 0957, respectively. The subculture experiments indicated that the hereditary character of high producing S. pristinaespiralis G 4-17 was stable.
     3. The pristinamycins fermentation in shake flasks by Streptomyces pristinaespiralis G4-17 was studied. The production medium was optimized by orthogonal design experimental methods. Also, the effect of culture conditions in shake flasks on the pristinamycins production was evaluated. The optimized medium and culture conditions were as follows: soluble starch 3.0%, sucrose 1.0%, glucose 0.5%, maltose 0.8%, soybean flour 1.2%, peptone 0.4%, fish flour 1.2%, yeast extract 0.6%, (NH_4)_2SO_4 0.2%, MgSO_4·7H_2O 0.35%, KH_2PO_4 0.02%, NaNO_3 0.075%, CaCO_3 0.4%; inoculum age of 36 h; inoculum level of 6%; initial pH value of 6.5; temperature of 25℃; shaking speed of 220 rpm. Under the above optimized conditions, S. pristinaespiralis G4-17 could produce 1.21g/L pristinamycins after 60 h cultivation in the shake flask, which was 40.0% higher than that before optimization.
     4. Amplified fragment length polymorphism (AFLP) with the double-enzyme ApaI/TaqI was used to analyze genomic variability between high pristinamycin-producing recombinants of S. pristinaespiralis obtained by genome shuffling and their ancestral strain CGMCC 0957. The AFLP fingerprints showed together that there were some polymorphism between these high yield recombinants and their ancestor, and that there was similar polymorphism among these recombinants. Nevertheless, the unique polymorphic bands, which be absent in the ancestor, could be distinguished from all the recombinants. In addication, AFLP analysis showed that variation of organism at the genomic level happens more extensively and easily by genome shuffling than by induced mutagenesis.
     5. In order to analyze gene expression changes related to the enhanced antibiotic yield, genes involved in the biosynthesis of PI or PII, and resistance to pristinamycin were investigated by reverse transcription PCR (RT-PCR) between the high-yield recombinants and their ancestral strain CGMCC 0957. The results showed the persistent expression of snbA and snaB involved in the biosynthesis of PI and PII component respectively in the recombinant had a close correlation to the increase of the antibiotic production. It might imply that snbA was a key gene for the biosynthesis of PI component, while snaB was another key gene for the PII biosynthesis. Other two genes snaA and snaC displayed no obvious changes at this time course of fermentation between the recombinant and the ancestor. The ptr gene involved in pristinamycin resistance started ahead high-level expression before the onset of pristinamycin production for the recombinant, also leading to the increase of the antibiotics yield. The spbR gene regulating the antibiotic production did not showed obvious expression change between the recombinant and the ancestor.
     6. To extract and identify the total protein in the cell of Streptomyces pristinaespiralis, the application and effects of some conventional proteomics methods are compared. The results showed that liquid nitrogen grounding method and high lysis buffer were much suitable for Streptomyces pristinaespirali. And the content of total protein in the cell of G4-17 was more than that of CGMCC 0957 in the whole fermentation process. Compared with fermentation anaphase, the content of total protein in the same strain was higher in earlier fermentation.
引文
[1] Mancy D.I., C., Ninet L., Preud'homme J Process for the production of pristinamycin. US Patent 3154475. 1964.
    
    [2] de Crecy-Lagard, V., Blanc, V., Gil, P., Naudin, L., Lorenzon, S., Famechohn, A., Bamas-Jacques, N., Crouzet, J.Thiebaut, D. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural synthetase genes. J. Bacteriol., 1997,179(3): 705-713.
    [3] Benazet, F.Cosar, C. An animal study of the constituents of pristinamycin (7293 R.P.). Ann. Inst. Pasteur, 1965,109(2): 281-289.
    [4] Videau, D., Bruel, J., Jacotot, F.Ober, M.F. Pristinamycin and the bacteriopause phenomenon. Ann. Inst. Pasteur, 1965,108(5): 602-622.
    [5] Lion, C., Lozneiwski, A., Conroy, M.C.Weber, M. In vitro susceptibility of Pasteurella and related bacteria to five oral antimicrobial agents. Pathol. Biol., 1996,44(5): 341-346.
    [6] Gazagne, L., Gueudet, P., Lecaillon, E., Le Coustumier, A.Bismuth, R. In vitro activity of streptogramins against 45 methicillin-resistant Staphylococcus aureus with decreased susceptibility to dalfopristin. Infect. Dis. Then, 2000, 23(New Considerations for Macrolides, Azalides, Streptogramins, and Ketolides): 260-267.
    [7] Brumfitt, W., Hamilton-Miller, J.M.T.Shah, S. In vitro activity of RP 59500, a new semisynthetic streptogramin antibiotic, against Gram-positive bacteria J. Antimicrob. Chemother, 1992,30(Suppl. A): 29-37.
    [8] Abdel-Hamid, M.E.Phillips, O.A. LC-MS/MS determination of Synercid injections. J. Pharm. Biomed. Anal., 2003,32(6): 1167-1174.
    [9] Preud'homme, J., Belloc, A., Charpentie, Y.Tarridec, P. Antibiotic from two compounds with synergistic activity pristinamycin. Compt. Rend., 1965, 260(4): 1309-1312.
    [10] Preud'homme, J., Tarridec, P.Belloc, A. Isolation, characterization, and identification of the components of pristinamycin. Bull. Soc. Chim. Fr., 1968, (2): 585-591.
    
    [11] Jolles, G.Bouchaudon, J. Synthesis of (4-hydroxyproline)6 pristinamycin I(sub A), a cyclopeptide with antibiotic activity. Peptides, Proc. Eur. Peptide Symp. 8th, Noordwijk, Neth., 1967: 258-262.
    [12] Radisson, X., Preparation sulfinylpristinamycin IIB. 1992, (Rhone-Poulenc Sante, Fr.). Application: FR. p. 8 pp.
    [13] Largeron, M.Fleury, M.B. Acid-base properties of pristinamycin IA and related compounds. J. Pharm. Sci., 1992, 81(6): 565-568.
    [14] Paris, J.M., Barriere, J.C., Smith, C.Bost, P.E. The chemistry of pristinamycins. Recent Prog.Chem.Synth.Antibiot, 1990:183-248.
    
    [15] Le Goffic, F., Moreau, N., Edery, M.Capmau, M.L. Study of biospecific complexes by electrophoresis: applications to specific antibiotics of the bacterial ribosome. C. R. Hebd. Seances Acad. Sci., Ser. D, 1976,283(5): 551-553.
    [16] Aumercier, M., Bouhallab, S., Capmau, M.L.Le Goffic, F. RP 59500: a proposed mechanism for its bactericidal activity. J. Antimicrob. Chemother., 1992, 30(Suppl. A): 9-14.
    [17] Samra, Z., Ofer, O.Shmuely, H. Susceptibility of methicillin-resistant Staphylococcus aureus to vancomycin, teicoplanin, linezolid, pristinamycin and other antibiotics, lsr. Med. Assoc.J., 2005, 7(3): 148-150.
    [18] De Mouy, D., Cavallo, J.-D., Leclercq, R.Fabre, R. Antibiotic susceptibility and mechanisms of erythromycin resistance in clinical isolates of Streptococcus agalactiae. French multicenter study. Antimicrob. Agents Chemother., 2001,45(8): 2400-2402.
    [19] Blanc, V., Gil, P., Bamas-Jacques, N., Lorenzon, S., Zagorec, M., Schleuniger, J., Bisch, D., Blanche, F., Debussche, L., Crouzet, J.Thibaut, D. Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin 1. Mol. Microbiol., 1997, 23(2): 191-202.
    [20] Thibaut, D., Bisch, D., Ratet, N., Maton, L., Couder, M., Debussche, L.Blanche, F. Purification of peptide synthetases involved in pristinamycin 1 biosynthesis. J. Bacteriol., 1997, 179(3): 697-704.
    [21] Blanc, V., Blanche, F., Crouzet, J., Jacques, N., Lacroix, P., Thibaut, D., Zagorec, M., Debussche, L.De Crecy-Lagard, V., Genes for the enzymes of streptogramin biosynthesis of Streptomyces pristinaespiralis. 2000, (Fr.). Application: US. p. 108 pp , Cont -in-part of U S Ser No 403,852.
    
    [22] Bamas-Jacques, N., Thibaut, D.Famechon, A., Streptomyces gene papM mutants with altered methylation activity promote increased synthesis of streptogramin PIA or PIB. 2004, (Aventis Pharma S. A., Fr.). Application: WO. p. 73 pp. [23] Blanc, V., Blanche, F., Crouzet, J., Jacques, N., Lacroix, P., Thibaut, D.Zagorec, M., Genes for the enzymes of streptogramin biosynthesis of Streptomyces pristinaespiralis. 1994, (Rhone-Poulenc Rorer S.A., Fr.). Application: WO. p. 168 pp.
    
    [24] Blanc, V., Lagneaux, D., Didier, P., Gil, P., Lacroix, P.Crouzet, J. Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin IIB to pristinamycin IIA (PIIA): PIIA synthase and NADH:riboflavin 5'-phosphate oxidoreductase. J. Bacteriol., 1995, 177(18): 5206-5214.
    
    [25] Thibaut, D., Ratet, N., Bisch, D., Faucher, D., Debussche, L.Blanche, F. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J. Bacteriol., 1995, 177(18): 5199-5205.
    
    [26] Folcher, M., Gaillard, H., Nguyen, L.T., Nguyen, K.T., Lacroix, P., Bamas-Jacques, N., Rinkel, M.Thompson, C.J. Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem., 2001,276(47): 44297-44306.
    
    [27] Blanc, V., Salah-Bey, K., Folcher, M.Thompson, C.J. Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis. Mol. Microbiol., 1995,17(5): 989-999.
    
    [28] Salah-Bey, K., Blanc, V.Thompson, C.J. Stress-induced expression of the PTR multidrug resistance gene. Biotekhnologiya, 1995, (7-8): 41-44.
    
    [29] Salah-Bey, K.Thompson, C.J. Unusual regulatory mechanism for a Streptomyces multidrug resistance gene, ptr, involving three homologous protein-binding sites overlapping the promoter region. Mol. Microbiol., 1995, 17(6): 1109-1119.
    
    [30] Salah-Bey, K., Blanc, V.Thompson, C.J. Stress-activated expression of a Streptomyces pristinaespiralis multidrug resistance gene (ptr) in various Streptomyces spp. and Escherichia coll Mol. Microbiol., 1995,17(5): 1001-1012.
    [31] Bamas-Jacques, N., Lorenzon, S., Lacroix, P., De Swetschin, C.Crouzet, J. Cluster organization of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J. Appl. Microbiol., 1999, 87(6): 939-948.
    [32] Challis, G.L.a.D.A.H. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc.Natl.Acad.Sci.U.S.A 100 Suppl 2, 2003: 7.
    [33] Stephanopoulos, G. Metabolic engineering by genome shuffling - Two reports on whole-genome shuffling demonstrate the application of combinatorial methods for phenotypic improvement in bacteria. Nature Biotechnology, 2002, 20(7): 666-668.
    
    [34] Petri, R.Schmidt-Dannert, C. Dealing with complexity: evolutionary engineering and genome shuffling. Current Opinion in Biotechnology, 2004, 15(4): 298-304.
    [35] Hewes, J.D. Whole genome shuffling: Rapid improvement of industrial micro-organisms by Maxygen, Inc. Abstracts of Papers of the American Chemical Society, 1999, 217: U885-U885.
    [36] Zhang, Y.X., Perry, K., Vinci, V.A., Powell, K., Stemmer, W.P.C.del Cardayre, S.B. Genome shuffling leads to rapid phenotypic improvement in bacteria Nature, 2002, 415(6872): 644-646.
    [37] Lawrence, J.GHendrickson, H. Genome evolution in bacteria: order beneath chaos. Current Opinion in Microbiology, 2005, 8(5): 572-578.
    [38] Hall, B.G. Toward an understanding of evolutionary potential. Fems Microbiology Letters, 1999, 178(1): 1-6.
    [39] Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W.P.C., Ryan, C.M.del Cardayre, S. Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology, 2002, 20(7): 707-712.
    [40] Wang, Y., Li, Y., Pei, X., Yu, L.Feng, Y. Genome-shuffling improved acid tolerance and 1-lactic acid volumetric productivity in Lactobacillus rhamnosus. Journal of Biotechnology, 2007, 129(3): 510-515.
    
    [41] Hida, H., Yamada, T.Yamada, Y. Genome shuffling of Streptomyces sp U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 2007, 73(6): 1387-1393.
    [42] Gong, G-l., Sun, X., Liu, X.-l., Hu, W., Cao, W.-r., Liu, H., Liu, W.-f.Li, Y.-z. Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium. Journal of Industrial Microbiology & Biotechnology, 2007, 34(9): 615-623.
    [43] Zhu, H., Jin, Z.-h.Cen, P.-l. Improvement of Natamycin-producing strain by Genome shuffling. Zhongguo Kangshengsu Zazhi, 2006, 31(12): 739-742.
    [44] Dai, M.H.Copley, S.D. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology, 2004, 70(4): 2391-2397.
    [45] Kumar, M. Improving polycyclic aromatic hydrocarbons degradation by genome shuffling. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 2007,9(1): 145-149.
    [46] Denman, S.E., Mitsumori, M.McSweeney, C.S. Rapd, Rflp, T-Rflp, Aflp, Risa Methods Gut Microb. Ecol. Ruminants, 2005: 151-159.
    
    [47] Grant, D.Shoemaker, R.C. Gene mapping techniques. Handb. Plant Sci., 2007, 1: 598-603.
    [48] Mba, C.Tohme, J. Use of AFLP markers in surveys of plant diversity. Methods Enzymol., 2005,395(MolecuIar Evolution: Producing the Biochemical Data, Part B): 177-201.
    [49] Vos, P., R. Hogers, M. Bleeker, M. Reijans, L. T. van de, M. Homes, A. Frijters, J. Pot, J. Peleman, and M. Kuiper. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 1995., 23: 8-14.
    [50] Thomas, C.M., Vos, P., Zabeau, M., Jones, D.A., Norcott, K.A., Chadwick, B.P.Jones, J.D.G Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J., 1995, 8(5): 785-94.
    [51] O'Driscoll, L., Daly, C., Saleh, M.Clynes, M. The use of reverse transcriptase-polymerase chain reaction (RT-PCR) to investigate specific gene expression in multidrug-resistant cells. Cytotechnology, 1993, 12(1-3): 289-314.
    [52] 黄留玉 PCR最新技术原理、方法及应用.化学工业出版社,2005.
    [53]Chomczynski P,S.N.Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal Bioehem,1987,162:156-159.
    [54]庞昕,周冬生,杨瑞馥 细菌mRNA的提取方法.生物技术通报,2003,1:30-33.
    [55]Chelly,J.Kahn,A.RT-PCR and mRNA quantitation.Polymerase Chain React.,1994:169:101-109.
    [56]Eng,L.F.,Lee,Y.L.,Murphy,G.M.Yu,A.C.A RT-PCR study of gene expression in a mechanical injury model.Prog Brain Res,1995,105:219-229.
    [57]Montarras,D.,Pinset,C.,Chelly,J.Kahn,A.RT-PCR and gene expression.Polymerase Chain React.,1994:277-294.
    [58]Sinicropi,D.,Cronin,M.Liu,M.-L.Gene expression profiling utilizing microarray technology and RT-PCR BioMEMS Biomed.Nanotechnol.,2006,2:23-46.
    [59]Wang,H.-B.Reverse transcription-polymerase chain reaction quantitation of steroid receptor mRNA levels.J.Lab.Clin.Med.,2001,137(6):379-380.
    [60]赵向锋,张慧珍,金蕾,杨继要,刘桂芝,陈景涛,吴逸明.半定量RT-PCR检测肺癌组织S100C的表达及其原核表达载体的构建和鉴定.卫生研究,2008,37(1):5-10.
    [61]陈爱美,施庆珊,谢小保,欧阳友生,陈仪本,定量竞争性RT-PCR检测耐受山梨酸钾的大肠杆菌菌株中acrA-mRNA表达水平.中国食品添加剂,2008,3:6-11.
    [62]Edwards,J.B.D.M.,Ravassard,P.,Icard-Liepkalns,C.Mallet,J.cDNA cloning by RT-PCR.Pcr 2,1995:89-118.
    [63]Anderson,N.G.Anderson,L.The Human Protein Index.Clin.Chem.(Winston-Salem,N.C.),1982,28(4,Pt.2):739-748.
    [64]Anderson,N.G.Anderson,L.Automatic chemistry and the human protein index.J.Autom.Chem.,1980,2(4):177-179.
    [65]Anderson,N.G.Anderson,N.L.Photo/essay.The human protein index.Jama,1981,246(22):2620-2621.
    [66]Anderson,N.G.,Matheson,A.Anderson,N.L.Back to the future:the human protein index (HPI) and the agenda for post-proteomic biology.Proteomics,2001,1(1):3-12.
    [67]Abbott,A.Workshop prepares ground for human proteome project.Nature(London,U.K.),2001,413(6858):763-767.
    [68]Cottingham,K.HUPO's Human Proteome Project:the next big thing? J.Proteome Res., 2008,7(6):2192-2195.
    [69]Gavin,A.-C.,Aebersold,R.Heck Albert,J.R.Meeting report on the 7th World Congress of the Human Proteome Organization(HUPO) in Amsterdam:Proteome Biology.Mol Cell Proteomics,2008,7(11):2288-2291.
    [70]He,F.Proteomics in China.Proteomics,2006,6(2):397,399-403.
    [71]Wilkins M R,S.J.C.,Gooley a Progress with proteome projects:Why all proteins expressed by genome should be identified and how to do it Biotech Genet Eng Rev,1995,13:19-50.
    [72]Wilkins M R,S.J.C.,Williams K L,Hochstrasser D F.Current challenges and future applications for protein maps and post-translational vector maps in proteome projects Electrophoresis,1996,17:830-838.
    [73]Kahn,P.From genome to proteome:looking at a cell's proteins.Science(Washington,D.C.),1995,270(5235):369-370.
    [74]Swinbanks,D.Government backs proteome proposal.Nature,1995,378(6558):653.
    [75]Aggarwal K,l.K.Functional genomics and proteomics as a foundation for systems biology.Briefings in Functional Genomics and Proteomics,2003,2(3):175-184.
    [76]Patterson SD,A.R.Proteomics:the first decade and beyond.Nat Genet,2003,33:311-323.
    [77]LA.,H.Is proteomics heading in the wrong direction? Nat Rev Mol Cell Biol,2003,4(1):74-80.
    [78]Jin,Q.-C.,Jin,Z.-H.,Xu,B.,Li,N.-H.Yao,S.-J.Screening of high pristinamycin yield-related genes in Streptomyces pristinaespiralis.Zhongguo Shengwu Huaxue Yu Fenzi Shengwu Xuebao,2008,24(6):581-585.
    [79]Jia,B.,Jin,Z.H.Mei,L.H.Medium optimization based on statistical methodologies for pristinamycins production by Streptomyces pristinaespiralis.Appl.Biochem.Biotechnol.,2008,144(2):133-143.
    [80]王鲁燕,崔基凤,王文倩,顾觉奋 天蓝链霉菌2809原生质体的制备和再生.中国现代应用药学,1993,(05).
    [81]贺筱蓉,黄小倩.链霉菌原生质体的制备.生物学通报,1998,01:42-43.
    [82]张伯生 链霉菌的原生质体融合.中国抗生素杂志,1986,04:376-379.
    [83]李红,童村,刘颐屏,唐树人 壮观链霉菌原生质体融合研究.中国医药工业杂志,1987,(01).
    [84]王鲁燕,宋正昭,张颖,顾觉奋;黑暗链霉菌原生质体融合[J];江苏药学与临床研究;1996.04:8-10.
    [85]刘秋,于基成,闰建芳,范圣第.产色链霉菌sy20-2与龟裂链霉菌sy20-4的种间原生质体融合.大连民族学院学报,2006,05:15-19.
    [86]邱荔,孟春,郭养浩,胡诗国,林冉.金色链霉菌原生质体的制备.福州大学学报(自然科学版),2001,29(02):124-127
    [87]朱建伟,何雯,刘颐屏,朱宝泉,童村.林肯链霉菌原生质体的形成、再生及其影响因素.中国医药工业杂志,1987,18(3):108-111.
    [88]于秀莲,张怡轩,石乔 何建勇 吸水链霉菌井冈变种原生质体的制备与再生.沈阳药科大学学报,2007,24(05):315-319
    [89 徐小雪,张庭兰,郑幼霞.影响链霉菌原生质体形成、再生的因素.实验生物学报,1984,17(1):25-30
    [90]崔基风,顾觉奋.苏联链霉菌原生质体融合研究概况(根据1990年以前的苏联杂志Aнтиб.发表的论文).国外医药.抗生素分册,1993,05:3-7.
    [91]陈芝,温嘉,宋渊,文莹 李季伦 阿维链霉菌种内原生质体融合选育仅产阿维菌素b 的高产菌株.科学通报,2007,03:28-32.
    [92]Hosoya Y,O.S.,Muramatsu H,OchiK Acquisition of certain streptomycin-resistant(str)mutations enhances antibiotic production in bacteria.Antimicrob Agents Chemother,1998,42(8):2041-2047
    [93]Hans,M.,Bovenberg,R.A.L.,Klaassen,P.Laan van Der,J.M.,Engineering of isopenicillin N synthase and non-ribosomal peptide synthetase with improved activity for production of beta-lactam antibiotics.2008,(DSM Ip Assets B.V.,Neth.;Boer,Remon).Application:p.52pp.
    [94]Hotta K,I.J.,Ogata T,Mizuno S.Secondary amino glycoside resistance in aminoglycoside-producing strains of Streptomyces.Gene,1992,115:113-117.
    [95]Hu H,O.K.Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations.Appl Environ Microbiol,2001,,67:1885-1892.
    [96] Borowy-Borowski, H., R. Lipman, and M. Tomasz. Recognition between mitomycin C and specific DNA sequences for cross-link formation. Biochemistry 1990, 29(12): 2992-2999.
    [97] Davis, J. Inactivation of antibiotics and the dissemination of resistance genes. Science, 1994,264:375-382
    [98] Chen, S.L. Optimization of batch alcoholic fermentation of glucose syrup substrate. Biotechnol. Bioeng., 1981, 23(8): 1827-1836.
    [99] Maddox, I.S.Richert, S.H. Use of response surface methodology for the rapid optimization of microbiological media J Appl Bacteriol, 1977,43(2): 197-204.
    [100] Weuster-Botz, D.Wandrey, C. Medium optimization by genetic algorithm for continuous production of formate dehydrogenase. Process Biochem. (Oxford), 1995,30(6): 563-71.
    [101] 陈坚,李寅.发酵过程优化原理与实践.化学工业出版社, 2002.
    [102] Jin, Z., Lei, Y., Lin, J.Cen, P. Improvement of pristinamycin-producing Streptomyces pristinaespiralis by rational screening. World J. Microbiol. Biotechnol., 2006, 22(2): 129-134.
    [103] Agarwal, M., Shrivastava, N.Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep., 2008,27(4): 617-631.
    [104] Savelkoul, P.H., H. J. Aarts, J. de Haas, L. Dijkshoorn, B. Duim, M. Otsen, J. L. Rademaker, L. Schouls, and J. A. Lenstra. Amplified-fragment length polymorphism analysis: the state of an art. J.CIin. .Microbiol, 1999,, 37:3083- 3091.
    [105] Vos, P., R. Hogers, M. Bleeker, M. Reijans, L. T. van de, M. Homes, A. Frijters, J. Pot, J. Peleman, and M. Kuiper. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 1995.,23(21):4407-4414..
    [106] Hopwood D A, B.M.J., Chater K F Genetic manipulation of Streptomyces-a laboratory manual .Norwich, UK: The John Innes Foundation. 1985.
    
    [107] Mendelson, T.C.Shaw, K.L. Use of AFLP markers in surveys of arthropod diversity. Methods Enzymol., 2005, 395(Molecular Evolution: Producing the Biochemical Data, Part B): 161-177.
    [108] Jayasankar, P. Application of RAPD and AFLP to detect genetic variation in fishes. Fish Genet. Aquacult. Biotechnol., 2005: 29-36.
    [109] Behura, S.K. Molecular marker systems in insects: current trends and future avenues. Mol. Ecol.,2006, 15(11): 3087-3113.
    [110] Yli-Mattila, T.Paavanen-Huhtala, S. Molecular identification and detection of plant pathogenic and toxigenic Fusarium fungi. Fungi, 2007: 82-111.
    [111] Lanoot, B., M. Vancanneyt, B. Hoste, M. C. Cnockaert, M. Piecq, F. Gossele, and J. Swings. Phenotypic and genotypic characterization of mutants of the virginiamycin producing strain 899 and its relatedness to the type strain of Streptomyces virginiae. Syst.Appl.Microbiol., 2005,28 (4):381-382.
    [112] Blanc, V., Thibaut, D., Bamas-Jacques, N., Blanche, F., Crouzet, J., Barriere, J.-C.,Debussche, L., Famechon, A., Paris, J.-M.Dutruc-Rosset, G., Streptogramins and method for preparing same by mutasynthesis. 1996, (Rhone-Poulenc Rorer S.A., Fr.). Application: WO. p. 145 pp.
    [113] De Crecy-Lagard, V., Saurin, W., Thibaut, D., Gil, P., Naudin, L., Crouzet, J.Blanc, V. Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob.Agents Chemother., 1997,41(9): 1904-1909.
    [114] Lal, G., Padmanabha, L., Nicholson, R., Smith, B.J., Zhang, L., Howe, J.R., Robinson, R.A.O'Dorisio, M.S. ECM1 Expression in Thyroid Tumors-A Comparison of Real-Time RT-PCR and IHC. J. Surg. Res., 2008, 149(1): 62-68.
    [115] Samija, I., Matesa, N., Lukac, J.Kusic, Z. Thyroid fine-needle aspiration samples inadequate for reverse transcriptase-polymerase chain reaction analysis. Cancer (Hoboken, NJ, U. S.), 2008, 114(3): 187-195.
    [116] Bergallo, M., Costa, C., Terlizzi, M.E., Margio, S., Sidoti, F., Astegiano, S., Sinesi, F.Cavallo, R. Reverse Transcriptase-Polymerase Chain Reaction to Evaluate Human Cytomegalovirus Lytic Gene Expression. Mol. Biotechnol., 2008, 40(2): 144-150.
    
    [117] Kawasaki, E.S. Amplification of RNA, In: PCR Protocols, a guide to methods and applications. Innis, M.A., Gefland, D.H., Sninsky, J.J. and White, T.J. (eds), Academic Press Inc., Berkeley CA, 1990b.
    
    [118] Lion, T. Appropriate controls for RT-PCR. Leukemia, 1996, 10(11): 1843.
    [119] Sambrook J, R.D.W. Molecular Cloning:A Laboratory Manual[M],3rd ed.New York. 1989.
    [120]Hamerski,M.G.,Bortolini,M.A.T.,Da Silva,I.D.C.G.,Castro,R.A.,Sartori,M.G.E,De Lima,G.R.Girao,M.J.B.C.Effect of tibolone on eytochrome c oxidase Ⅰ,beta-2-microglobulin and vascular endothelial growth factor gene expression in the lower urinary tract of castrated rats.Clin Exp Obstet Gynecol,2006,33(4):233-237.
    [121]Sezonov,G.,Blanc,V.,Bamas-Jacques,N.,Friedmann,A.,Pernodet,J.-L.Guerineau,M.Complete conversion of antibiotic precursor to pristinamycin ⅡA by overexpression of Streptomyces pristinaespiralis biosynthetic genes.Nat.Biotechnol.,1997,15(4):349-353.
    [122]Hesketh,A.a.K.O.A novel method for improving Streptomyces coelicoior A3(2) for production of actinorhodin by introduction of rpsL(encoding ribosomal protein S12)mutations conferring resistance to streptomycin.J.Antibiot.(Tokyo),1997,50:532-535.
    [123]Hopwood,D.A.How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them?.Mol.Microbiol,2007,63(4):951-61.
    [124]吴谋胜,彭宣宪.微生物蛋白质组学研究进展.微生物学报,2002,2:119-122.
    [125]袁泉,赵辅昆.蛋白质组研究新前沿:定量蛋白质组学.生物化学与生物物理学报,2001,33(5):11-15.
    [126]Minden,J.Comparative proteomics and difference gel electrophoresis.BioTechniques,2007,43(6):739,741,743,745.
    [127]Washburn M.P.,W.D.,,Large-scale analysis of the yeast proteome by multidim ensional protein identification technology.Nat.Biotechnol,2001,19:242-247.
    [128]Bradford,M.A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding.Analytical Biochemistry,1976,72:248-254.
    [129]Stoscheck,C.Quantitation of Protein.Methods in Enzymology,1990,182:50-69
    [130]O'Farrell,P.H.High resolution two-dimensional electrophoresis of proteins.J.Biol.Chem.,1975,250(10):4007-4021.
    [131]Yin,P.,Wang,Y.-H.,Zhang,S.-L.,Chu,J.,Zhuang,Y.-P.,Wang,M.-L.Zhou,J.Isolation of soluble proteins from an industrial strain Streptomyces avermitilis in complex culture medium for two-dimensional gel electrophoresis.J.Microbiol.Methods,2008,73(2):105-110.
    [132] Richardson, M.R., Liu, S., Ringham, H.N., Chan, V.Witzmann, F.A. Sample complexity reduction for two-dimensional electrophoresis using solution isoelectric focusing prefractionation. Electrophoresis, 2008,29(12): 2637-2644.
    [133] Shapiro A L, V.E.M.J.V. Molecular weight estimation of polypeptide chainsby electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun., 1967, 58: 642-649.
    [134] Weber, K., and Osborn, M . The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrop horesis. J Biol. Chem, 1969, 244(16): 4406-4412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700