用户名: 密码: 验证码:
高活力酸性蛋白酶曲霉融合子的选育及其在酱油发酵中的初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高米曲霉酸性蛋白酶活力对于酱油酿造行业具有重要的实际价值。选育食品级高活力酸性蛋白酶米曲霉是提高我国酱油酿造行业原料蛋白利用率和氨基酸态氮转化率的有效途径。以A.oryzae HN3042和A.niger CICC2377为出发菌株,酶解制备原生质体,基于致死损伤互补理论和基因组重组技术选育目标融合子,并初步考查其在高盐稀态酱油发酵中的应用效果。主要研究内容与结果如下:
     首先,对亲本原生质体的制备和临界灭活条件进行了系统研究。A.oryzae HN3042和A.niger CICC2377亲本原生质体的制备条件分别是在MPY(麦芽糖-蛋白胨-酵母抽提物)培养基中30℃下100 rpm振荡培养18 h和21 h,菌丝球与总浓度为15 mg/mL的溶壁酶、蜗牛酶和纤维素酶(1:1:1)混合酶液按1g湿菌丝球/10 mL酶液的比例于30℃、80 rpm条件下酶解2.5 h。在此条件下菌丝原生质体的释放量和再生率分别达到107/mL和30 %以上。通过灭活曲线确定A.oryzae HN3042和A.niger CICC2377原生质体的非对称灭活参数分别为15 W紫光灯垂直距离13 cm下照射15 min和65℃热处理10 min,在此剂量下可使双亲原生质体临界灭活。
     其次,将灭活后的亲本原生质体在脉冲电场作用下诱导基因组重组。从再生菌落中随机挑选出694株生长较快的融合子,经500 mg/L的樟脑CD培养基和1 mg/L的苯菌灵CD培养基传代培养,获得了稳定的杂核单倍体。经酸性酪蛋白平板初筛和种曲发酵复筛,获得了10株较亲本A.oryzae HN3042在种曲阶段所产酸性蛋白酶活力有50 %以上提高的融合株。其中F76较A.oryzae HN3042提高了82.19 %,且传代稳定,酶系均衡。从菌丝形态学、胞外蛋白表达谱、磷酸酯酶同功酶谱、孢子细胞核倍性和基因组多态性等角度对比分析了融合子和亲本之间的差异性。结果表明融合子在表型和基因型方面与亲本显著不同,证明在亲本原生质体融合过程中发生了基因组重组。
     再次,综合运用盐析、离子交换和凝胶层析技术,将F76酸性蛋白酶纯化了17.09倍,酶活回收率为33.56 %,比活力达到4015.49 U/mg。高酶活蛋白峰经SDS-PAGE显示为单一条带,纯化已达电泳纯。将SDS-PAGE和Native-PAGE的单一条带进行比较,二者基本处于同一水平位置,表明F76酸性蛋白酶为单亚基,分子量约为50 kDa。相对于亲本A.oryzae HN3042,F76酸性蛋白酶构象中α-螺旋含量下降了14.3 %,β结构增加了12.8 %,无规则卷曲增加了5.7 %,表明酶的构象较亲本A.oryzae HN3042柔性增强。F76酸性蛋白酶最适温度40℃,在35℃~45℃范围内处理1 h仍保留90 %以上的活力。此酶最适pH为3.5,在pH 3.0~6.5范围内较为稳定。活力受Mn2+的强烈激活,而受Co2+的强烈抑制,10μmol/L的Pepstatin A几乎完全抑制其活力。F76酸性蛋白酶Km值和活化能Ea分别较亲本A.oryzae HN3042下降了27.08 %和0.77 %;热致衰减指数λ较亲本A.oryzae HN3042增加了20.0 %,表明F76酸性蛋白酶热稳定性略有下降。
     然后,运用统计学工具对F76酸性蛋白酶产酶条件进行优化。最佳培养基组成为:在基础种曲培养基的基础上,添加1.24 %酵母抽提物、1.15 %葡萄糖、0.05 % MnCl2、0.05 % MgSO4和0.06 % Na2B4O7。F76酸性蛋白酶活力由优化前的1308 U/g(干曲)提高到1703 U/g,提高了30.20 %。最佳培养条件为:接种量8.59×105个孢子/g种曲、培养温度31℃、培养基起始含水量57 %、培养时间86 h。通过优化使种曲培养基酸性蛋白酶活力提高到1936 U/g干曲,在1703 U/g的基础上活力又提高了13.68 %。通过两次统计优化使种曲酸性蛋白酶活力较未优化前提高了48.01 %。
     最后,初步考查F76在高盐稀态酱油发酵中的应用效果。发酵至31 d时,F76菌株酱油发酵液中的可溶性无盐固形物、总酸、总氮和氨基酸态氮含量分别较对照菌株A.oryzae HN3042提高了1.8 %、8 %、8.1 %和6.9 %,表明F76发酵酱油的理化指标较A.oryzae HN3042有所改善。发酵至80 d时,F76酱油发酵液中大于10 kDa和5-10 kDa两分子量段的蛋白相对含量分别较A.oryzae HN3042下降了5.56 %和10.65 %,表明F76分泌的蛋白酶系较A.oryzae HN3042有更好的原料蛋白降解性能。发酵至90 d时,F76发酵液中的甜味和鲜味氨基酸相对含量分别为24.98 %和10.03 %,比A.oryzae HN3042的24.63 %和9.86 %略有增加,而苦味氨基酸含量为61.95 %,较A.oryzae HN3042的62.43 %有所降低,表明F76菌株酱油发酵液的风味较A.oryzae HN3042有所改善。风味成分分析表明,F76酱油发酵液中总风味成分含量为79.87 %,而A.oryzae HN3042为73.37 %,明显低于F76发酵液,意味着两菌株发酵产生的酱油在风味上存在着一定的差别。
     本研究为F76在酱油发酵工业中的应用奠定了初步基础。
The improvement of acid protease activity in Aspergillus oryzae has practical value for soy sauce brewing industry. Breeding of food-grade strain with high activity of acid protease is an efficient approach to enhancing the protein utilization rate and conversion efficiency of free amino acids in soy sauce fermentation. Based on the theory of asymmetric inactivation and the technique of genome recombination, the protoplasts released from A.oryzae HN3042 and A.niger CICC2377 by enzymatic hydrolysis were induced to fuse by pulse electrofield and subsequent screening of target strains was carried out. Additionaly, the performances of the screened fusant were preliminarily examined in soy sauce fermentation. The main researches and their results are as follows:
     Firstly, the parameters of protoplast preparation and inactivation were explored. The conditions for protoplast release from A.oryzae HN3042 and A.niger CICC2377 were as follows: cultivation in a submerged medium consisting of 1.0 % maltose, 1.0 % polytephone and 0.5 % yeast extract for 18 and 21 h respectively at 30 oC and 100 rpm, and then incubating the mycelia with an enzyme cocktail, total concentration of 15 mg/mL and consisting of lywallzyme, cellulose R-10 and snailase with the ratio of 1:1:1, for 2.5 h at 30 oC and 80 rpm, and then regeneration on the high osmotic soybean extract solid medium. Under these conditions, the release and regeneration efficiency of protoplasts from A.oryzae HN3042 and A.niger CICC2377 both reached 107 /mL and above 30 %, respectively. According to the time curse for asymmetric inactivation, the dose of UV irradiation with a 15 W ultraviolet lamp to protoplasts from A. oryzae HN3042 was 15 min under the light with a distance of 13 cm. As for the heating inactivation towards protoplasts from A.niger CICC2377, the parameter was at a water incubation of 65 oC for 10 min. After the asymmetric inactivation, the survival frequency of protoplasts on regeneration plates was nearly zero.
     Secondly, genome recombination between the inactivated protoplasts was iuduced by pulse electrofield. 694 strains of fusants with higher growing speed than A.oryzae HN3042 were randomly selected and the diploidization of heterokaryons was conducted with d-camphor with the content of 500 mg per liter Czapek medium. After successive subcultures for 10 generations on camphor medium, subsequent haploidization of the fused diploids was done with benomyl with the content of 1 mg per liter Czapek medium. 10 stable fusants with an enhancement of above 50 % in activity of acid protease than A.oryzae HN3042 were obtained, in which the fusant of F76 showed an improvement of 82.19 %. Furthermore, the analysis of mycelia morphology, SDS-PAGE and esterase isoenzyme profiles, ploids of the conidium nucleus and randomLy amplified polymorphic DNA (RAPD) were applied to identify the fusants through phenotypic and genetic relationship. The results revealed there were considerable differences between the fusants and their parental strains. According to these line evidences, it can be safetly concluded that genome recombination occurred in the process of protoplast fusion.
     Thirdly, by salting-out, ion-exchange and molecular sieve chromatography, the acid protease from F76 was purified 17.09 folds, with a yield of 33.56 % and a specific acitivity of 4015.49 U/mg. Purified acid protease moved as single band on SDS-PAGE. Native PAGE ascertained the purified protein monomeric and the molecular weight was deduced to be about 50 kDa by SDS-PAGE. Circular dichroism studies of this enzyme revealed that the contents ofα-helix,β-sheet,β-turns and aperiodic structure in the purified protein were 7.1 %, 39.4 %, 24.7 % and 32.1 %, respectively. Compared with that of A.oryzae HN3042, the content of helix decreased 14.3 % and the content ofβ-structure and aperiodic coil increased 12.8 % and 5.7 %, which indicated that conformation of acid protease from F76 was more flexible than that from A.oryzae HN3042. Acid protease from F76 was stable in the temperature range of 35 oC-45 oC with an optimum temperature for activity of 40 oC and the enzyme was active in the pH range of 3.0-6.5 with an optimum pH of 3.5. Activity of the acid protease from F76 was significantly improved by Mn2+ and inhibited by Co2+, and pepstatin A, a specific inhibitor for aspartic protease, almost completely inhibited the activity of acid protease from F76 with a concentration of 10μmol/L. The value of Km and Ea of the purified acid protease from F76 showed an decrease of 27.08 % and 0.77 % respectively than that of A.oryzae HN3042 and an increasement of 20.0 % in heat-induced attenuation index than that of A.oryzae HN3042 was responsible for the slight decrease of thermostability of the enzyme.
     Then, statistical optimization was applied to maximise the production of acid protease from F76. The result showed that optimum medium was the enriched bran and wheat flour medium, with an addition of 1.24 % yeast extract, 1.15 % glucose, 0.05 % MnCl2, 0.05 % MgSO4 and 0.06 % Na2B4O7. Cultured on this enriched medium, F76 produced the activity of acid protease from 1308 U/g to 1703 U/g, an increase of 30.2 %. The optimum conditions for acid protease production were as follows: inoculum volume of 8.59×105 condium per gram of koji-seed medium, incubation temperature of 31 oC, initial mositure content of 57 % and incubation time of 86 h. Under these conditions, the activity of acid protease from F76 reached 1936 U/g from 1703 U/g, a further increase of 13.68 %. By statistical optimization, the activity of acid protease from F76 in koji-seed medium was enhanced 48.01 %.
     Finally, the performances of F76 in soy sauce fermentation were preliminarily evaluated. The content of total titration acid, soluble non-salt solids, total soluble nitrogen and amino-type nitrogen in fermented mash at the stage of 31 days was increased by 1.8 %, 8.0 %, 8.1 % and 6.9 % than that of A.oryzae HN3042, respectively, indicative of some improvement in compositions of the fermented mash. At the fermentation stage of 80 days, the content of proteins with molecular weight of above 10 kDa and within 5-10 kDa in fermented mash by F76 was lower 5.56 % and 10.65 % than that by A.oryzae HN3042, respectively, which indicated that F76 had better degradating performance towards soybean proteins during mash fermentation than the parental strain of A.oryzae HN3042. After a 90-day aging period, the content of sweet, umami- and bitter- free amino acids in the fermented mash by F76 was 24.98 %, 10.03 % and 61.95 %, respectively, while the counterparts by A.oryzae HN3042 was 24.63 %, 9.86 % and 62.43 %, respectively. The slight increase in sweet and umami amino acids and remarkable decrease in bitter amino acids showed that the flavor of fermented mash by F76 was more pleasant than that by A.oryzae HN3042. Volatile compouds analysis showed that the content of total volatile compouds in fermentated mash by F76 was 79.87 % while the counterparts by Aoryzae HN3042 was only 73.37 %, indicating the difference in flavor of fermented soy sauce between F76 and A.oryzae HN3042.
     This study provides a preliminary foundation for the application of F76 in soy sauce fermentation.
引文
[1]林祖申.酱油生产技术问答[M].北京:中国轻工出版社, 2007: 2-18.
    [2]彭涛,杨旭新,陈韶华.中国酱油的现状及发展前景[J].中国调味品, 2007, 7: 26-29.
    [3] Chou C C, Ling M Y. Biochemical changes in soy sauce prepared with extruded and traditional raw materials [J]. Food Research International, 1998, 31(6): 487-492.
    [4]鲁肇元,魏克强.“酿造酱油”高盐稀态发酵工艺综述[J].中国调味品, 2007,7:28-31.
    [5] Sano Y, Kuramitsu R, Muramatsu S. Antibacterial activity of pyrazine derivatives produced by Aspergillus oryzae in soy sauce production[J]. Abastract/Journal of Biotechnology, 2008, 136: 717-742.
    [6] Moon G, Lee M, Lee Y, et al. Main component of soy sauce representing antioxidative activity[J]. International Congress Series, 2002, 1245: 509-510.
    [7] Lin C H, Wei Y T, Chou C C. Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi[J]. Food Microbiology, 2006, 23(7): 628-633.
    [8] Kataoka S. Functional effects of Japanese style fermented soy sauce (shoyu) and its components[J]. Journal of Bioscience and Bioengineering, 2005, 100(3): 227-234.
    [9] Tsuchiya H, Sato M, and Watanabe L. Antiplatelet activity of soy sauce as functional seasoning[J]. Journal of Agricultural and Food Chemistry, 1999, 47: 4167-4174.
    [10] Kinoshita E, Yamakoshi J, Kikuchi M. Purification and identification of an angiotensin I-converting enzyme inhibitor from soy sauce[J]. Bioscience Biotechnology and Biochemistry, 1993, 57: 1107-1110.
    [11] Zhu X L, Watanabe K, Shiraishi K, et al. Identification of ACE-inhibitory peptides in salt-free soy sauce that are transportable across caco-2 cell monolayers[J]. Peptides, 2008, 29(3): 338-344.
    [12] Kobayashi M. Immunological functions of soy sauce: hypoallergenicity and antiallergic activity of soy sauce[J]. Journal of Bioscience and Bioengieering, 2005, 100(2): 144-151.
    [13] GB18186-2000,中华人民共和国国家标准(酿造酱油)[S].北京:国家质量技术监督局, 2000
    [14]高献礼,赵谋明,崔春,等.高盐稀态酱油挥发性风味物质的分离与鉴定[J].华南理工大学学报(自然科学版), 2009, 37(10): 117-123.
    [15] Yokotsuka T. Aroma and flavor of Japanese soy sauce [J]. Advances in Food Research,1961, 10: 75-134.
    [16] Lee S M, Seo B C, Kim Y S.Volatile compounds in fermented and acid-hydrolyzed soy sauce [ J]. Journal of Food Science, 2006, 71(3): 146-156.
    [17] Pitipong W, Sittiwat L. Comparison of determination method for volatile compounds in Thai soy sauce [J]. Food Chemistry, 2003, 83(4): 619-629.
    [18] Li K Q, Ding X L. Formation of taste and odor compounds during preparation of douchiba, a Chinese traditional soy-fermented appetizer[J]. Journal of Food Biochemistry, 2007, 31(2): 230-251.
    [19]张艳芳,陶文沂.低盐固态发酵酱油中挥发性风味物质的分析[J].精细化工, 2008, 25(3): 261-263.
    [20]王林祥,刘杨岷,王建新.酱油风味成分的分离与鉴定[J].中国调味品, 2005(1): 45-48.
    [21] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438, 1157-1161.
    [22] Kobayashi T, Abe K, Asai K, et al. Genomoics of Aspergillus oryzae[J]. Bioscience Biotechnology and Biochemistry, 2007, 71(3): 646-670.
    [23] Sandhya C, Sumantha A, Szakacs G, et al. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation[J]. Process Biochemistry, 2005, 40: 2689-2694.
    [24] Guo J P, Ma Y. High-level expression, purification and characterization of recombinant Aspergillus oryzae alkaline protease in Pichia pastoris[J]. Protein Expression and Purification, 2008, 58: 301-308.
    [25] Pandey A, Selvakumar P, Soccol C R, et al. Solid-state fermentation for the production of industrial enzymes[J]. Current Science, 1999, 77: 149-62.
    [26] Wang R H, Law R C S, Web C. Protease production and conidiation by Aspergillus oryzae in flour fermentation[J]. Process Biochemistry, 2005, 40: 217-227.
    [27] Kitano H Y, Kataoka K, Furukawa K, et al. Specific expression and temperature dependent expression of the acid protease-encoding gene (PepA) in Aspergillus oryzae in solid-state culture (rice-koji)[J]. Journal of Bioscience and Bioengineering, 2002, 93(6): 563-567.
    [28] Rahardjo Yovita S P, Sebastiaan Haemers F J W, Tramper J, et al. Aerial mycelia of Aspergillus oryzae accelerateα-amylase production in a model solid-state fermentation system [J]. Enzyme and Microbial Technology, 2005, 36: 900-902.
    [29] Kammoun R, Naili B, Bejar S. Application of a statistical design to the optimization of parameters and culture medium for a-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product)[J]. Bioresource Technology, 2008, 99: 5602-5609.
    [30] Ramachandran S, Patel A K, Nampoothiri K M, et al. Coconut oil cake-a potential raw material for the production of a-amylase[J]. Bioresource Technology, 2004, 93: 169-174.
    [31] Rahardjo Y S P, Sie S, Weber F J, et al. Effect of low oxygen concentrations on growth and a-amylase production of Aspergillus oryzae in model solid-state fermentation systems[J]. Biomolecular Engineering, 2005, 21: 163-172.
    [32] Carlsen M, Nielsen J, Villadsen J. Growth and a-amylase production by Aspergillus oryzae during continuous cultivations[J]. Journal of Biotechnology, 1996,45: 8l-93.
    [33] Ito H, Nessa A. Induction of Aspergillus oryzae mutant strains producing increased levels of a-amylase by gamma-irradition[J]. Radiation Physics and Chemistry, 1996, 48, (6): 811-813.
    [34] Jin B, Leeuwen H J, Patel B, Yu Q. Utilization of starch processing wastewater for production of microbial biomass protein and fungal a-amylase by Aspergillus oryzae[J]. Bioresource Technology, 1998, 66: 201-206.
    [35] Spohr A, Carlsen M, Nielsen J, Villadsen J.α-amylase production in recombinant Aspergillus oryzae during fed-batch and continuous cultivations[J]. Journal of Fermentation and Bioengineering, 1998, 86(1): 49-56.
    [36] Shankar S K, Mulimani V H. Alpha-galactosidase production by Aspergillus oryzae in solid-state fermentation[J]. Bioresource Technology, 2007, 98: 958-961.
    [37] Hata Y, Ishida H, Kojima Y, et al. Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (Koji) and in submerged culture[J]. Journal of Fermentation and Bioengineering, 1997, 84(6): 532-537
    [38] Uchida H, Arakida S, Sakamoto T, et al. Expression of Aspergillus oryzae phytase gene in Aspergillus oryzae RIB40 niaD-[J]. Journal of Bioscience and Bioengineering, 2006, 102(6): 564-567.
    [39] Fujita J, Yamane Y I, Fukuda H, et al. Production and properties of phytase and acid phosphatase from a sake koji mold, Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2003, 95( 4): 348-353.
    [40] Fujita J, Yamane Y I, Fukuda H, et al. Production of two types of phytase from Aspergillus oryzae during industrial koji making[J]. Journal of Bioscience andBioengineering, 2003, 95(5): 460-465.
    [41] Hashimoto T, Morishita M, Iwashita K, et al. Production and some properties of salt-tolerant, xylosidases from a shoyu koji mold, Aspergillus oryzae in solid and liquid cultures[J]. Journal of Bioscience and Bioengineering, 1999, 88(5): 479-483.
    [42] Yamane Y I, Fujita J, Izuwa S. Properties of celluose-degrading enzymes from Aspergillus oryzae and their contribution to material utilization and alcohol yield in sake mash fermentation[J]. Journal of Bioscience and Bioengineering, 2002, 93(5): 479-484.
    [43] Luh B S. Industrial production of soy sauce[J]. Journal of Industrial Microbiology, 1995, 14: 467-471.
    [44]贾爱娟.提高高盐稀态法酿造酱油原料蛋白质利用率及氨基酸出品率的研究[D].西安:西北农林科技大学, 2006: 11-12.
    [45]李莉.提高发酵酱油蛋白利用率及风味改进的研究[D].重庆:西南农业大学, 2005: 1-2.
    [46]曹治云.黑曲霉产酸性蛋白酶催化机制与稳定剂研究[D].福州:福建师范大学, 2005: 1-3.
    [47]邱重晏.酸性蛋白酶基因的克隆及表达[D].无锡:江南大学, 2005: 1-4.
    [48] Kocabiyik S, Ozel H. An extracellcular-pepstatin insensitive acid protease produced by Thermoplasma volcanium[J]. Bioresource Technology, 2007, 98: 112-117.
    [49] Vishwanatha K S, Rao A G. A, Singh S A. Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341[J]. Food Chemistry, 2009, 114: 402-407.
    [50] Kamitori S, Ohtaki A, Ino H, et al. Crystal structures of Aspergillus oryzae aspartic proteinase and its complex with an inhibitor pepstatin at 1.9 A°resolution[J]. Journal of Molecular Biology, 2003, 326: 1503-1511.
    [51] Gomi K, Arikawa K, Kamiya N. Cloning and nueleotide sequenee of the acid poretase encoding gene (pepA) from Aspergrillus oryzae[J]. Bioscience Bioteehnology and Biochemisty, 1993, 57(7): 1095-1100.
    [52]雷肇祖,钱志良,章健.工业菌种改良述评[J].工业微生物, 2004, 34(1): 39-51.
    [53]施巧琴,吴松刚.工业微生物育种学(第二版)[M].北京:科学出版社, 2003: 68-348.
    [54]杨汝德.现代工业微生物学[M].广州:华南理工大学出版社, 2001: 341-396.
    [55]房耀维,范琳,牛艳芳,等.工业微生物育种技术研究进展[J].内蒙古师范大学学报自然科学(汉文)版, 2003, 32(92): 158-162.
    [56]聂明,李怀波,万佳蓉,等.工业微生物遗传育种的研究进展[J].现代食品科技,2005, 21(3): 184-188.
    [57]汪天虹.微生物分子育种原理与技术[M].北京:化学工业出版社, 2005: 60-81.
    [58]张志光.真菌原生质体技术[M].长沙:湖南科学技术出版社, 2003: 35-56.
    [59]徐德峰,赵谋明.中国酱油菌株AS3951的改良现状与思考[J].中国调味品, 2009, 34(5): 32-38.
    [60] Ueki T, Noda Y, Teramoto Y J, et al. Practical soy sauce production using a mixed Koji-making system[J]. Journal of Fermentation and Bioengineering, 1994, 78(3): 262-264.
    [61] Kijima K K, Suzuki H Y. Improving the umami taste of soy sauce by the addition of bacterial-glutamyltranspeptidase as a glutaminase to the fermentation mixture[J]. Enzyme and Microbial Technology, 2007, 41: 80–84.
    [62] Cheevadhanarak S, Renno D V, Saunders G, et al. Cloning and selective overexpression of an alkaline protease-encoding gene from Aspergillus oryzae[J]. Gene, 1991, 108(1): 151-155.
    [63] Alexander M B, Byun T, Kimberly M, et al. A non-specific aminopeptidase from Aspergillus[J]. Biochimica et Biophysica Acta, 2000, 1480: 171-181.
    [64] Obata H S, Ishida H K, Hata Y J, et al. Cloning of a novel tyrosinase-encoding gene (melB) from Aspergillus oryzae and its overexpression in solid-state culture (rice koji)[J]. Journal of Bioscience and Bioengineering, 2004, 97(6): 400-405.
    [65] Suzuki S, Tada S, Fukuoka M. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae[J]. Biochemical and Biophysical Research Communications, 2009, 383: 42-47.
    [66] Shou T S, Iikura H S, Nakamura A, et al. Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties[J]. Journal of Biotechnology, 1998, 65: 163-171.
    [67] Kitamoto N Y, Shoko Y Y, Ohmiya K I, et al. A Second Pectin Lyase Gene (pel2) from Aspergillus oryzae KBN616: its sequence analysis and overexpression, and characterization of the gene products[J]. Journal of Bioscience and Bioengineering, 2001, 91(4): 378-381.
    [68] Hata Y J, Ishida H K, Kojima Y H, et al. Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (koji) and in submerged culture[J]. Journal of Fermentation and Bioengineering, 1997, 84(6): 532-537.
    [69] Hata Y J, Sano M K, Yamane N K, et al. Transcriptional regulation of genes on thenon-syntenic blocks of Aspergillus oryzae and its functional relationship to solid-state cultivation[J]. Fungal Genetics and Biology, 2008, 45(2): 139-151
    [70] Biesebeke R E, Record N, Biezen V, et al. Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates[J]. Applied Microbiology and Biotechnology, 2005, 69: 44-50.
    [71] Genryou U K, Noda S A, Keietsu T D, et al. Aminopeptidase gene, recombinant DNA, and process for producing leucine aminopeptidase[P]. European Patent, 99304589.7, 29.12.1999.
    [72] Genryou U K. A multiply transformed Aspergillus (koji) mold and a method of manufacturing a flavor enhancer using the same[P]. European Patent, 01302132.4, 12.09.2001
    [73] Takeichi J, Hara S, Hnya Y, et al. Novel Aspergillus lacking function of branched chain amino acid aminotransferase gene or branched chain alpha ketoacid dehydrogenase gene, useful for producing food/beverage products excellent in flavor[P]. Japan Patent, 2007228819A, 13.09.2007.
    [74] Masayuki M D, Kiyoshi A, Motoaki S N, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438: 22-29.
    [75]李军,杨晓宽,贾文沦.复合菌群发酵酿造酱油的初步研究[J].河北职业技术师范学院学报, 1999, 13(4): 48-54.
    [76]谭五丰,李月兰.酱油混合曲天然发酵工艺的研究[J].现代食品科技, 2007, 23(5): 58-59.
    [77]李琴,杜风刚.在酱油生产中应用双菌种制曲的探索[J].中国酿造, 2004, 4: 28-29.
    [78]毋瑾超,胡锡钢,陈全震.酱油发酵中制曲条件对双菌种制曲的蛋白酶活力和孢子数的影响[J].食品科技, 2003, 7: 11-13.
    [79]王素珍.利用双菌种制曲提高原料蛋白质利用率的探讨[J].中国酿造, 2005, 7: 35-37.
    [80]范基全.多菌种制曲原池浇淋发酵提高酱油风味的试验[J].河南技师院学报, 1994, 22(2): 56-58.
    [81]邹镜铭.多菌种混合制曲提高酱油质量[J].中国调味品, 2005, 4: 32-35.
    [82]叶磊,何立千,赵和.复方发酵促进剂对AS3.951生物活性的影响[J].中国调味品, 2002, 7: 9-13.
    [83]马学曾,孔卫.酱油多菌种制曲发酵实际效果的实验报告[J].中国酿造, 2004, 12: 20-21.
    [84]赵玉莲.酶法低盐固态发酵酱油风味的初探[J].中国酿造, 1982, 5.
    [85]赵玉莲.酱油用米曲酶961酶制剂蛋白酶动力学研究[J].食品发酵工业, 1984, 2.
    [86]于丽萍,王金英,何家芬.酱油酿造中添加酸性蛋白酶生产性试验[J].中国调味品, 1997, 9: 22-23.
    [87]冯霖,刘芳竹,陈韶华.酱油双酿技术研究[J].中国酿造, 2005, 5: 51-52.
    [88]李西腾,吴沿友.酱油稀醪低盐发酵工艺中酶制剂的应用初探[J].中国酿造, 2005, 8: 33-36.
    [89]陈亚光,高朝辉,陈勇,等.沪酿3.042米曲霉紫外诱变及高活力蛋白酶菌株选育[J].中国调味品, 2005, 3: 15-19
    [90]党敏娜.高盐稀态酱油发酵菌种的选育及工艺改良研究[D].广州:暨南大学, 2005: 4-18.
    [91]张玉涛,许学书,王宏.米曲霉诱变方法及其酶系分布对产氨基氮能力影响的研究.中国调味品,7: 26-30.
    [92]姚开,吕远平,何强,等.高活力酸性蛋白酶酱油菌种的选育[J].中国调味品, 2002, 5: 16-19.
    [93]赵超敏,车振明.工业有益微生物育种技术的研究进展[J].食品研究与开发, 2008, 29(2): 172-175.
    [94]毛宁,陈必链.激光在工业微生物育种中的应用研究[J].应用激光,1997,17(1): 27-29.
    [95]宫春波,刘鹭,谢丽源,等.离子注入微生物诱变育种研究进展[J].生物技术, 2003, 13(2): 47-49.
    [96]杜冰冰.采用离子注入法诱变酱油酿造米曲霉的研究[D].天津:天津科技大学, 2005: 2-8.
    [97]陈劲春,尉渤,周代福.原生质体技术在工业微生物育种中的应用[J].工业微生物, 1997, 27(4): 34-37.
    [98]唐洁.利用原生质融合技术进行米曲霉新菌株的选育[D].成都:西华大学, 2007: 3-4.
    [99] Chakraborty U, Sikdar S R. Production and characterization of somatic hybrids raised through protoplast fusion between edible mushroom strains Volvariella volvacea andPleurotus florida [J]. World Journal of Microbiology and Biotechnology. 2008, 24(8): 1481-1492.
    [100] Omar A, Calovic M, Shamy H, et al. Transformation and regeneration of transgenic Murcott (Nadorcott) mandarin using a protoplast-GFP transformation system[J]. Hortscience. 2008, 43(4): 1155-1157.
    [101] Suzuki S, Tada S, Fukuoka M, et al. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae[J]. Biochemical and Biophysical Research Communications, 2009, 383: 42-47.
    [102]周礼红,李国琴,王正祥,等.红曲霉原生质体的制备、再生及其遗传转化系统[J].遗传, 2005, 27(3): 423-428.
    [103]平文祥周东坡.微生物原生质体融合[M].哈尔滨:黑龙江科学技术出版社, 1990: 42-71.
    [104]王建华,赵学慧.菌龄与培养基组分对曲霉原生质体释放的影响[J].工业微生物, 2007, 37(2): 49-51.
    [105]甘志波,赵学慧.黑曲霉AMS-11原生质体的制备[J].湖北农业科学, 1994: 31-34.
    [106]张志光,李东屏,邹寿长,等.丝状真菌原生质体技术的研究(Ⅷ)-渗透压稳定剂对原生质体的影响[J].湖南师范大学自然科学学报, 1998, 21(2): 67-71.
    [107]王建华,赵学慧.曲霉种间原生质体融合改良产淀粉酶能力的研究[J].华中农业大学学报, 2007, 26(5): 642-645.
    [108]张志光,李东屏,方芳.丝状真菌原生质体技术研究(V)—原生质体融合的形态学观察[J].湖南师范大学自然科学学报, 1994, 12(3): 41-47.
    [109] Dai M H, Ziesman S, Ratcliffe T, et al. Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotrophic strains of Escherichia coli[J]. Metabolic Engineering, 2005, 7: 45-52.
    [110]王敬国,张卫国,夏林,等.黑曲霉原生质体转化效率影响因子研究[J].东北农业大学学报, 2007, 38 (4): 511-514.
    [111] Sun Y H, Xue Q Z, Ding C M. Somatic cybridization between Nicotiana tabacum and N. repanda based on a single inactivation procedure of nuclear donor parental protoplasts[J]. Plant Science, 2005, 168: 303-308.
    [112] Zelcer A, Aviv D, Galun E. Interspecific transfer of cytoplasmic male sterility by fusion between protoplast of normal Nicotiana syvestris and X-ray irradiated protoplasts of male-sterile N. tabacum[J]. Zeitschrift für anorganische und allgemeine Chemie, 1978,90: 397-407.
    [113] Kumashiro T, Asahi T, Nakakido F. Transfer of cytoplasmic factors by asymmetric fusion from a cross-incompatible species, Nicotiana repanda to N. tabacum and characterization of cytoplasmic genome[J]. Plant Science, 1989, 61: 137-144.
    [114] Bates G. W. Asymmetric hybridization between Nicotiana tabacum and N. repanda by donor recipient protoplast fusion: transfer of TMV resistance[J]. Theoretical and Applied Genetics, 1990, 80: 481-487.
    [115]王燕.利用双亲灭活原生质体融合技术进行米曲霉育种的研究[D].成都:西华大学, 2006:25-35
    [116]沈萍,范秀荣,李广武.微生物学实验[M].北京:高等教育出版社, 2000: 214-215.
    [117]牛天贵.食品微生物学实验技术[M].北京:中国农业大学出版社, 2002: 170-180.
    [118]罗立新.细胞融合技术与应用[M].北京:化学工业出版社, 2003: 75-78.
    [119]余荔华,刘祖同.米曲霉与黑曲霉原生质体种间电融合杂交育种[J].清华大学学报, 1994, 34(6): 7-12.
    [120] Dai M H, Copley S D. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723[J]. Applied Environmental and Microbiology, 2004, 70: 2391-2397.
    [121] De Bekker C, Wiebenga A, Aguilar G, et al. An enzyme cocktail for efficient protoplast formation in Aspergillus niger[J]. Journal of Microbiological Methods, 2009, 76(3): 305-306.
    [122] Zhang E, Imada C, Kamata M, et al. Improved method of protoplast fusion between marine luminescent bacterium and Escherichia coli cultivated with fatty acid[J]. Fisheries Science, 2008, 74(6): 1290-1296.
    [123] Pinheiro Dillon A J, Camassola M, Pegas Henriques J A, et al. Generation of recombinants strains to cellulases production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum[J]. Enzyme and Microbial Technology, 2008, 43(6): 403-409.
    [124] Chen Q, Li H Y, Shi Y Z, et al. Development of an effective protoplast fusion system for production of new potatoes with disease and insect resistance using Mexican wild potato species as gene pools[J]. Candian Journal of Plant Science, 2008, 88(4): 611-619.
    [125] Yano S, Honda A, Rattanakit N, et al. Cloning and expression of chitinase A gene from Streptomyces cyaneus SP-27: The enzyme participates in protoplast formation ofSchizophyllum commune [J]. Bioscience Biotechnology and Biochemistry, 2008, 72(7): 1853-1859.
    [126] Zhou X, Wei Y, Zhu H, et al. Protoplast formation, regeneration and transformation from the taxol-producing fungus Ozonium sp.[J]. African Journal of Biotechnology. 2008, 7(12): 2017-2024.
    [127] Sonntag K, Ruge-Wehling B, Wehling P. Protoplast isolation and culture for somatic hybridization of Lupinus angustifolius and L. subcarnosus[J]. Plant Cell Tissue and Organ Culture, 2009, 96(3): 297-305.
    [128] Dhar P, Kaur G. Optimization of different factors for efficient protoplast release from entomopathogenic fungus Metarhizium anisopliae[J]. Annals of Microbiology, 2009, 59(1): 183-186.
    [129] Aalbaek T, Reeslev M, Jensen B, et al. Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger [J]. Enzyme and Microbial Technology, 2006, 38: 719-723.
    [130] Hernandez M S, Rodriguez M R, Guerra N P, et al. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries[J]. Journal of Food Engineering, 2006, 73(1): 93-100.
    [131] Ushijima S, Nakadai T. Breeding by protoplast fusion of koji mold, Aspergillus sojae[J]. Agricultural and Biological Chemistry, 1987, 51(4): 1051-1057.
    [132] Ushijima S, Nakadai T, Uchida K. Further evidence on the interspecific protoplast fusion between Aspergillus oryzae and Aspergillus sojae and subsequent haploidization, with special reference to their production of some hydrolyzing enzymes[J]. Agricultural and Biological Chemistry, 1990, 54(9): 2393-2399.
    [133] Ushijima S, Nakadai T, Uchida K. Interspecific electrofusion of protoplasts between Aspergillus oryzae and Aspergillus sojae[J]. Agricultural and Biological Chemistry, 1991, 55(1): 129-136.
    [134] Ushijima S, Nakadai T, Uchida K. Breeding of new koji-molds through interspecific hybridization between Aspergillus oryzae and Aspergillus sojae by protoplast fusion[J]. Agricultural and Biological Chemistry, 1990, 54(7): 1667-1676.
    [135] Dillon A J P, Camassol M, Henriques J A P, et al. Generation of recombinants strains to cellulases production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum[J]. Enzyme and Microbial Technology, 2008, 43: 403-409.
    [136] Ferenczy L, Kevey F, Zsolt J. Fusion of fungal protoplast[J]. Nature, 1974, 248: 793-794.
    [137] Manczinger L, Ferenczy L. Somatic cell fusion of Trichoderma reesei resulting in new genetic combination[J]. Applied Microbiology and Biotechnology, 1985, 22: 72-76.
    [138] Meza V, Moreno P, Tengerdy R P, et al. Transfer of a benomyl resistance marker by heat-inactivated Trichoderma reesei protoplast[J]. Biotechnology Letters, 1995, 17: 827-832.
    [139] Prabavathy VR, Mathivanan N, Sagadevan E, et al. Intra-strain fusion enhances carboxymethyl cellulase activity in Trichoderma reesei[J]. Enzyme and Microbial Technology, 2006, 38: 719-723.
    [140] Toyama H, Shinmy A, Okada H. Protoplast formation from conidia of Trichoderma reesei by cell wall lytic enzymes of strain of Trichoderma viride[J]. Journal of Fermentation Technology, 1983, 61: 409-411.
    [141] Zhang Y X, Perry K, Vinci V A, et al. Genome shuffing leads to rapid phenotypic improvement in bacteria[J]. Nature, 2002, 415: 644-646.
    [142] Zimmermann U, Scheurich P. High frequency fusion of plant protoplasts by electric fields[J]. Planta, 1981, 151(1): 26-32.
    [143] Jeltsch E, Zimmermann U. Particles in a homogeneous electrical field: A model for the electrical breakdown of living cells in a coulter counter[J]. Journal of Electroanalytical Chemistry, 1979, 6: 349-384.
    [144] Zimmermann U, Pilwat G., Beckers F, et al. Effects of external electrical fields on cell membranes[J]. Journal of Electroanalytical Chemistry, 1976, 3: 58-83.
    [145] [146] Zimmermann U, Pilwat G., Holzapfel C, et al. Electrical hemolysis of human and bovine red blood cells[J]. Journal of Membrane Biology, 1976, 30, 135-152.
    [146] Zimmermann U, Pilwat G., Riemann F. Dielectric breakdown of cell membranes[J]. Biophyscial Journal, 1974, 14, 881-899.
    [147]萧能庚,余瑞元,袁明秀,等.生物化学实验原理和方法(第二版)[M].北京:北京大学出版社, 2005: 240-242.
    [148] SB/T 10317-1999.中华人民共和国专业标准(蛋白酶活力测定法)[S].中华人民共和国商业部, 1987, 11.
    [149] Yamamoto K. Studies on koji partⅡ: Effects of some conditions of medium on the production of mold protease[J]. Bulletin of the Chemical Society of Japan Bull, 1957, 21(5): 313-318.
    [150] J.萨姆布鲁克, D. W.拉塞尔.分子克隆手册(第三版)[M].黄培堂等译.北京:科学出版社, 2002: 434-438.
    [151]胡能书,万贤国.同工酶技术及应用[M].长沙:湖南科学技术出版社,1985: 96-104.
    [152] Laura E V, Joseph O F. Comparison of methods for isolation of Mycobacterium avium complex DNA for use in PCR and RAPD fingerprinting[J]. Journal of Microbiological Methods,1995, 21(2): 151-161.
    [153]潘力,王斌,郭勇.曲霉菌的RAPD分析及其在酿造工业中的应用[J].微生物学报, 2007, 47(3): 533-536.
    [154]黄静.模拟微重力下植物细胞生理及细胞电融合研究[D].北京:首都师范大学, 2007: 50-58.
    [155]王明艳.细胞电融合研究[D].上海:复旦大学, 2000: 7-41.
    [156] Murakami H. Classification of the koji mold[J]. Journal of General and Applied Microbiology, 1971,17: 281-309.
    [157]刘国勇,聂品.柱状黄杆菌强毒株和弱毒株胞外蛋白中差异蛋白的初步鉴定[J].中国水产科学, 2007, 14 (5): 807-812.
    [158]张爱玲,王兴龙,王英超,等. 2型猪链球菌强毒株与非致病株胞外蛋白的比较蛋白质组初步研究[J].中国预防兽医学报, 2009, 31(11): 851-855.
    [159] Moreau J M, Marite H. Evidence for a heterothallic mating system in Tapesia acuformis using benomyl sensitivity and esterase isoenzyme profiles[J]. Mycological Research, 1996,100(10): 1227-1236.
    [160] Rojas J A, Cruz C, Mika′n J F, et al. Isoenzyme characterization of proteases and amylases and partial purification of proteases from filamentous fungi causing biodeterioration of industrial paper[J]. International Biodeterioration and Biodegradation, 2009, 63: 169-175.
    [161] Duarte F L, Pais C, Spencer-Martins I, et al. Isoenzyme patterns: a valuable molecular tool for the differentiation of zygosaccharomyces species and detection of misidentified isolates[J]. Systematic and Applied Microbiology, 2004, 27: 436-442.
    [162] Rocha M O, Gomes M A, Costa A O, et al. Molecular characterization of Brazilian human giardia duodenalis isolates using isoenzyme and random amplified polymorphic DNA analysis[J]. Diagnostic Microbiology and Infectious Disease, 2003, 46: 273-278.
    [163]陈检锋,梁颖.甘蓝型黄籽油菜种子酸性磷酸酯酶同工酶分析[J].中国农学通报, 2009, 25(17): 119-123.
    [164]王波,甘炳成,彭卫红,等.双孢蘑菇杂交菌株的酯酶同工酶分析[J].吉林农业大学学报, 2008, 30(2): 142-145.
    [165]付春华,郭文武,邓秀新.用流式细胞仪和RAPD快速鉴定柑橘体细胞杂种[J].华中科技大学学报(自然科学版), 2005, 33(10): 102-105.
    [166]周其洋.酱油生产菌菌种改良及其工艺的研究[D].无锡:江南大学, 2009: 20-28.
    [167] Zhao M, Dai C C, Guan X Y, et al. Genome shuffling amplifies the carbon source spectrum and improves arachidonic acid production in Diasporangium sp.[J]. Enzyme and Microbial Technology, 2009, 45: 419-425.
    [168] Ishitanic C, Sakagnchi K I. Hereditary variation and recombination in koji-molds[J]. Journal of General and Applied Microbiology, 1956, 2(4): 345-349.
    [169] Kirimura K, Imura M, Lee SP. Intergeneric hybridization between Aspergillus niger and Tvichoderma viride by protoplast fusion[J]. Agricultural and Biological Chemistry, 1989, 53(6): 1589-1596.
    [170] Ogawa K, Ohara H, Toyawa N. Interspecific hybridization of Aspergillus awamori var. kawachi and Aspergillus oryzae by protoplast fusion[J]. Agricultural and Biological Chemistry, 1988, 52(8): 1985-1991.
    [171] Sekine H, Nasuno S, Iguchi N. Isolation of highly proteolytic mutants from Aspergillus sojae[J]. Agricultural and Biological Chemistry, 1969, 33(10): 1477-1482.
    [172]郭传敏.杨树原生质体分离及电融合技术体系的研究[D].南京:南京林业大学, 2007: 38-40.
    [173] Zhang Y X, Kim P, Vinci V A, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria[J]. Nature, 2002, 415: 644-646.
    [174] Theodore M L, Stevenson T W, Johnson G. Comparison of Serpula lacrymans isolates using RAPD PCR[J]. Mycological Research, 1995, 99 (4): 447-450.
    [175] Kwon G H, Lee H A, Park J Y. Development of a RAPD-PCR method for identification of Bacillus species isolated from Cheonggukjang[J]. International Journal of Food Microbiology, 2009, 129: 282-287.
    [176] Andrade M J, Rodr?′guez M, Casado E M. Differentiation of yeasts growing on dry-cured Iberian ham by mitochondrial DNA restriction analysis, RAPD-PCR and their volatile compounds production[J]. Food Microbiology, 2009, 26: 578-586.
    [177] Zhang X X, Jia H Y, Wu B. Genetic analysis of protoplast fusant Xhhh constructed for pharmaceutical wastewater treatment[J]. Bioresource Technology, 2009,100:1910-1914.
    [178] Verma V K, Behera T K, Munshi A D, et al. Genetic diversity of ash gourd [Benincasa hispida (Thunb.) Cogn.] inbred lines based on RAPD and ISSR markers and theirhybrid performance[J]. Scientia Horticulturae, 2007, 13: 231-237.
    [179] Elisia?rio P J, Justo E M, Leita?o J M. Identification of mandarin hybrids by isozyme and RAPD analysis[J]. Scientia Horticulturae, 1999, 81: 287-299.
    [180] Zhao D Y, Wu B, Zhang Y. Identification of protoplast fusion strain Fhhh by randomly amplified polymorphic DNA[J]. World Journal of Microbiology and Biotechnology, 2009, 25: 1181-1188.
    [181] Naderi R, Alaey M, Khalighi A, et al. Inter- and intra-specific genetic diversity among cyclamen accessions investigated by RAPD markers[J]. Scientia Horticulturae, 2009, 122: 658-661.
    [182] Li F G, Gan S M, Weng Q J. RAPD and morphological diversity among four populations of the tropical tree species Paramichelia baillonii (Pierre) Hu in China[J]. Forest Ecology and Management, 2008, 255: 1793-1801.
    [183] Chattopadhyay P. RAPD markers system as a useful tool for rapid identification of the origin of lizard contaminants in food[J]. Food and Chemical Toxicology, 2003, 41: 1719-1725.
    [184]冯永君,张长铠,陈雅丽,等.火菇素的溶液二级结构与变性动力学[J].中国生物化学与分子生物学报, 2000, 16(4): 489-493.
    [185] Kumar A G , Nagesh N, Prabhakar T G, et al. Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries[J]. Bioresource Technology, 2008, 99: 2364-2372.
    [186] Kumara S, Sharmaa N S, Saharan M R. Extracellular acid protease from Rhizopus oryzae: purification and characterization[J]. Process Biochemistry, 2005, 40:1701-1705.
    [187]尹寿伟,唐传核,温其标,杨晓泉.微射流处理对芸豆分离蛋白构象和功能特性的影响[J].华南理工大学学报(自然科学版), 2009, l37(10): 112-117.
    [188] Ganesh K A, Swarnalathab S, Kamatchia P. Immobilization of high catalytic acid protease on functionalized mesoporous activated carbon particles[J]. Biochemical Engineering Journal, 2009, 43: 185-190.
    [189] Chellappan S, Jasmin C, Soorej M. Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation[J]. Process Biochemistry, 2006, 41: 956-961.
    [190] Oda K, Murao S. Purification and some enzymatic properties of acid protease A and B of Scylalidium lignicolum ATCC24568[J]. Agricultural and Biological Chemistry, 1974, 38 (12): 2435-2444.
    [191]宋仰第. Arrhenius公式与活化能[J].山西农业大学学报, 1988, 8(2): 230-235.
    [192]周遗品,赵永金,张延金. Arrhenius公式与活化能[J].石河子农学院学报, 1995, 4: 75-79.
    [193]沈维珉.关于Arrhenius活化能商榷[J].淮北煤师院学报, 1985, 1: 69-73.
    [194]黄小藏.阿伦尼乌斯活化能的统计分析[J].首都师范大学学报(自然科学版),1995, 16(1): 62-66.
    [195]黄宝胜,刘爱翠,李国英.阿伦尼斯模型下可靠性增长数据的统计分析[J].工程数学学报, 2005, 22(5): 808-814.
    [196]潘进权.毛霉胞外蛋白酶组分的纯化、鉴定及性质研究[D].广州:华南理工大学, 2008: 52-53.
    [197]张青,许学书,谢静莉,等.米曲霉蛋白酶动力学特性的研究[J].食品科学, 2007, 28(6): 213-217
    [198]雍克岚,吕敬慈,吕蔚.应用三维荧光光谱和可变角同步荧光扫描分析天然荧光氨基酸的含量[J].化学世界, 2000, 11: 601-905.
    [199]刘志刚,朱健琦,黄海珍,徐宏.真核表达与原核表达的德国小蠊变应原Blag 2蛋白结构的光谱学研究[J].光谱学与光谱分析, 2006, 26(5): 879-883.
    [200]马林,魏志强,黄爱民.丙三醇对水溶液中血红蛋白构象的影响—荧光猝灭和动态光散射研究[J].化学学报, 2009, 67(14): 1566-1572.
    [201] Kapoor D, Singh B, Karthikeyan S, et al. A functional comparison of the TET aminopeptidases of P.furiosus and B.subtilis with a protein-engineered variant recombining the former’s structure with the latter’s active site[J]. Enzyme and Microbial Technology, 2010, 46: 1-8.
    [202]沈星灿,梁宏,何锡文,等.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学, 2004, 32(3): 388-394.
    [203]霍波,翟勇,崔福斋.蚕丝中蛋白构象含量与其力学性质间的关系[J].高分子学报, 2002, 3: 261-264.
    [204]翁俊,谭翠燕,于勇,等.低pH诱导光合放氧33 kD蛋白构象显著变化[J].科学通报, 2004, 49(8): 773-777.
    [205] Zirwer D, Gast K, Welfle H, et al. Secondary structure of globulins from plant seeds: a re-evaluation from circular dichroism measurements[J]. International Journal of Biological Macromolecules, 1985, 7(2): 105-108.
    [206] Van der M, Norde W, stuart MC. Effects of succinylation on the structure and thermostability of lysozyme[J]. Journal of Agricultural and Food Chemistry, 2005, 53(14): 5702-5707.
    [207] Dufour E, Ho G H, HaertléT. High-pressure effects ofβ-lactoglobulin interactions with ligands studied by fluores-cence[J]. Biochimica et Biophysica Acta, 1994, 206(2): 166-172.
    [208]黄汉昌,姜招峰,朱宏吉.紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报, 2007, 7: 501-506.
    [209]冯永君,张长皑,陈雅丽,等.火菇素的圆二色性与溶液二级结构[J].化学学报, 2000, 58(2): 816-820.
    [210]冯永君,李德舜,孙丽.火菇素酪氨酸微区的研究[J].化学学报, 2000, 58(8): 1037-1042.
    [211] Chang WJ, Horiuchi S, Takahashi K. The structure and function of acid proteasesⅥeffects of acid protease-specific inhibitors on the acid proteases from Aspergillus niger var. macrosporus[J]. Journal of Biochemistry, 1976, 80: 975-981.
    [212] Takahashi K, Chang W J. The structure and function of acid proteases V. comparative studies on the specific inhibition of acid proteases by diazoacetyl-DL-norleucine methylester, 1, 2-epoxy-3 (p-nitrophenoxy) propane and pepstatin[J]. Journal of Biochemistry, 1976, 8: 497-506.
    [213]张楠,夏尚远,刘训理.统计优化技术在微生物发酵中的应用[J].山东农业大学学报(自然科学版), 2009, 40 (3): 465-468.
    [214]刘建忠,熊亚红,翁丽萍,等.生物过程的优化[J].中山大学学报(自然科学版), 2002, 41: 132-137.
    [215] Stower A , Mayer R P . Efficient screening of process variables [J]. Industrial and Engineering Chemistry, 1966, 58 (2): 36-40.
    [216]刘小杰,何国庆,陈启和.康氏木霉ZJ 5纤维素酶发酵培养基的优化[J].浙江大学学报(自然科学版), 2003, 37(5) : 623-628.
    [217] Chang M Y, Tsai G J, Houng J Y. Optimization of themedium composition for submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method[J]. Enzyme and Microbial Technology, 2006, 38: 407-414.
    [218]杨永涛,涂国全.响应面法优化弗氏链霉菌S-221变种发酵培养基[J].生物加工过程, 2005, 3(2) : 36-40.
    [219]刘子宇,李平兰,刘慧,等.响应面法优化短双歧杆菌Bifidobacterium breve A 04培养基[J].食品科学, 2006, 27(3): 114-119.
    [220] Dennis K J, Norman R D. Projection properties of Placket and Burman design[J], Technometrics, 1992, 34(4): 423-425.
    [221] Dejaegher B, Dumarey M, Capron X, et al. Comparison of Plackett-Burman and super saturated design[J]. Analytica Chimica Acta, 2007, 595: 59-71.
    [222] Kishor C U, KamLesh C P. Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillussp KCP01 using date juice[J]. Bioresource Technology, 2007, 98: 98-103.
    [223] Ferreira S L C, Bruns R E, Ferreira H S, et al. Box-Behnken design: An alternative for the optimization of analytical methods[J]. Analytica Chimeca Acta, 2007, 597: 179-186.
    [224] Liu C Q, Chen Q H, Tang B, et al. Response surface methodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation[J]. Applied Microbiology, 2007, 45: 206-212.
    [225] Zhang G, Gao N F. Application of response surface methodology in medium optimization for Pyruvic acid production of TorμLopsis glabrata TP19 in batch fermentation[J]. Journal of Zhenjiang University Science B, 2007, 8(2): 98-104.
    [226] Sayyad S A, Panda B P, Saleem J, Mohd A. Optimization of nutrient parameters for lovastatin production by Monascuspurpureus MTCC 369 under submerged fermentation using response surface methodology[J]. Applied Microbiology and Biotechnology, 2007, 73: 1054-1058.
    [227] Wang Z W, Liu X L. Medium optimization for antifungal active substances production from a newly isolated Paenibacillussp using response surface methodology[J]. Bioresource Technology, 2008, 99: 8245-8251.
    [228]李乃强,潘中明,潘军华,等.碳源、氮源和pH对酸性蛋白酶表达的调控[J].粮食与饲料工业, 2000, 10: 34-36.
    [229]潘艳,刘海龙,田野,等.统计学分析方法应用于富硒米曲霉发酵培养基的优化[J].中国调味品, 2009, 34(4): 50-57.
    [230] Ramkrishna S, Swaminmhan T. Response surface modeling and optimization to elucidate and analyze the effects of inoculums age and size on surfactin production[J]. Biochemical Engineering Journal, 2004, 21: 141-148
    [231] Kalil S J, Maugeri F, Rodrigues M I. Response surface analysis and simulation as a tool for bioprocess design and optimization[J]. Process Biochemistry, 2000, 35: 539-550.
    [232] Plackett R L, Burman J P. The design of optimum multifactorial experiments[J]. Biometrika, 1946, 33: 305-325.
    [233] Vishwanatha K S, Rao A G A, Singh S A. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters[J]. Journal of Industrial Microbiology and Biotechnology, 2010, 37:129-138.
    [234] Wardhani D H, Vázquez J A, Pandiella S S. Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae[J]. Food Chemistry, 2010,118: 731-739.
    [235] Hu J N, Zhu X M, Lee K T, et al. Optimization of ginsenosides hydrolyzingβ-glucosidase production from Aspergillus niger using response surface methodology[J]. Biological and Pharmaceutical Bulletin, 2008, 31(10): 1870-1874.
    [236] Liu C Q, Ruan H, Shen H F, et al. Optimization of the fermentation medium for Alpha- galactosidase production from Aspergillus foetiduszugl using response surface methodology[J]. Food Microbilogy and Safety, 2007, 72(4): 120-125.
    [237] Isar J, Agarwal L, Saran S, et al. A statistical approach to study the interactive effects of process parameters on succinic acid production from Bacteroidesfragilis[J]. Anaerobe, 2007, 13: 50-56.
    [238] Dirk W B. Experimental design for fermentation media development: statistical design or global random search[J]. Journal of Bioscience and Bioengineering, 2000, 90(5): 473-483
    [239] Cott M K, Vining G G, Douglas C M, et al. Modifying a central composite design to model the process mean and variance when there are hard to change factors[J]. Applied Statistics, 2006, 55: 615-630.
    [240]徐琳,王晓琴.黑曲霉发酵生产酸性蛋白酶的动力学研究[J].河西学院学报[J]. 2006, 22(2): 45-46.
    [241] Couto S R, Sanroma′n M A. Application of solid-state fermentation to food industry-A review[J]. Journal of Food Engineering, 2006, 76: 291-302.
    [242] Bandeira K F, Tininis A G., Bolzani V D S, et al. Optimisation of conditions for the extraction of casearins from Caesaria sylvestris using response surface methodology[J]. Phytochemical Analysis, 2006, 17: 168-175.
    [243] Juntachote T, Berghofer E, Bauer F, et al. The application of response surface methodology to the production of phenolic extracts of lemon grass, galangal, holy basil and rosemary[J]. International Journal of Food Science and Technology, 2006, 41: 121-133.
    [244] Liu F F, Ang C Y W, Springer D. Optimization of extraction conditions for activecomponents in Hypericum perforatum using response surface methodology[J]. Journal of Agricultural and Food Chemistry, 2000, 48: 3364-3371.
    [245] Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology[J]. Food Chemistry, 2005, 93: 47-56.
    [246] Wardhani D H, Vázquez J A, Pandiella S S. Mathematical modeling of the development of antioxidant activity in soybeans fermented with Aspergillus oryzae and Aspergillus awamori in the solid state[J]. Journal of Agricultural and Food Chemistry, 2009, 57: 540-544.
    [247]吴建中.大豆蛋白的酶法水解及产物抗氧化活性的研究[D].广州:华南理工大学, 2003: 80-95.
    [248]崔春.海产低值鱼深度酶解工艺与机理研究[D].广州:华南理工大学, 2005: 29-38.
    [249] Shioya O, Yoshida H, Nakajima T. Estimation of molecular of peptides by determination of height equivalent to a theoretical plate in size exclusion chromatography[J]. Journal of Chromatorgraphy, 1982, 240: 341-348
    [250]曾晓房.鸡骨架酶解及其产物制备鸡肉香精研究[D].广州:华南理工大学, 2007: 30-70.
    [251]周雪松.鸡肉蛋白酶解及其产物抗氧化活性研究[D].广州:华南理工大学, 2006: 45-70.
    [252]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].广州:华南理工大学, 2007: 42-55.
    [253] Park S K, Kim C T, Lee J W, et al. Analysis of ethyl carbamate in Korean soy sauce using high-performance liquid chromatography with Xuorescence detection or tandem mass spectrometry and gas chromatography with mass spectrometry[J]. Food Control, 2007, 18: 975-982.
    [254] Chou C C, Ling M Y. Biochemical changes in soy sauce prepared with extruded and traditional raw materials[J]. Food Research International, 1998, 31(6): 487-492.
    [255] Lioe H N, Wada K, Aoki T, et al. Chemical and sensory characteristics of low molecular weight fractions obtained from three types of Japanese soy sauce (shoyu)-Koikuchi, tamari and shiro shoyu[J]. Food Chemistry, 2007, 100: 1669-1677.
    [256] Kim J H, Ahn H J, Yook H S, et al. Color, flavor, and sensory characteristics of gamma irradiated salted and fermented anchovy sauce[J]. Radiation Physics and Chemistry, 2004, 69: 179-187.
    [257] GB/T 12456-90.食品中总酸的测定方法[S].中华人民共和国国家标准, 1990.
    [258]宋钢.调味品生产与应用[M].北京:中国轻工业出版社, 2003: 15-20.
    [259]饶国华.利用低次烟叶蛋白制备生物活性肽及烟用香精的研究[D].广州:华南理工大学, 2006: 38-41.
    [260]杨敏. SPME-GC/MS联用技术在部分蔬菜挥发性成分分析中的应用研究[D].兰州:甘肃农业大学, 2008: 5-15.
    [261]刘凤殊.原生质体融合曲霉菌株β-葡萄糖苷酶的酶学性质及对葡萄酒增香调控作用的研究[D].沈阳:沈阳农业大学, 2008: 63-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700