用户名: 密码: 验证码:
交联弹性体的生物脱硫技术及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废旧橡胶是重要的可再生资源,生物脱硫是一种新型的废橡胶再生的方法。本论文涉及使用四种脱硫微生物:氧化亚铁硫杆菌,硫杆菌,鞘氨醇单胞菌和脂环酸芽孢杆菌,对硫黄硫化的天然橡胶胶粉和丁苯橡胶胶粉进行生物脱硫。通过全面地研究温度、酸碱度、搅拌速度和培养基成分等因素对脱硫微生物生长的影响,确定了四种脱硫微生物最佳的培养条件。对脱硫天然橡胶和丁苯橡胶进行了表面化学基团分析、元素含量和结合状态分析,初步地探讨了脱硫微生物对胶粉进行生物脱硫的可能途径以及各种脱硫微生物的脱硫机理的异同。表征并且比较了脱硫胶粉与生胶共混的硫化胶的交联密度,力学性能,应力应变性能,动态力学性能,拉伸断面及撕裂断面形貌和断面上胶粉粒子的形态等,证明了生物脱硫方法改善了脱硫胶粉在基体橡胶中的分散性,增强了脱硫胶粉与基体橡胶的界面结合性,提高了脱硫胶粉填充的硫化胶的力学性能。
     1.筛选了脱硫活性较高的氧化亚铁硫杆菌新菌株YT-1,研究其在含有不同浓度的亚铁离子的改性9K培养基中的生长速度和生物量,确定了脱硫时适宜的培养基成分。通过对脱硫天然橡胶和丁苯橡胶的红外光谱(FTIR)和X射线光电子能谱(XPS)分析,以及检测胶粉脱硫时培养液中的硫酸根浓度的变化,证明了氧化亚铁硫杆菌对硫黄硫化的天然橡胶和丁苯橡胶的脱硫机理符合硫杆菌生物脱硫时常见的“4S途径”。脱硫天然胶粉的交联密度下降,交联网络结构受到破坏。填充脱硫天然胶粉的硫化胶的力学性能和动态力学性能提高,说明脱硫胶粉和基体橡胶之间的界面结合改善。用乙醇对天然胶粉灭菌明显提高了氧化亚铁硫杆菌对天然胶粉的脱硫效果。兼性异养的氧化亚铁硫杆菌新菌株YT-1的脱硫效果优于严格自养的氧化亚铁硫杆菌菌株T-1。
     2.筛选了多株硫杆菌菌株HB122、HB062和X4等,并测试了天然胶粉和丁苯胶粉的加入量对硫杆菌的生物量的影响,确定了脱硫时适宜加入的胶粉量。FTIR和XPS分析以及Schiff试剂染色实验证实了硫杆菌HB122不仅断裂了硫化橡胶中的的硫磺交联键,还能够氧化碳碳双键,生成醛基。硫杆菌HB122对天然胶粉的脱硫效果优于其他2个硫杆菌菌株。脱硫天然胶粉填充的硫化胶的拉伸强度和断裂伸长率都有明显的提高。填充脱硫15天的天然胶粉的硫化胶的力学性能比填充脱硫30天的天然胶粉的硫化胶高。填充脱硫丁苯胶粉的硫化胶的力学性能提高较小,说明硫杆菌对丁苯胶粉的脱硫效果不显著。
     3.筛选了一株鞘氨醇单胞菌PL1,考察了天然胶粉和丁苯胶粉的加入量对其生物量的影响,确定了脱硫时胶粉的适宜加入量。FTIR和XPS的结果证明了脱硫天然橡胶表面出现了S=O和C=O基团;脱硫丁苯橡胶表面的C=C含量下降。这说明鞘氨醇单胞菌既能氧化橡胶主链的C=C双键,生成羧基;又能氧化断裂硫磺交联键,产生亚砜、砜以及磺酸基团。填充脱硫丁苯胶粉的天然硫化胶的拉伸强度和断裂伸长率都提高。同样地,填充脱硫丁苯胶粉的丁苯硫化胶的拉伸强度和断裂伸长率也有明显的提高。填充脱硫丁苯胶粉的硫化胶的动态力学性能和扫描电镜分析,证实了脱硫丁苯胶粉与基体橡胶的界面结合较好。由于界面结合的增强,填充脱硫丁苯胶粉的硫化胶的耐磨性也有明显的提高。
     4.筛选出了一株嗜热的脂环酸芽孢杆菌菌株YS-9。脱硫橡胶的FTIR表明脂环酸芽孢杆菌能氧化硫磺交联键,而不会破坏天然橡胶和丁苯橡胶的C-C键和C=C双键。XPS的结果证明了脱硫橡胶的碳元素没有发生氧化反应,交联键被氧化导致了硫元素含量降低,氧元素含量升高。填充脱硫天然胶粉的丁苯硫化胶的交联密度降低,拉伸强度和断裂伸长率明增加。同样的,填充脱硫丁苯胶粉的丁苯硫化胶的交联密度下降,拉伸强度和断裂伸长率提高,耐磨性能提高。动态力学性能和SEM分析表明脱硫天然胶粉和丁苯胶粉与基体丁苯橡胶的相容性较好,两者之间形成了较强的界面作用。
Waste rubber is an important renewable resource, and microbial desulfurization is a novel reclaiming method of waste rubber. This paper involved microbial desulfurization for ground rubber (natural rubber and styrene butadiene rubber) with four bacteria with sulfur desulfurization ability: Thiobacillus ferrooxidans, Thiobacillus, Sphingonomas, and Alicyclobacillus.
     The optimal culture conditions for each bacterium were fully researched, such as temperature, pH value, stirring speed, culture medium and nutrition compositions. The possible microbial desulfurization pathways for sulfur vulcanized natural rubber and styrene butadiene rubber were discussed. The similarities and differences between desulfurization mechanism of various kinds of bacteria were compared through surface analysis of elements structure and contents. When desulfurized ground rubber was incorporated with virgin rubber, crosslink densities, mechanical properties, stress-strain properties, dynamic mechanical properties, the morphologies of tensile and tear fracture surfaces of filled vulcanizates and the situation of ground rubber particles on the fracture surfaces were studied.
     All these results proved that microbial desulfurization technology improved the dispersion of desulfurized ground rubber in rubber matrix, and also strengthed interphase bonding forces between dispersion ground rubber phases and rubber matrix, and therefore increased the mechanical properties of filled rubber vulcanizates.
     The major work of this paper is as follows:
     1. Two Thiobacillus ferrooxidans strains with high desulfurization ability were selected:Thiobacillus ferrooxidans YT-1 and Thiobacillus ferrooxidans T-1. The biomasses in different culture mediums were studied, and then several modified 9K mediums were determined as desulfurization culture medium. FTIR and XPS measurements were tested for desulfurized NR and SBR vulcanizates, and sulfate concentration in desulfurization medium was monitored. All results supported that desulfurization mechanism of Thiobacillus ferrooxidans for NR and SBR matched the 4S pathway. The crosslink density of desulfurized NR ground rubber decreased after desulfurization. NR and SBR vulcanizates filled with desulfurized NR ground rubber showed good mechanical properties and dynamic mechanical properties, and the interphase bonding forces were improved. Disinfection of NR ground rubber by ethanol was proved to be very important for microbial desulfurization. Compared with strictly autotrophic Thiobacillus ferrooxidans T-1, facultative heterotrophic Thiobacillus ferrooxidans YT-1 was more effective for microbial desulfurization of NR ground rubber.
     2. Several Thiobacillus strains were screened. The influences of ground rubber to the growth of Thiobacillus sp. HB122 were characterized in order to obtain the proper loading of ground rubber. FTIR, XPS analysis and Schiff agent staining experiments proved that Thiobacillus sp. HB122 not only disrupted the sulfur crosslink bonds of NR and SBR vulcanizates, but also oxidized the carbon-carbon double bonds of polymers to aldehyde groups. The desulfurization effect of Thiobacillus sp. HB122 for NR ground rubber was better than that of Thiobacillus sp. HB062 and Thiobacillus sp. X4. Tensile strength and enlongation at break of vulcanizates filled with desulfurized NR ground rubber improved obviously. After desulfurized for 15 days, the mechanical properties of vulcanizates filled with desulfurized NR ground rubber were better than that filled with desulfurized ground rubber for 30 days. Desulfurized SBR ground rubber rarely increased the mechanical properties of filled vulcanizates, which indicated that the desulfurization effect of Thiobacillus sp. HB122 was not very good for SBR vulcanizates.
     3. A new Sphingomonas species strain was cultured. And the growth of it with different amounts of NR ground rubber and SBR ground rubber was investigated, and then the contents of ground rubber was obtained when desulfurization was processing. The evidences of S=O and C=O on the surface of desulfurized vulcanizates were shown in FTIR spectra. XPS spectra found that C=C double bonds decreased for desulfurized vulcanizates. Therefore, Sphingomonas oxidized the carbon-carbon double bonds of rubber main chains to carboxyl group. And it also oxidized the sulfur bonds and sulfur-carbon bonds to sulfoxide, sulfone and sulfonic acid groups. Tensile strength and elongation at break of NR vulcanizates filled with desulfurized SBR ground rubber were improved. So were SBR vulcanizates filled with desulfurized SBR ground rubber. Dynamic mechanical properties and SEM morphologies of vulcanizates filled with desulfurized SBR ground rubber proved the better interphase bonding between ground rubber and rubber matrix. Because of the stronger interphase bonding, the abrasion resistances of filled vulcanizates were also improved.
     4. A novel thermophilic Alicyclobacillus species bacterium was obtained. FTIR spectra reflected that Alicyclobacillus did not change carbon-carbon bonds or carbon-carbon double bonds of NR and SBR vulcanizates. XPS analysis of desulfurized rubber also found that carbon element was not oxidized, but sulfur element content decreased and oxygen element content increased due to the oxidantion of sulfur crosslink bonds. Crosslink density of filled vulcanizes decreased if compared with untreated ground rubber. Tensile strength and elongation at break of SBR vulcanizates filled with desulfurized NR ground rubber increased. So were SBR vulcanizates filled with desulfurized SBR ground rubber. The abrasion resistances of SBR vulcanizates filled with desulfurized SBR ground rubber also improved. Dynamic mechanical properties and SEM morphologies proved that vulcanizates filled with desulfurized NR and SBR ground rubber exhibited a better interphase bonding.
引文
[1]韩秀山,丛慰然,张卫华.我国废旧橡胶利用[J].化工新型材料,2001,29(10):17-19
    [2]董城春.废橡胶资源综合利用[M].北京:化学工业出版社,2003.
    [3]Fang Y, Zhan M S, Wang Y. The status of recycling of waste rubber[J]. Mater. Des., 2001,22(2):123-128
    [4]Blow C M. Reclaiming rubber and other polymers[J]. Polym.,1974,15(3):191-191
    [5]Awang M, Ismail H. Preparation and characterization of polypropylene/waste tyre dust blends with addition of DCP and HVA-2 (PP/WTDP-HVA2) [J]. Polym. Test.,2008,27(3): 321-329
    [6]Beckman J A, Crane G, Kay E L. et al. Scrap tire disposal[J]. Rubber Chem. Technol., 1974.47:597-624
    [7]杨清芝.现代橡胶工艺学[M].北京:中国石化出版社,1997.76-78
    [8]Tripathy A R, Morin J E, Williams D E. et al. A Novel Approach to Improving the Mechanical Properties in Recycled Vulcanized Natural Rubber and Its Mechanism[J]. Macromolecules,2002,35(12):4616-4627
    [9]Zhang X X, Zhu X Q, Liang M. et al. Improvement of the properties of ground tire rubber (GTR)-filled nitrile rubber vulcanizates through plasma surface modification of GTR powder[J]. J. Appl. Polym. Sci.,2009,114(2):1118-1125
    [10]赵树高,张萍,常永花,等.非极性硫化橡胶微波脱硫的研究[J],橡胶工业,1999,46(5):292-297
    [11]Sombatsompop N, Kumnuantip C. Comparison of physical and mechanical properties of NR/carbon black/reclaimed rubber blends vulcanized by conventional thermal and microwave irradiation methods[J]. J. Appl. Polym. Sci.,2006,100(6):5039-5048
    [12]Pelofsky A H. Rubber Reclamation using Ultrasonic Energy[P]. US Patent, US 3725314.1973-04-03
    [13]Yushanov S P, Isayev A I, Levin V Y. Percolation simulation of the network degradation during ultrasonic devulcanization[J]. J. Polym. Sci., Part B:Polym. Phys.,1996, 34(14):2409-2418
    [14]Diao B, Isayev A I, Levin V Y, Kim S H. et al. Surface behavior of blends of SBR with ultrasonically devulcanized silicone rubber[J]. J. Appl. Polym. Sci.,1998,69(13): 2691-2696
    [15]Tapale M, Isayev A I. Continuous ultrasonic devulcanization of unfilled NR vulcanizates[J]. J. Appl. Polym. Sci.,1998,70(10):2007-2019
    [16]Feng W L, Isayev A I. Recycling of tire-curing bladder by ultrasonic devulcanization[J]. Polym. Eng. Sci.,2006,46(1):8-18
    [17]Sun X M, Isayev A I. Ultrasound devulcanization:comparison of synthetic isoprene and natural rubbers[J]. J. Mater. Sci,2007,42(17):7520-7529
    [18]赵文瑾,张雪,陈东升.电子束辐照再生丁基橡胶[J].橡胶技术与装备,2000,26(1):7-12
    [19]由莉.废旧丁基橡胶的辐射再生[J].天津橡胶,2000,(2):33-34
    [20]王福坤.废旧内胎的再生利用<丁基橡胶再生胶的推广应用>[J].世界橡胶工业,1999,26(4):25-32
    [21]Shahidi N, Arastoopour H, Ivanov G. Pulverization of rubber using modified solid state shear extrusion process (SSSE)[J]. J. Appl. Polym. Sci.,2006,102(1):119-127
    [22]Maridass B. Gupta B R. Process optimization of devulcanization of waste rubber powder from syringe stoppers by twin screw extruder using response surface methodology[J]. Polym. Compos.,2008,29(12):1350-1357
    [23]Mouri M, Sato N, Okamoto H. et al. Continuous reclamation of rubber by shear flow reaction control technology part 1, A new devulcanisation process[J]. Polym. Recycl.,1999, 4(4):247-253
    [24]Mouri M, Sato N, Okamoto H. et al., Continuous reclamation of rubber by shear reaction control technology part 2, De-vulcanisation conditions and mechanical properties of re-vulcanised rubber for EPDM[J]. Polym. Recycl.1999,4(4):255-261
    [25]Fukumori K, Matsushita M, Mouri M. et al. Dynamic Devulcanization and Dynamic Vulcanization for Recycling of Crosslinked Rubber[J]. Kautsch. Gummi Kunstst.,2006, 59(7-8):405-411
    [26]Bateman'L, Cunneen J I. Oxidation of organic sulphides.3. A survey of the autoxidizability of monosulphides[J]. J. Chem. Soc.,1955:1596-1603
    [27]Adhikari B, De D, Maiti S. Reclamation and recycling of waste rubber[J]. Prog. Polym. Sci.,2000,25(7):909-948
    [28]Rajan, V V, Dierkes W K, Joseph R. et al. Science and technology of rubber reclamation with special attention to NR-based waste latex products[J]. Prog. Polym. Sci., 2006,31(9):811-834
    [29]麦尔斯RD,尼克森P,莫伊尔M E. et al.橡胶脱硫化方法[P].中国专利,CN96197899.6.2002-07-02
    [30]Yamashita S, Kawabata N, Sagan S. et al. Reclamation of vulcanized rubbers by chemical degradation.5. Degradation of vulcanized synthetic isoprene rubber by phenylhydrazine-ferrous chloride system[J]. J. Appl. Polym. Sci.,1977,21(8):2201-2209
    [31]Kawabata N, Okuyama B I, Yamashita S. Reclamation of vulcanized rubber by chemical degradation.15. Degradation of vulcanized synthetic isoprene by the phenylhydrazine-iron(II) chloride system[J]. J. Appl. Polym. Sci.,1981,26(4):1417-1419
    [32]Rajan V V, Dierkes W K, Noordermeer J W A. et al. Comparative investigation on the reclamation of NR based latex products with amines and disulfides[J]. Rubber Chem. Technol.,2005,78(5):855-867
    [33]Rajan V V, Dierkes W K, Joseph R. et al. Effect of diphenyldisulfides with different substituents on the reclamation of NR based latex products[J]. J. Appl. Polym. Sci.,2007, 104(6):3562-3580
    [34]Cavalieri F, Padella F, Cataldo F. Mechanochemical surface activation of ground tire rubber by solid-state devulcanization and grafting[J]. J. Appl. Polym. Sci.,2003,90(6): 1631-1638
    [35]焦志民,De-Link在EPDM中的应用[J].橡胶工业,2002(3):1 89
    [36]Sekhar B C, Subramaniam A. Improvements in and relating to the reclaiming of naturel and synthetic rubbers[P]. Europe Patent, EP0748837 Al,1996-12-18
    [37]De D, De D, Singharoy G M. Reclaiming of ground rubber tire by a novel reclaiming agent. Ⅰ. virgin natural rubber/reclaimed GRT vulcanizates[J]. Polym. Eng. Sci.,2007,47(7): 1091-1100
    [38]De D, Maiti S, Adhikari B. Reclaiming of rubber by a renewable resource material (RRM). Ⅱ. Comparative evaluation of reclaiming process of NR vulcanizate by RRM and diallyl disulfide[J]. J. Appl. Polym. Sci.,1999,73(14):2951-2958
    [39]De D, Maiti S, Adhikari B. Reclaiming of rubber by a renewable resource material (RRM). Ⅲ. evaluation of properties of NR reclaim[J]. J. Appl. Polym. Sci.,2000,75(12): 1493-1502
    [40]Nicholas P. The scission of crosslinks in scrap rubber[J]. Rubber Chem. Technol.,1982, (55):1499-1515
    [41]Milani M, Schork F J, Liotta C L, et al. Model compound studies of the devulcanization of rubber via phase transfer catalysis[J]. Polym. React. Eng.,2001,9(1): 19-36
    [42]Kojima M, Ogawa K, Mizoshima H. et al. Devulcanization of sulfur-cured isoprene rubber in supercritical carbon dioxide[J]. Rubber Chem. Technol.,2003,76(4),957-968
    [43]马挺,王仁静,刘键,等.柴油循环生物脱硫的实验研究[J].炼油技术与工程, 2004,34(1):52-54
    [44]佟明友,马挺,张全,et al.利用休止细胞法选择性脱除燃料油中有机硫[J].环境科学,2005,26(1):24-27
    [45]Kodama K, Umehara K, Shimizu K. et al. Microbial conversion of petro-sulfur compounds.4. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway[J]. Agr. Biol. Chem.,1973,37(1):45-50
    [46]Kilbane J J. Desulfurization coal-The microbial solution[J]. Trends Biotechnol.,1989, 7(4):97-101
    [47]史德青,赵金生,侯影飞,等.石油生物催化脱硫菌Agrobacterium tumefaciensUP3的分离筛选[J].微生物学报,2004,44(2):248-250
    [48]侯影飞,孔瑛,李春虎,等.UP-3生物催化降解二苯并噻吩的机理[J].分子催化,2007,21
    [49]Stevenson K, Stallwood B, Hart A G Tire Rubber Recycling and Bioremediation:A Review[J]. Biorem. J.,2008,12(1):1-11
    [50]Loffler M, Neumann W, Straube E. et al. Microbial surface desulfurization of scrap rubber crumb-a contribution towards material recycling of scrap rubber[J]. Kautsch. Gummi Kunstst.,1995,48(6):454-457
    [51]Christiansson M, Stenberg B, Wallenberg L R, et al. Reduction of surface sulphur upon microbial devulcanization of rubber materials[J]. Biotechnol. Lett,1998,20(7):637-642
    [52]Kim J K, Park J W. The biological and chemical desulfurization of crumb rubber for the rubber compounding[J]. J. Appl. Polym. Sci.,1999,72(12):1543-1549
    [53]Romine R A, Romine M F, Rubbercycle:a bioprocess for surface modification of waste tyre rubber[J]. Polym. Degrad. Stab.,1998,59:353-358
    [54]覃柳莎,赵素合,王雅琴,等.天然橡胶硫化胶粉的微生物脱硫初探[J].合成橡胶工业,2008,31(1):36-40
    [55]赵素合,覃柳莎,姜广明,等.微生物脱硫胶粉/天然橡胶共混胶的性能[J].合成橡胶工业,2008,31(3):209-213
    [56]赵素合,覃柳莎,王雅琴,等.一种废旧橡胶的生物脱硫方法[P].中国专利,CN101289549A.2008-10-22
    [57]Fliermans C B. Microbial Processing of Used Rubber[P]. US Patent, US 6479558B1. 2002-11-12
    [58]Bredberg K, Persson J, Christiansson M. et al. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus-a new method for rubber recycling[J]. Appl. Microbiol. Biotechnol.,2001,55(1):43-48
    [59]Sato S, Honda Y, Kuwahara M. et al. Microbial scission of sulfide linkages in vulcanized natural rubber by a white rot Basidiomycete, Ceriporiopsis subvermispora[J]. Biomacromolecules,2004,5(2):511-515
    [60]Straube G, Straube E. Method for Reprocessing Scrap Rubber[P]. US Patent, US 5275948A1.1994-01-04
    [61]Torma A E, Raghavan D. Biodesulfurization of rubber materials[A], in:American Society of Mechanical Engineers winter annual meeting[C]. Dallas, TX (USA):1990, 81-87
    [62]Christiansson M, Stenberg B, Wallenberg L R, et al. Reduction of surface sulphur upon microbial devulcanization of rubber materials[J]. Biotechnol. Lett.,1998,20(7):637-642
    [63]Loffler M. Modifizierung von Altgummimehl durch mikrobielle Oberflachenentschwefelung-Ein Beitrag zum stofflichen Recycling von Altgummi[D]. Germany:der Mathematisch-Naturwissenschaftlich-Technischen Fakultat-Fachbereich Verfahrenstechnik-der Martin-Luther-Universitat Halle-Wittenberg,1998
    [64]Romine R A, Romine M F. Rubbercycle:a bioprocess for surface modification of waste tyre rubber[J]. Polym. Degrad. Stab.,1998,59(1-3):353-358
    [65]Romine R A, Snowden-Swan L J. Method for the addition of vulcanized waste rubber to virgin rubber products[P]. US patent, US5597851.1997-01-28
    [66]Neumann Willi. Process for surface activation and/or devulcasation of sulfur-vulcanized rubber paticles[P]. US patent, US2007/0009997 Al.2007-01-11
    [67]Kanagawa T, Mikami E. Removal of Methanethiol, Dimethyl Sulfide, Dimethyl Disulfide, and Hydrogen Sulfide from Contaminated Air by Thiobacillus thioparus TK-m[J]. Appl. Environ. Microbiol,1989,55(3):555-558
    [68]Neumann W, Loffler M. Die folgenden angaben sind den vom anmelder eingereichten unterlagen entnommen[P]. German pantent, DE19728036A.1999-07-01
    [69]Krug M, Straube G. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. Ⅱ. Some properties of the first two enzymes of the degradation pathway[J]. J. Basic Microbiol,1986,26(5):271-281
    [70]Dieter S, Straube G, Sekt B. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. Ⅰ. Physiology of growth and substrate utilization[J]. J. Basic Microbiol, 1985,25(2):103-110
    [71]Stevens S E Jr, Burgess W D. Microbial desulfurization of coal[P]. US patent, US4851350.1985-07-25
    [72]Christiansson M, Stenberg B, Holst O. Toxic additives:A problem for microbial waste rubber desulphurisation[J]. Resour. Environ. Biotechnol.,2000,3(1):11-21
    [73]Bredberg K, Andersson B. E, Landfors E. et al. Microbial detoxification of waste rubber material by wood-rotting fungi[J]. Bioresour. Technol.,2002,83(3):221-224
    [74]S Sato, Ohashi Y, Kojima M. et al. Degradation of sulfide linkages between isoprenes by lipid peroxidation catalyzed by manganese peroxidase[J]. Chemosphere.,2009,77(6): 798-804
    [75]A. Jenisch-Anton, Adam P, Michaelis W. et al. Molecular evidence for biodegradation of geomacromolecules[J]. Geochim. Cosmochim. Acta,2000,64(20):3525-3537
    [76]Yuichi I. Rubber powder treated with microorganism and rubber composition compounded with the rubber powder[P]. Japan patent, JP2006182952 (A).2006-07-13
    [77]Nicholas C, Geoffrey M J. Rubber treatment method[P]. PCT patent, WO2004076492(A3).2004-10-14
    [78]Campbell D S. Structural characterization of vulcanizates.10. Thiol-disulfide interchange for cleaving disulfide crosslinks in natural rubber vulcanizates[J]. J. Appl. Polym. Sci.,1969,13(6):1201-1214
    [79]Campbell D S, Saville B. Current principles and practices in elucidating structure in sulfur vulcanized elastomers[A]. in:Proceeding of the International Rubber Conference[C]. Brighton, UK:1967,1-14
    [80]Dreyfuss P, Eckstein Y. Effect of size of nonreinforcing fillers:on mechanical-properties of elatomers[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983,22(1):71-77
    [81]Kraus G, Swelling of filler-reinforced vulcanizates[J]. J. Appl. Polym. Sci.,1963,7(3): 861-871
    [82]Cunneen J I, Russell R M. Occurrence and prevention of change in the chemical structure of natural rubber tire tread vulcanizates during service[J]. Rubber Chem. Technol., 1970,43:1215
    [83]Mathew G, Singh R P, Nair N R. et al. Use of natural rubber prophylactics waste as a potential filler in styrene-butadiene rubber compounds[J]. J. Appl. Polym. Sci.,1996, 61(11):2035-2050
    [84]Da Costa H M, Visconte L L Y, Nunes R C R. et al. Mechanical and dynamic mechanical properties of rice husk ash-filled natural rubber compounds[J]. J. Appl. Polym. Sci.,2002,83(11):2331-2346
    [85]Li S Y, Lamminmaki J, Hanhi K. Effect of ground rubber powder and devulcanizates on the properties of natural rubber compounds[J]. J. Appl. Polym. Sci.,2005,97(1): 208-217
    [86]Horikx M M. Chain scissions in a polymer network[J]. J. Polym. Sci.,1956,19(93): 445-454
    [87]Shultz A R. Crosslinking efficiencies in the methyl methacrylate-ethylene dimethacrylate and ethyl methacrylate-ethylene dimethacrylate systems, degradative analysis by electron Irradiation[J]. J. Am. Chem. Soc.,1958,80(8):1854-1860
    [88]Isayev A I, Yushanov S P, Kim S H. et al. Ultrasonic devulcanization of waste rubbers: Experimentation and modeling[J]. Rheol. Acta,1996.35(6):616-630.
    [89]Sun X M. The devulcanization of unfilled and carbon black filled isoprene rubber vulcanizates by high power ultrasound[D]. USA:University of Akron,2007
    [90]Flory P J, Rehner J Jr. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity[J]. J. Chem. Phys.,1943,11(11):512-520
    [91]Flory, P J, Rehner J Jr. Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling[J]. J. Chem. Phys.,1943,11(11):521-526
    [92]Bristow G M. Huggins K' parameter for polyisoprenes[J]. J. Polym. Sci.,1962, 62(174):S168
    [93]Brandrup J, Immergut E H, Grulke E A. Polymer Handbook[M]. New York,1999.733
    [94]Mark J E. Polymer Data Handbook[M]. Fourth edition. Cincinnati,1998,614
    [95]Brandrup J, Immergut E H, Grulke E A. Polymer Handbook[M]. New York,1999,731
    [96]Mark J E. Polymer Data Handbook[M]. Fourth edition. Cincinnati,1998,983
    [97]Roy R V, Das M. Banerjee R. et al. Comparative studies on rubber biodegradation through solid-state and submerged fermentation[J]. Process Biochem.,2006,41(1): 181-186
    [98]Silverman M P, Lundgren D G Studies on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans I. An Improved Medium and a arvesting Procedure for Securing High Cell Yields[J]. J. Bacteriol.,1958,77(5):642-647
    [99]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.90
    [100]蒋先明,何伟平.简明红外光谱识谱法[M].桂林:广西师范大学出版社,1992.108
    [101]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.87
    [102][英]D.布里格斯.聚合物表面分析:X射线光电子能谱(XPS)和静态次级离子质谱(SSIMS)[M].曹立礼,邓宗武译.北京:化学工业出版社,2001.51
    [103][英]D.布里格斯.聚合物表面分析:x射线光电子能谱(XPS)和静态次级离子质谱(SSIMS)[M].曹立礼,邓宗武译.北京:化学工业出版社,2001.73
    [104]曹志豪.废轮胎资源化-脱硫菌筛选之初探[D].台湾:逢甲大学环境工程与科学学系,2006
    [105]黄琬芳.利用生物技术处理废轮胎-橡胶脱硫去硬化菌之纯化与其去硫能力之探 讨[D].台湾:逢甲大学环境工程与科学学系,2007
    [106]Kim S W, Hong K H, Seo K H. Effects of ground rubber having different curing systems on the crosslink structures and physical properties of NR vulcanizates[J]. Mater. Res. Innovations,2003,7(3):149-154
    [107]Ziegel K D, Romanov A, Modulus reinforcement in elastomer composites. I. Inorganic fillers[J]. J. Appl. Polym. Sci.,1973,17(4):1119-1131
    [108]Ziegel K D, Romanov A, Modulus reinforcement in elastomer composites. II. Polymeric fillers[J]. J. Appl. Polym. Sci.,1973,17(4):1133-1142
    [109]陈绪煌,李渭清,盛京.聚合物二元体系动态力学性能的估算[J].高分子通报,2008,(2):10-15
    [110]He S J, Wang Y Q, Feng Y P. et al. The preparation of an elastomer/silicate layer nanocompound with an exfoliated structure and a strong ionic interfacial interaction by utilizing an elastomer latex containing pyridine groups[J]. Nanotechnology,2010,21(11): 115601
    [111]George R S, Joseph R. The utilisation of latex reclaim rubber in natural rubber[J]. Angew. Makromol. Chem.,1994,215(1):25-33
    [112]De D, De D, Singharoy G M. Reclaiming of ground rubber tire by a novel reclaiming agent. I. virgin natural rubber/reclaimed GRT vulcanizates[J]. Polym. Eng. Sci.,2007,47(7): 1091-1100
    [113]盖忠辉,鞘氨醇单胞菌代谢硫氮氧杂环化合物机理研究[D].济南:山东大学,2008
    [114]Cai M, Xun L. Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723[J]. J. Bacteriol.,2002,184(17):4672-4680
    [115]Habash M, Chu B C H, Trevors J T. et al. Mutational study of the role of N-terminal amino acid residues in tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30[J]. Res. Microbiol.,2009,160(8):553-559
    [116]Kobayashi T, Murai Y, Tatsumi K. et al. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost[J]. Sci. Total Environ.,2009,407(22):5805-5810
    [117]Yamamoto S, Otsuka S, Murakami Y. et al. Genetic diversity of gamma-hexachlorocyclohexane-degrading sphingomonads isolated from a single experimental field[J]. Lett. Appl. Microbiol.,2009,49(4):472-477
    [118]Yang M Y, Li W M, Guo X X. et al. Isolation and identification of a carbazole degradation gene cluster from Sphingomonas sp. JS1[J]. World J. Microbiol. Biotechnol., 2009,25(9):1625-1631
    [119]张翠茹,废橡胶的微生物再生研究[D].北京:北京化工大学生命科学与技术学院,2009
    [120]Schmitt J, Flemming H C. FTIR-spectroscopy in microbial and material analysis[J]. Int. Biodeterior. Biodegrad.,1998,41(1):1-11
    [121]Briggs D, Brewis D M, Dahm R H. et al. Analysis of the surface chemistry of oxidized polyethylene:comparison of XPS and ToF-SIMS[J]. Surf. Interface Anal.,2003, 35(2):156-167
    [122]Boochathum P, Prajudtake W, Vulcanization of cis-and trans-polyisoprene and their blends:cure characteristics and crosslink distribution[J]. Eur. Polym. J.,2001,37(3): 417-427
    [123]Boochathum P, Chiewnawin S, Vulcanization of cis-and trans-polyisoprene and their blends:crystallization characteristics and properties[J]. Eur. Polym. J.,2001,37(3): 429-434
    [124]Da Costa H M, Nunes R C R, Visconte L L Y. et al. Physical Properties and Swelling of Natural Rubber Compounds Containing Rice Husk Ash[J]. Kautsch. Gummi Kunstst., 2001,54:242-249
    [125]Han S C, Han M H. Fracture behavior of NR and SBR vulcanizates filled with ground rubber having uniform particle size[J]. J. Appl. Polym. Sci.,2002,85(12): 2491-2500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700