用户名: 密码: 验证码:
二穗短柄草VERNALIZATION1基因的克隆与表达分析及小麦光周期反应的基因芯片分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
春化,是指低温对开花的促进作用,春化后的植物不会立刻开花,但会使植物茎端分生组织具有开花的潜能,是一种重要的生理学现象。麦类作物作为重要的粮食作物,其春化作用的分子机理相对于拟南芥来说尚不明确,而本身研究起来困难。二穗短柄草具有春化特性、易转化等特点,作为一个新型禾本科模式植物被用于本实验进行VRN1基因功能的研究。
     我们从短柄草中分离出了麦类作物VRN1基因的同源基因,并命名为BdVRN1,其编码序列含有保守的MADS-box和K-box功能域,是MADS-box基因家族成员。通过分析发现BdVRN1基因的非编码序列可能具有重要春化和光周期的调控位点(启动子)和调控结构(内含子)。实时定量和半定量RT-PCR的结果显示,短柄草各植物器官在春化处理后,BdVRN1基因的表达量都有所提高,说明在不同植物器官中BdVRN1都受到了春化诱导;通过不同日照长短春化处理可以发现,无论是长日照还是短日照条件下,BdVRN1基因在春化过程中表达量都呈上升趋势,说明在长日照和短日照条件下BdVRN1基因的表达都能受到春化作用的诱导,但是在放回温室后长日照条件下的BdVRN1基因表达量继续上升,短日照条件下的BdVRN1基因表达量则被抑制,而这两种条件下BdVRN1基因表达量的不同可能最终影响了短柄草的花期以及植株的形态,揭示了BdVRN1基因在春化途径开花调控中起到了重要作用;同时,短柄草BdVRN1基因在不同日照长度条件下的表达方式有所差别,即短柄草BdVRN1基因的表达受到了光周期作用的调控,这种BdVRN1基因表达量的不同可能最终影响了短柄草的开花时间,揭示了BdVRN1基因在光周期途径开花调控中也起到了重要作用;此外,通过对BdVRN1基因昼夜表达调控的分析,表明该基因在不同光照条件下是受到生物节律性调控。以上结果都说明了短柄草的BdVRN1基因受到了春化作用和光周期作用的双重调控,BdVRN1基因的表达量与开花时间紧密相连,表现出一定的相关性,所以BdVRN1基因有可能是影响短柄草开花的重要基因。
     小麦在短日照转移长日照时存在一个由长日照诱导产生的成花信号及信号转导途径以启动开花程序,利用Agilent基因芯片(上海伯豪)分析这一过程可以发现差异表达基因,从而鉴定光周期途径的早期反应基因。
     根据芯片中基因表达量的变化,筛选出小麦光周期候选基因,通过芯片数据,信号的探针共43603组,用cluster3.0软件进行筛选后共有2173组Fold change≥2的有效数据,占芯片探针总数的5%左右。再根据功能分类,与光周期相关序列分为3组,①受光周期影响持续上调(234个);②受光周期影响上调后又下调(104个);③受光周期影响下调(102个),并对每组数据进行功能分类,推测这些基因可能参与了响应小麦光周期信号的过程。
Vernalization, the requirement of a long exposure to low temperatures to accelerate flowering, after vernalization plants will not immediately flowering,but shoot apical meristem of plants will be had flowering potential,which is an important physiological phenomenon. Wheat as important crops, its molecular mechanism of vernalization relative to Arabidopsis is not yet clear, but studying them is difficult by themself. Brachypodium distachyon L. with characteristics of vernalization and easily transformed will be a new model system for the temperate grasses,and be used in Research about the function of VRN1 gene.
     The VRN1 homologs was isolated from Brachypodium, and designated as BdVRN1, which coding sequence of the MADS-box and K-box conserved domains, is a MADS-box gene family member. Non-coding sequence of BdVRN1 gene about promoter and introns which may be important to vernalization and photoperiod. The results of real-time quantitative RT-PCR experiment indicated that through the vernalization treatments, we can find that BdVRN1 gene expression can be improved,indicates that the BdVRN1 gene expression can be regulated in different plant organs by the vernalization; During the vernalization treatment,we find that BdVRN1 gene can be increated under the long-day and short-day conditions together,Indicates that BdVRN1 gene can be induced to expression under LD and SD conditions with vernalization. At the end of the vernalization treatment, BdVRN1 gene is continue increated under the long-day condition, but BdVRN1 gene is depressed under the short-day condition, Uner the two conditions, the different expression of BdVRN1 gene influence flowering time and plant morphology, suggest that BdVRN1 gene by vernalization may play an important role in flowering; Meanwhile, there are some different expressiong of BdVRN1 gene in different continuous conditions about Day Length---BdVRN1 gene function by the regulation of photoperiod. The different expression of BdVRN1 gene influence flowering time and plant morphology, suggest that BdVRN1 gene by photoperiod may also play an important role in flowering; In addition, through the anlysis of the BdVRN1 expression from dark to light, indicates that it can be regulated under different daylength conditions in circandian clock. These results are illustrated that BdVRN1 gene by vernalization and photoperiod effects of dual regulation, BdVRN1 gene expression is closely linked and showed some correlation with the flowering,so BdVRN1 gene may be an important gene affect the Flowering.
     The transfer of wheat on the short day to long day condition when there is a induced signal of flowering and a signal pathway to start the flowering process, using Agilent gene chip (Shanghai Bio) analysis of this process may be found differentially expressed genes, which were the early response genes of photoperiod pathway.
     According to chip in gene expression changes in selected candidate genes of Photoperiod in wheat,Through the chip data, a total of 43603 group probes have signals, with cluster3.0 software group screened a total of 2173 valid Fold change≥2, accounting for 5% of the total number of probe chips around.Then according to functional classification, and Photoperiod sequences were divided into 3 groups,①continue to rise (234) by Photoperiod;②up then down (104) by Photoperiod;③down (102) by Photoperiod, and each functional classification of the data, suggesting that these genes may be involved in the response of photoperiod signal process in wheat.
引文
种康,雍伟东,谭克辉.高等植物春化作用研究进展[ J ].植物学通报,1999 (5) : 481 - 487.
    种康,许智宏,谭克辉.小麦春化相关基因在成花过程中的功能研究.中国科学基金,2000 (1):31-34
    Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP Protein Mediating Signals From the Floral Pathway Integrator FT at the Shoot Apex. Science 309, 1052-1056.
    Adam, H., Ouellet, F., Kane, N.A., Agharbaoui, Z., Major, G., Tominaga, Y., and Sarhan, F. (2007). Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development. Plant Cell Physiol 48, 1192-1206.
    Alvarez-Buylla, E.R., Garcia-Ponce, B., and Garay-Arroyo, A. (2006). Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. J Exp Bot 57, 3099-3107.
    Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., and Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167.
    Bennett MD, Leitch IJ (2004). Plant DNA C-values database (release 3.0, Dec. 2004).
    Bossolini E, Wicker T, Knobel PA, Keller B (2007). Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J, 49 (4): 704~717
    Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M., and Smyth, D.R.(1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721-743.
    Burgeff, C., Liljegren, S.J., Tapia-Lopez, R., Yanofsky, M.F., and Alvarez-Buylla, E.R. (2002). MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214, 365-372.
    Cavalli, G., and Paro, R. (1999). Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286, 955-958.
    Caetano-Anolles G (2005). Evolution of genome size in the grasses. Crop Sci, 45: 1809~1816
    Catalan P, Olmstead RG (2000). Phylogenetic reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplast ndhF gene and nuclear ITS. Plant System Evolution, 220 (1~2): 1~19
    Catalan P, Shi Y, Armstrong L, Draper J, Stace CA (1995). Molecular phylogeny of the grass genus Brachypodium P. Beauv. based on RFLP and RAPD analysis. Bot J Lin Soc, 117 (4): 263~280
    Chandlerj, deanc. Factors influencing the vernalization response and flowering time of late floweringmutants of Arabidopsis thaliana (L. )[ J ]. J Exp Bot, 1994, 45: 1279 - 1288.
    Chandlerj,wilsona,deanc. A rabidopsismutants showing an al2 tered response to vernalization[ J ]. Plant J, 1996, 10: 637 - 644.
    Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
    Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., and Sarhan, F. (2003). TaVRT-1, a putative transcription factor associated withvegetative to reproductive transition in cereals. Plant Physiol 132, 1849-1860.
    De Bodt, S., Raes, J., Van de Peer, Y., and Theissen, G. (2003). And then there were many: MADS goes genomic. Trends Plant Sci 8, 475-483.
    Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routedge A (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol, 127 (4): 1539~1555
    Distelfeld, A., Li, C., and Dubcovsky, J. (2009a). Regulation of flowering in temperate cereals. Curr Opin Plant Biol.
    Distelfeld, A., Tranquilli, G., Li, C., Yan, L., and Dubcovsky, J. (2009b). Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol 149, 245-257.
    Dubcovsky, J., Lijavetzky, D., Appendino, L., and Tranquilli, G. (1998). Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97, 968-975.
    Dubcovsky, J., Loukoianov, A., Fu, D., Valarik, M., Sanchez, A., and Yan, L. (2006). Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60, 469-480.
    Faure, S., Higgins, J., Turner, A., and Laurie, D.A. (2007). The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176, 599-609.
    Finnegan, E.J., and Dennis, E.S. (2007). Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17, 1978-1983.
    Finnegan, E.J., Kovac, K.A., Jaligot, E., Sheldon, C.C., Peacock, W.J., and Dennis, E.S. (2005a). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and byvernalization occurs by distinct mechanisms. Plant J 44, 420-432.
    Finnegan, E.J., Kovac, K.A., Jaligot, E., Sheldon, C.C., Peacock, W.J., and Dennis, E.S. (2005b). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J 44, 420-432. up-regulated by vernalization. Mol Genet Genomics 277, 301-313.
    Foote TN, Griffiths S, Allouis S, Moore (2004). Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct Integr Genomics, 4 (1): 26~33
    Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725-734.
    Fu, D., Dunbar, M., and Dubcovsky, J. (2007). Wheat VIN3-like PHD finger genes are up-regulated by vernalization. Mol Genet Genomics 277, 301-313.
    Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535. .
    Gregis, V., Sessa, A., Colombo, L., and Kater, M.M. (2006). AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18, 1373-1382.
    Greenup, A., Peacock, W.J., Dennis, E.S., and Trevaskis, B. (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot (Lond).
    Goff S A. Rice as a model for cereal genomics. Curr Opin Plant Biol, 1999, 2: 86?89
    Havukkala I J. Cereal genome analysis using rice as a model. Curr Opin Genet Dev, 1996, 6: 711–714
    He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751-1754.
    He, Y., Doyle, M.R., and Amasino, R.M. (2004). PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev 18, 2774-2784.
    Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., and Dennis, E.S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46, 183-192.
    Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., and Coupland, G. (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. Embo J 21, 4327-4337.
    Henderson, I.R., Shindo, C., Dean, C., 2003. The need for winter in the switch to flowering. Annu. Rev. Genet. 37, 371–392.
    Irish, V.F., and Sussex, I.M. (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2, 741-753.
    Jaeger, K.E., and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17, 1050-1054.
    Jaeger, K.E., and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17, 1050-1054.
    Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344-347.
    Kane, N.A., Danyluk, J., Tardif, G., Ouellet, F., Laliberte, J.F., Limin, A.E., Fowler, D.B., and Sarhan, F. (2005). TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138, 2354-2363.
    Khan MA, Stace CA (1999). Breeding relationships in the genus Brachypodium (Poaceae: Pooideae). Nord J Bot, 19 (3): 257~269
    Kooperberg, C., Fazzio, T.G., Delrow, J.J., and Tsukiyama, T. (2002). Improved background correction for spotted DNA microarrays. J Comput Biol 9, 55-66.
    Kimsy, yux,michaelssd. Regulation of CONSTANS and FLOW ERINGLOCUST expression in response to changing light quality[ J ]. Plant Physiol, 2008, 148: 269 - 279.
    Ki, H. (2003). Microarray Data Analysis Methods Comparison: A Review. In Biochemistry 218 Project. hmkey@stanford.edu.
    Kempin, S.A., Savidge, B., and Yanofsky, M.F. (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522-525. Kellogg EA (2001). Evolutionary history of the grasses. Plant Physiol, 125 (3): 1198~1205
    Levyyy,mesnages,mylnejs, et al.Multiple roles ofA rabidopsis VRN1 in vernalization and flowering time control[ J ]. Science, 2002, 297 (5579) : 243 - 246.
    Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21, 397-402.
    Lee, S., Woo, Y.M., Ryu, S.I., Shin, Y.D., Kim, W.T., Park, K.Y., Lee, I.J., and An, G. (2008b). Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147, 156-168.
    Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., and Dean, C. (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243-246.
    Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007-1018.
    Li, C., and Dubcovsky, J. (2008). Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55, 543-554.
    Liu, C., Xi, W., Shen, L., Tan, C., and Yu, H. (2009). Regulation of floral patterning by flowering time genes. Dev Cell 16, 711-722.
    Loukoianov, A., Yan, L., Blechl, A., Sanchez, A., and Dubcovsky, J. (2005). Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138, 2364-2373.
    Meyerowitz E, Sommerville C R. Arabidopsis. New York:Cold Spring Harbor Laboratory Press, 1994
    Meinke D W, Cherry J M, Dean C, Rounsley S D, Koornneef M. Arabidopsis thaliana: A model plant for genome analysis. Science, 1998, 282: 679?682
    Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. PlantCell, 2002, 14(Suppl.): S111-130.
    Mouradov, A., Cremer, F., Coupland, G., 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell S111–S130 (Suppl.).
    Michaels, S.D. (2009). Flowering time regulation produces much fruit. Curr Opin Plant Biol 12, 75-80.
    Michael W Bevan & Philippe Vain ( 2009 ) A protocol forAgrobacterium-mediated transformation of Brachypodium distachyoncommunity standard line Bd21
    Michaels, S.D., and Amasino, R.M. (2000). Memories of winter: vernalization and the competence to flower. Plant Cell and Environment 23, 1145-1153.
    Miguela, greenr,nilssono, et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFYpromoter [ J ]. The Plant Cell, 1998, 10 (5) : 791 - 800.
    Michaels, S.D., He, Y., Scortecci, K.C., and Amasino, R.M. (2003a). Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100, 10102-10107.
    Michaels, S.D., Ditta, G., Gustafson-Brown, C., Pelaz, S., Yanofsky, M., and Amasino, R.M. (2003b). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33, 867-874.
    Murai, K., Miyamae, M., Kato, H., Takumi, S., and Ogihara, Y. (2003). WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol 44, 1255-1265.
    Oliver, S.N., Finnegan, E.J., Dennis, E.S., Peacock, W.J., and Trevaskis, B. (2009). Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A.
    Peng, M.S., Cui, Y.H., Bi, Y.M., and Rothstein, S.J. (2006). AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J 46, 282-296.
    Pidal, B., Yan, L., Fu, D., Zhang, F., Tranquilli, G., and Dubcovsky, J. (2009). The CArG-Box Located Upstream from the Transcriptional Start ofWheat Vernalization
    Preston, J.C., and Kellogg, E.A. (2006). Reconstructing the Evolutionary History of Paralogous APETALA1/FRUITFULL-Like Genes in Grasses (Poaceae), pp. 421-437.
    Preston, J.C., and Kellogg, E.A. (2007). Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J 52, 69-81.
    Preston, J.C., and Kellogg, E.A. (2008). Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. Plant Physiol 146, 265-276.
    Putterill j,laurie r,macknightr. It’s time to flower: the ge netic control of flowering time[ J ]. Bioessays, 2004, 26: 363 - 373.
    Quailph. Phytochrome photosensory signalling networks [ J ]. Nat Rev Mol Cell Biol, 2002, 3 (2) : 85 - 93.
    Quesadav, Macknightr, Deanc, et al. Autoregulationof FCA pre-mRNA processing controls A rabidopsis flowering time[ J ]. EMBO J, 2003, 22 (12) : 3142 - 3152.
    Ratcliffe, O.J., Kumimoto, R.W., Wong, B.J., and Riechmann, J.L. (2003). Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15, 1159-1169.
    Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368-375.
    Saleh, A., Alvarez-Venegas, R., and Avramova, Z. (2008). Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci.Gene 423, 43-47.
    Simpson, G.G., Gendall, A.R., Dean, C., 1999. When to switch to flowering. Annu. Rev. Cell Dev. Biol. 15, 519–550.
    Simpson, G.G., Dean, C., 2002. Arabidopsis, the Rosetta stone of flowering time Science 296, 285–289.
    Searlei,hey, turckf, et al. The transcription factor FLC confers a flowering response to vernalization by repressingmeristem competence and systemic signaling in A rabidopsis[ J ]. GenesDev, 2006, 20: 898 - 912.
    Shi Y, Draper J, Stace C (1993). Ribosomal DNA variation and its phylogenetic implicat ion in the genus Bachypodium (Poaceae). Plant System Evol, 188: 125~138
    Sheldon, C.C., Jean Finnegan, E., James Peacock, W., and Dennis, E.S. (2009). Mechanisms of gene repression by vernalization in Arabidopsis. Plant J.
    Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (2000). The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97, 3753-3758.
    Song,amasinorm. Rememberingwinter: toward a molecular under standing of vernalization[ J ]. Annu Rev Plant Biol, 2005, 56: 491 - 508.
    Song, amasinor. Vernalization in A rabidopsis thalianais mediated by the PHD2finger protein VIN3[ J ]. Nature, 2004, 427: 159 - 164.
    Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036.
    Tan F C, Swain S M. Genetics of flower initiation and development in annual and perennial plants [J]. Physiologia Plantarum,Tateoka T. Proposition of a new phylogenic system of Poaceae. J Jpn Bot, 1957, 32: 275-287
    Trevaskis, B., Hemming, M.N., Dennis, E.S., and Peacock, W.J. (2007a). The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12, 352-357.
    Trevaskis, B., Hemming, M.N., Peacock, W.J., and Dennis, E.S. (2006). HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140, 1397-1405.
    Trevaskis, B., Tadege, M., Hemming, M.N., Peacock, W.J., Dennis, E.S., and Sheldon, C. (2007b). Short Vegetative Phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143, 225-235.
    Trevaskis, B., Bagnall, D.J., Ellis, M.H., Peacock, W.J., and Dennis, E.S. (2003). MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci U S A 100, 13099-13104.
    Turner, A., Beales, J., Faure, S., Dunford, R.P., and Laurie, D.A. (2005). The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031-1034.
    Wagner, D.,Sablowski, R.W.M., and Meyerowitz, E.M. (1999). Transcriptional activation of APETALA1 by LEAFY. Science 285, 582-584.
    Vogel JP, Garvin DF, Leong OM, Hayden DM (2006a ). Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss Org Cult, 84 (2): 199~211
    Vogel JP, Gu YQ, Twigg P, Lazo GR, Chingcuanco DL, Hayden DM, Donze TJ, Vivian LA, Stamova B, Derr DC (2006b). EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet, 13: 186~ 195
    Von Zitzewitz, J., Szucs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H., Hayes, P.M., and Skinner, J.S. (2005). Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59, 449-467.
    Weidong Yong, Yunyuan Xu, Wenzhong Xu, Ning Li, Jinsong Wu, Tiebing Liang, Kang Chong, Zhihong Xu and Kehui Tan. Functional analysis of the ver2 gene, related to vernalization during floral development in Winte -r wheat.Planta, 2003, 217:261-270.
    Wood, C.C., Robertson, M., Tanner, G., Peacock, W.J., Dennis, E.S., and Helliwell, C.A. (2006). The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U S A 103, 14631-14636.
    Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056-1059.
    Xin Wang, Ya Zhang, Qibin Ma, Zhaoliang Zhang, Zhihong Xu, Yongbiao Xue, Shilai Bao and Kang Chong. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J. 2007, 26:1934-41.
    Xing, L., Li, J., Xu, Y., Xu, Z., and Chong, K. (2009). Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS ONE 4, e4854.
    Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100, 6263-6268.
    Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V., and Dubcovsky, J. (2004). The wheat VRN2 gene is a flowering repressor down-regulated byvernalization. Science 303, 1640-1644.
    Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., and Dubcovsky, J. (2006). The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A 103, 19581-19586.
    Yan, L., von Zitzewitz, J., Skinner, J.S., Hayes, P.M., and Dubcovsky, J. (2005). Molecular characterization of the duplicated meristem identity genes HvAP1a and HvAP1b in barley. Genome 48, 905-912.
    Yong, W.D., Xu, Y.Y., Xu, W.Z., Wang, X., Li, N., Wu, J.S., Liang, T.B., Chong, K., Xu, Z.H., Tan, K.H., and Zhu, Z.Q. (2003).
    Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217, 261-270.
    Zhao, T., Ni, Z., Dai, Y., Yao, Y., Nie, X., and Sun, Q. (2006a). Characterization and expression of TaMADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics 276, 334-350.
    Zhao, X.Y., Cheng, Z.J., and Zhang, X.S. (2006b). Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223, 698-707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700