用户名: 密码: 验证码:
去卤化酶催化作用机制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
去卤化酶可以催化碳卤键的水解断裂,产生相应的醇和卤离子。去卤化酶对含卤环境污染物具有重要的生物降解作用,长期以来一直是人们关注的热点。
     目前研究的去卤化酶主要有五种:烷基卤去卤化酶、卤代酸去卤化酶、4-氯苯甲酰-辅酶A去卤化酶、卤代醇去卤化酶和3-卤丙烯酸去卤化酶。它们以不同的催化机制作用于多种有机卤化物,使碳卤键断裂。前三种酶催化时都是取代机制,经历一个酯酶中间体。后两者虽与前三种是类似的酶,但在不同的化学环境中催化机制不同。这些去卤化酶的结构相似,却具有底物特异性。另外,由于去卤化酶的种类很多,它的多样性使得底物范围大大拓宽,包括卤代烷烃、卤代环烷烃、卤代醇、卤代氨基化合物和卤代烯烃等。
     其中,烷基卤去卤化酶是去卤化酶中一种典型且应用非常广泛的生物降解酶。1993年烷基卤去卤化酶(DhlA)晶体结构的确定,使得它的催化作用机制引起国内外科学家的广泛关注。目前对这种去卤化酶的研究取得了一定进展,但在研究烷基卤去卤化酶催化去卤的两步反应机制时,SN2亲核取代反应和酯酶中间体的水解反应的机理一直是人们争论的焦点。为了进一步说明去卤化酶催化动力的来源,本文使用量子化学中的密度泛函理论对SN2亲核取代反应和酯酶中间体的水解反应的机理进行了研究,为实验上研究去卤化酶的进化,提高去卤化酶的生物催化活性和拓宽底物范围提供了理论基础。
     本论文的主要内容为:
     1、我们用密度泛函理论对DhlA酶的SN2亲核取代反应进行了研究。研究表明,在DhlA酶的催化反应中,Asp124的碳酸基团以SN2亲核取代的方式进攻连接在底物上离去氯离子的碳上,得到酯酶中间体和氯离子。氧离子空穴和卤稳定残基上的不同的氢键相互作用在酶催化反应中意义重大。氧离子空穴上氢键的存在使得Asp124的羧酸基团更加靠近底物DCE,使得反应部位活性很高。在反应复合物中,Trp125起主要的稳定作用,而Trp125和Trp175在过渡态中都起非常重要的稳定作用。研究酶催化反应的溶剂效应发现,酶的催化作用主要在于酶中的反应物相对于非酶催化反应的反应物的不稳定作用。总之,酶催化主要是反应物相对不稳定和过渡态相对稳定的共同作用,使得能垒降低6.12 kcal/mol。
     DhlA和LinB为同源酶。活化势垒分析表明,在它们的催化反应过程中都发生了SN2亲核取代反应。然而,这些酶的催化残基和活性中心是不同的。活性中心的DCE的构象自由。底物的两种邻位交叉式构象对反应的进行非常重要。DhlA酶催化时,底物的邻位交叉式构象(D (Cl1–C1–C2–Cl2) = -60°)容易发生去卤反应;而LinB酶催化反应时,另一邻位交叉式构象(D (Cl1–C1–C2–Cl2) = +60°)易于发生去卤化反应。
     2、我们使用密度泛函方法研究了DhlA酶催化的酯酶中间体的水解反应。结果表明,酯酶中间体的水解反应涉及到His289活化的水分子与酯基的的亲核加成反应,同时伴随着水亲核试剂的质子迁移反应。酯酶中间体的水解经历了一个四面体中间体结构。然后消除和质子迁移反应导致四面体中间体的分解,最后得到相应的醇、卤离子和Asp124。在这两个反应途径中,第一步AdN反应都是决速步骤。气相中,质子化His289的质子迁移途径的势垒比脱质子水的质子迁移途径的低0.13 kcal/mol。因此,质子化His289的质子迁移途径是优势通道。苯中它的势垒比脱质子水的质子迁移途径的低0.67 kcal/mol。
     研究酯酶中间体水解反应时发现,水促进的水解反应与质子化His289的质子迁移途径的三步反应机制是有差异的。水促进的水解反应涉及两步反应:第一步为AdN反应,第二步消除反应和质子迁移反应协同进行。其中,第一步AdN反应为决速步骤。水促进的水解反应可降低势垒3.35 kcal/mol。另外,疏水环境的溶剂苯也可以使势垒降低1.79 kcal/mol,加速水解反应的发生。我们在苯中得到的反应势垒为18.65 kcal/mol,这与最新报道的第一步AdN反应的势垒(19.5±2.1 kcal /mol)非常一致。因此,第二个水分子和酶的疏水环境对促进酶的水解去卤具有非常重要的作用。
Dehalogenases comprise such a group of microbial enzymes that catalyze the cleavage of carbon–halogen bonds into the corresponding alcohols and halide anions. There is a growing interest in the application of these enzymes as industrial biocatalysts. Recently, the catalytic prosperities of these enzymes in bioremediation applications have therefore been subjected to detailed investigations.
     To date, there are five bacterial dehalogenases, including haloalkane dehalogenases, haloacid dehalogenases, 4-chlorobenzoyl-coenzyme A (CoA) dehalogenase, haloalcohol dehalogenase and a trans-3-chloroacrylic acid dehalogenase. These enzymes make use of a variety of distinctly different catalytic mechanisms to cleave carbon–halogen bonds. It is demonstrated the power of substitution mechanisms of the first three enzymes that proceed via a covalent aspartyl intermediate. For the latter two homologous ones, it is exploited that their catalytic mechanisms are different in different chemical environments. Although the five dehalogenases are very similar, they have some difference in the geometry and size of the active site cavity and differences in the way in which the leaving group is stabilized. Comparison of them is important for explaining the molecular evolution and enhancing the enzyme catalysis by mutations. There are so many kinds of bacterial dehalogenases that together they cover a broad range of substrates, halogenated compounds.
     Haloalkane dehalogenases (EC 3.8.1.5) are a typical and widely-used bacterial dehalogenases. The mechanism of haloalkane dehalogenases became apparent when the structure of the Xanthobacter autotrophicus enzyme (DhlA) was solved by X-ray crystallography. Many studies have demonstrated that the enzymatic hydrolysis follows a two-step process with the formation of a covalent alkyl-enzyme ester intermediate. However, mechanistic issues about the first SN2 nucleophilic displacement reaction and the ester-enzyme hydrolysis reaction are still uncertain. In this paper, the first SN2 nucleophilic displacement reactions catalyzed by enzyme DhlA and LinB and the ester-enzyme hydrolysis reaction were investigated in detail by using density functional theory to explain the origin of enzyme catalysis. The mechanism investigations play an important role in explaining the origin of enzyme catalysis aimed at improving the enzyme activity and enhancing the substrate specificity.
     The most important results are as follows:
     (1) The SN2 nucleophilic displacement reaction catalyzed by enzyme DhlA was investigated in detail by using density functional theory. In enzyme DhlA catalysis, the carbon atom attached to the leaving halogen of the substrate is attacked by the carboxylate group of Asp124 in the SN2 fashion, yielding an alkyl-enzyme intermediate and a chlorine ion. Different hydrogen bonds patterns of the oxyanion hole and the halide-stabilizing residues, Trp125 and Trp175 play an important role in the dehalogenation reaction. The hydrogen bonds of the oxyanion hole make the carboxylate oxygen of Asp124 closer to DCE so that the reacting fragment is more reactive. Trp125 has a major stabilization effect on the reactant complex. The oxyanion hole and the halide-stabilizing residues concertedly cause an earlier TS with the activation barrier of 16.60 kcal/mol. The stabilization effect of Trp125 and Trp175 on Cl1 atom in TS1 is larger than that of RC1 by 15.67 kcal/mol so that they make contribution to the stabilization of the transition state. Moreover, analysis of the solvent effect on the reaction shows that enzyme catalysis is due to reactant-state destabilization relative to water solution. So the enzymatic action can be attributed to a combination of reactant-state destabilization and TS electrostatic stabilization. They lower the energy barrier by 6.12 kcal/mol.
     DhlA and LinB are homologous enzymes. Analysis of the activation barriers reveals that the reaction process catalyzed by LinB is very similar to that of DhlA. However, their catalytic triad and active sites are different. DCE is able to benefit from substantial conformational freedom within the active site. The preponderant conformer is important for the reaction to proceed. For DhlA catalysis, the gauche conformer (D (Cl1–C1–C2–Cl2) = -60°) of the substrate is easier to take place, whereas the same conformer of the substrate is difficult to dehalogenate in LinB.
     (2) The ester-enzyme hydrolysis reaction catalyzed by enzyme DhlA was investigated in detail using density functional theory. The ester-enzyme hydrolysis reaction involves a nucleophilic addition of a water molecule to the carbonyl group, which is catalyzed by the general base His289 and is accompanied by a proton transfer from the nucleophilic water. The ester is hydrolyzed via a TI and it splits to a corresponding alcohol and acid (Asp124). After TI, elimination and another proton transfer process take place. Herein whether the transferred proton is from protonated His289 or deprotonated water nucleophile was elucidated. In both of the two pathways, the first AdN step is rate-limiting. In the gas phase, the barrier for the pathway with the transferred proton from protonated His289 is lower than that of the pathway with the transferred proton from deprotonated water molecular by 0.13 kcal/mol. Thus the former is the preponderant process. In benzene, the barrier for the dominant pathway is lower than that of the inferior pathway by 0.67 kcal/mol.
     When a second water molecule involved in the X-ray structure of DhlA was also selected, the hydrolysis mechanism is different. Unlike three steps in the pathway with the transferred proton from protonated His289, only two steps were involved in the water assisted hydrolysis. The first AdN step is followed by the concerted step of elimination and the second proton transfer. The overall reaction is also dominated by the first AdN step. In the gas phase, the hydrolysis can be accelerated by lowering the barrier, 3.35 kcal/mol. Moreover, benzene can make an effect on promoting ester hydrolysis, lowering the barrier by 1.79 kcal/mol. The obtained activation barrier in benzene, 18.65 kcal/mol is in fairly good agreement with the recently reported barrier of the AdN step, 19.5±2.1 kcal /mol. Therefore both the second water molecule and the protein environment play an important role in hydrolytic dehalogenation.
引文
[1] H. Onaka,S. Taniguchi,Y. Igarashi,T. Furumai. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria a erocolonigenes ATCC 39243 [J]. Biosci iotechnol Biochem,2003,67(1):127-138
    [2]. M. de J. Renéand, W. D. Bauke. Structure and mechanism of bacterial dehalogenases different ways to cleave a carbon–halogen bond. Current Opinion in Structural Biology 2003, 13:722–730
    [3] E. Chovancová, J. K.osinski, J. M. Bujnicki, et al. Phylogenetic analysis of haloalkane dehalogenases[J]. PROTEINS: Structure, Function, and Bioinformatics, 2007, 67(2):305–316
    [4] D. B. Janssen Evolving haloalkane dehalogenases[J]. Current Opinion in Chemical Biology, 2004,8:150–159
    [5] K. H. G. Verschueren, F. Seljée, H. J. Rozeboom, et al. Crystallographicanalysis of the catalytic mechanism of haloalkane dehalogenase[J]. Nature, 1993,363: 693-698
    [6] J. Newman, T. S. Peat, R. Richard, et al. Haloalkane dehalogenase: structure of a Rhodococcus enzyme[J]. Biochemistry, 1999,38(49): 16105–16114
    [7] J. Marek, J. Vevodova, I. Kuta-Smatanova, et al. Crystal structure of the haloalkane dehalogenase from sphingomonas paucimobilis UT26[J]. Biochemistry, 2000, 39(46):14082–14086
    [8] P. A. Mazumdar, J. C. Hulecki, M. M. Cherney, et al. X-ray crystal structure of Mycobacterium tuberculosis haloalkane dehalogenase Rv2579[J].Biochimica et Biophysica Acta, 2008,1784(2): 351–362
    [9] F. Pries, J. Kingma, G. H. Krooshof, C. M. Jeronimus-Stratingh, A. P. Bruins, D. B. Janssen. Histidine 289 is essential for hydrolysis of the alkyl-enzyme intermediate of haloalkane dehalogenase[J]. J. Biol. Chem. 1995,270: 10405-10411.
    [10] C. Kennes, F. Pries, G. H. Krooshof, E. Bokma, J. Kingma, D. B. Janssen. Replacement of tryptophan residues in haloalkane dehalogenase reduces halide binding and catalytic activity [J]. Eur J Biochem, 1995, 228:403-407.
    [11] R. Valero, L. Song, J. Gao, et al. Perspective on diabatic models of chemical reactivity as illustrated by the gas-phase SN2 reaction of acetate ion with 1, 2-dichloroethane[J]. J Chem Theory Comput, 2009, 5(1):1-22
    [12] D. W. Campbell, C. Mǖller, K. F. Reardon. Development of a fiber optic enzymatic biosensor for 1,2-dichloroethane[J]. Biotechnol Lett, 2006,28: 883–887
    [13] N. A. Murugan, H. ?gren. 1, 2-Dichloroethane in haloalkane dehalogenase protein and in water solvent: a case study of the confinement effect on structural and dynamical properties[J]. J Phys Chem B, 2009, 113(11):3257–3263
    [14] J. Gao, S. H. Ma, D. T. Major, et al. Mechanisms and free energies of enzymatic reactions[J].Chem Rev, 2006, 106(8): 3188 -3209
    [15] L. S. Devi-Kesavan, J. Gao. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase[J]. J Am Chem Soc, 2003, 125(6): 1532-1540
    [16] S. Hur, K. Kahn, T. C. Bruice. Comparison of formation of reactive conformersfor the SN2 displacements by CH3CO2ˉin water and by Asp124-CO2ˉin a haloalkane dehalogenase[J]. Proc Natl Acad Sci USA, 2003, 100(5): 2215-2219
    [17] A. Shurki, M. Strajbl, J. Villa, et al. How much do enzymes really gain by restraining their reacting fragments[J]. J Am Chem Soc, 2002, 124(15): 4097-4107
    [18] J. Villà, A. Warshel. Energetics and dynamics of enzymatic reactions[J]. J Phys Chem B 2001, 105(33): 7887-7907
    [19] A. Soriano, E. Silla, I. Tuňón, et al. Dynamic and electrostatic effects in enzymatic processes. An analysis of the nucleophilic substitution reaction in haloalkane dehalogenase[J]. J Am Chem Soc, 2005, 127(6): 1946-1957
    [20] K. Nam, X. Prat-Resina, M. Garcia-Viloca, et al. Dynamics of an enzymatic substitution reaction in haloalkane dehalogenase[J]. J Am Chem Soc, 2004, 126(5): 1369-1376
    [21] M. H. M. Olsson, A. Warshel. Solute solvent dynamics and energetics in enzyme catalysis: the SN2 reaction of dehalogenase as a general benchmark[J].J Am Chem Soc, 2004, 126(46): 15167-15179
    [22] L. S. Devi-Kesavan, M. Garcia-Viloca, J. Gao. Semiempirical QM/MM potential with simple valence bond (SVB) for enzyme reactions. Application to the nucleophilic addition reaction in haloalkane dehalogenase[J]. Theor Chem Acc, 2003(109):133–139
    [1]唐敖庆等.量子化学[M].科学出版社,1982
    [2]徐光宪,黎乐民,王德民.量子化学-基本原理和从头算法[M].科学出版社,1985
    [3]倪行,高剑南等.物质结构学习指导[M].科学出版社,北京, 1999.
    [4] P. Hohenberg, W. Kohn.Inhomogeneous electron gas [J]. J Phys Rev B, 1964, 136: 864-871.
    [5] W. Kohn , L. Shan.Self-consistent equations including exchange and correlation effects [J]. Phys Rev A, 1965, 140: 1133-1138.
    [6] R.G. Parr, W. Yang. Oxford Science [M]. Oxford, 1989.
    [7] J. Slater.Quantum theory of Molcules and Solid [M] vol.1 NY, 1974.
    [8] A. D.Becker.Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38: 3098-3100.
    [9] Vosko S H.Wik L.Nusair M. Accurate spin dependent electron liquid correlation energies for local spin density.calculations:an analysis [J]. Can J Phys, 1980, 58: 1200-1211.
    [10] J. P. Perdew. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation [J]. Phys Rev B, 1986, 33: 8800-8802.
    [11] C. Lee. W. T. Yang. R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev B, 1988, 37: 785-789.
    [12] A. D. Becker. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction [J]. J Chem Phys, 1992, 97: 9173-9177.
    [13] A. D. Becker. Density-functional thermochemistry. III. The role of exact exchange [J]. J Chem Phys, 1993, 98: 5648-5652.
    [14] B.Miehlich. A. Savin. H. Stoll. H. Preuss. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr [J]. Chem Phys Lett, 1989, 157: 200-206.
    [15] I. W. M. Smith. Kinetics and Dynamics of Elementary Gas Reactions [M]. Butterworth, London, 1980.
    [16] M. J. Stern. A. persky. F. S. Klein. Force field and tunneling effects in the HH Cl reaction system. Determination from kinetic-isotope-effect measurements [J]. J Chem Phys, 1973, 58: 5697-5712.
    [17] B. C. Garrett. D. G. Truhlar. Generalized Transition state theory classical mechanical theory and applications to collinear reactions of hydrogen moleculars [J]. J. Phys. Chem. 1979, 83: 1052-1079.
    [18] P. O. Lówdin, Quantum Theory of Many-Particle Systems. I. PhysicalInterpretations by means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction [J]. Phys. Rev., 1955, 97(6): 1474.
    [19] A. E. Reed, L. A Curtiss, F. Weinhold, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint [J]. Chem. Rev., 1988, 88(6): 899.
    [20] F. Jensen, Introduction to Computational Chemistry [M]. JOHN WILEY & SONS, 1999: 161.
    [21] J. Almlóf, P. R. Taylor, Atomic natural orbital basis sets for LCAO calculations[J]. Adv Quantum Chem, 1991, 22:301.
    [22]刘次全量子生物学及其应用[M].高等教育出版社,1990.
    [1] M.F. Mohamed, D. Kang and V.P. Aneja, Volatile organic compounds in some urban locations in United States [J]. Chemosphere. 2002, 47: 863-882.
    [2] National Institute for Occupational Safety and Health 1978, Current Intelligence Bulletin # 25, Publication No. 79-146, 91-100.
    [3] B. Erable, I. Gooubet, S. Lamare, M.D. Legoy, T. Maugard, Bioremediation of halogenated compounds: Comparison of dehalogenating bacteria and improvement of catalyst stability [J]. Chemosphere. 2006, 65: 1146-1152.
    [4] M.H. van Agteren, S. Keuning and D.B. Janssen, Biodegradation and biological treatment of hazardous organic compounds (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998).
    [5] K.H.G. Verschueren, F. Seljée, H.J. Rozeboom, K.H. Kalk, B.W. Dijkstra, Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase [J]. Nature, 1993,363: 693-698.
    [6] J. Newman, T.S. Peat, R. Richard, L. Kan, P.E. Swanson, J.A. AVholter, I.H. Holmes, J.F. Schindler, C.J. Unkefer, T.C. Terwilliger, Haloalkane dehalogenase: structure of a Rhodococcus enzyme [J].Biochemistry. 1999, 38: 16105–16114.
    [7] J. Marek, J. Vevodova, I. Kuta-Smatanova, Y. Nagata, L.A. Svensson, J. Newman, M. Takagi, J. Damborsky, Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 [J]. Biochemistry. 2000, 39: 14082–14086.
    [8] F. Pries, J. Kingma, M. Pentenga, G. van Pouderoyen, C.M. Jeronimus-Stratingh, A.P. Bruins, D.B. Janssen, Site-directed mutagenesis and oxygen isotope incorporation studies of the nucleophilic aspartate of haloalkane dehalogenase [J]. Biochemistry, 1994, 33:1242-1247.
    [9] F. Pries, J. Kingma, G. H. Krooshof, C.M. Jeronimus-Stratingh, A.P. Bruins, D.B. Janssen, Histidine 289 is essential for hydrolysis of the alkyl-enzyme intermediate of haloalkane dehalogenase [J]. J. Biol. Chem. 1995, 270 :10405-10411.
    [10] T. Bosma, M.G. Pikkemaat, J. Kingma, J. Dijk, and D.B. Janssen, Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase [J]. Biochemistry. 2003, 42: 8047-8053.
    [11] J.P. Schanstra, D.B. Janssen, Kinetics of halide release of haloalkane dehalogenase: evidence for a slow conformational change[J].Biochemistry. 1996, 35: 5624-5632.
    [12] J.P. Schanstra, J. Kingma, D.B. Janssen, Specificity and kinetics of haloalkane dehalogenase [J]. J. Biol. Chem. 1996, 271:14747-14753.
    [13] G.H. Krooshof, E.M. Kwant, J. Damborsky, J. Koca, D.B. Janssen, Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure [J].Biochemistry. 1997, 36:9571-9580.
    [14] K. Kahn, T.C. Bruice, Comparison of reaction energetics and leaving group interactions during the enzyme-catalyzed and uncatalyzed displacement of chloride from haloalkanes [J]. J. Phys. Chem. B. 2003, 107:6876-6885.
    [15] F.C. Lightstone, Y.J. Zheng, A.H. Maulitz, T. C. Bruice, Non-enzymatic and enzymatic hydrolysis of alkyl halides: a haloalkane dehalogenation enzyme evolved to stabilize the gas-phase transition state of an SN2 displacement reaction [J]. Proc. Natl. Acad. Sci. USA. 1997,94: 8417-8420.
    [16] A. Shurki, M. Strajbl, J. Villa, A. Warshel, How much do enzymes really gain by restraining their reacting fragments [J]. J. Am. Chem. Soc. 2002, 124: 4097-4107.
    [17] A. Soriano, E. Silla, I. Tunon, Internal rotation of 1, 2-dichloroethane in haloalkane dehalogenase [J]. J. Phys. Chem. B. 2003, 107: 6234-6238.
    [18] L.S. DeviKesavan, J. Gao, Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase [J]. J. Am. Chem. Soc. 2003,125: 1532-1540.
    [19] S. Hur, K. Kahn, T.C. Bruice, Comparison of formation of reactive conformers for the SN2 displacements by CH3CO2 in water and by Asp124-CO2 in a haloalkane dehalogenase [J]. Proc. Natl. Acad. Sci. USA. 2003, 100: 2215-2219.
    [20] J.E.T. van Hylckama Vlieg, D.B. Janssen, Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes[J]. J. Biotechnol. 2001, 85: 81–102.
    [21] F. Pries, J. Kingma and D.B. Janssen, Activation of an Asp-124→Asn mutant of haloalkane dehalogenase by hydrolytic deamidation of asparagine [J].FEBS. Lett. 1995, 358:171-174.
    [22] K. Hynkova, Y. Nagata, M. Takagi and J. Damborsky, Identification of the catalytic triad in the haloalkane dehalogenase from Sphingomonas paucimobilis UT26[J]. FEBS. Lett. 1999, 446:177-181.
    [23] Y.L. Edmond, K. Kalju, A.B. Paul and C.B. Thomas, The importance of reactant positioning in enzyme catalysis: A hybrid quantum mechanics/molecular mechanics study of a haloalkane dehalogenase [J]. Proc. Natl. Acad. Sci. USA. 2000,97: 9937–9942.
    [24] M. Bohá?, Y. Nagata, Z. Prokop, M. Prokop, M. Monincová, M. Tsuda, J. Ko?a, and J. Damborsky, Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis [J]. Biochemistry. 2002,41: 14272-14280.
    [25] G.H. Krooshof, I.S. Ridder, A.W.J.W. Tepper, G..J. Vos, H.J. Rozeboom, K.H. Kalk, B.W. Dijkstra, D.B. Janssen, Kinetic analysis and X-ray structure of haloalkane dehalogenase with a modified halide-binding site [J]. Biochemistry. 1998,37: 15013-15023.
    [26] C. Kennes, F. Pries, G.H. Krooshof, E. Bokma, J. Kingma, D.B. Janssen,Replacement of tryptophan residues in haloalkane dehalogenase reduces halide binding and catalytic activity [J]. Eur. J. Biochem. 1995, 228: 403-407.
    [27] F. C. Lightstone, Y-J. Zheng and T.C. Bruice, Molecular dynamics simulations of ground and transition states for the SN2 displacement of Cl– from 1,2-dichloroethane at the active site of Xanthobacter autotrophicus haloalkane dehalogenase [J]. J. Am. Chem. Soc. 1998,120: 5611–5621.
    [28] K.B. Wiberg, T.A. Keith, M.J. Frisch and M. Murcko, Solvent effects on 1, 2-Dihaloethane Gauchmrans Ratios [J]. J. Phys. Chem. 1995,99: 9072-9079.
    [29] I. Lee, C.K. Kim, C.K. Sohn, H.G. Li and H.W. Lee, A high-level theoretical study on the gas-phase identity methyl transfer reactions [J]. J. Phys. Chem. A. 2002, 106: 1081-1087.
    [30] A.E. Reed, L.A. Curtiss and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint [J].Chem. Rev. 1988,88: 899–926.
    [31] C.N. Schutz, A. Warshel, What are the dielectric“constants”of proteins and how to validate electrostatic models[J]. Proteins. 2001,44: 400-417.
    [32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheesman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.. Scalmani, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishoda, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Otcherski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Danneberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. V. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G.. Liu, A. Liashenko, P. Piskorz, I. Kamaromi, L.R. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C. Y. Peng, A. Nanaykkara, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M. W. Wong, G. Gonzalez, J. A. Pople, Gaussian 03. Revison B.03, Gaussian Inc., Pittsburgh PA, 2003.
    [33] K. Sakota, Y. Shimazaki and H. Sekiya, Formation of a dual hydrogen bond inthe N–H…C=O moiety in the indole-(N-methylacetamide) cluster revealed by IR-dip spectroscopy with natural bond orbital analysis [J]. J. Chem. Phys. 2009, 130: 231105(1)-(4).
    [34] J. Damborsky, M. Kuty, M. Nemec and J. Koca, A molecular modeling study of the catalytic mechanism of haloalkane dehalogenase: 1. Quantum chemical study of the first reaction Step [J]. J. Chem. Inf. Comput. Sci. 1997, 37:562–568.
    [35]A. Soriano, E. Silla, l. Tuňón and M.F. Ruiz-López, Dynamic and electrostatic effects in enzymatic processes. An analysis of the nucleophilic substitution reaction in haloalkane dehalogenase [J].J. Am. Chem. Soc. 2005, 127:1946-1957.
    [36] I.S. Ridder, H.J. Rozeboom and B.W. Dijkstra, Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 refined at 1.15 ? resolution [J]. Acta. Crystallogr. D. 1999, 55: 1273–1290.
    [37] N.A. Murugan and H. ?gren, 1,2-Dichloroethane in haloalkane dehalogenase protein and in water Solvent: A case study of the confinement effect on structural and dynamical properties [J]. J. Phys. Chem. B. 2009, 113: 3257–3263.
    [38] G.S. Hammond, A correlation of reaction rates [J]. J. Am. Chem. Soc. 1955, 77: 334–338.
    [39] A. Negri, E. Marco, J. Damborsky and F. Gago, Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics [J]. J. Mol. Graph. Model. 2007, 26: 643–651.
    [40] M.H.M. Olsson and A. Warshel, Solute solvent dynamics and energetics in enzyme catalysis: The SN2 reaction of dehalogenase as a general benchmark [J]. J. Am. Chem. Soc., 2004, 126: 15167-15179.
    [41] M.G. Pikkemaat and D.B. Janssen, Generating segmental mutations in haloalkane dehalogenase: a novel part in the directed evolution toolbox [J].Nucleic. Acid. Res. 2002, 30: e35-5.
    [1] K.H.G. Verschueren, F. Seljée, H.J. Rozeboom, K.H. Kalk, B.W. Dijkstra, Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase[J]. Nature 1993, 363: 693-698.
    [2] M.H. Van Agteren, S. Keuning, D.B. Janssen, Biodegradation and biological treatment of hazardous organic compounds; Dordrecht, The Netherlands, Kluwer Academic Publishers, 1998.
    [3] B. Erable, I. Gooubet, S. Lamare, M. D. Legoy, T. Maugard. Bioremediationof halogenated compounds: Comparison of dehalogenating bacteria and improvement of catalyst stability[J]. Chemosphere 2006, 65:1146-1152.
    [4] T. Bosma, M.G. Pikkemaat, J.ingma, J.ijk, D. B. Janssen. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase[J]. Biochemistry 2003, 42: 8047-8053.
    [5] T. C. Bruice. A view at the millennium: the efficiency of enzymatic catalysis[J]. Acc Chem Res 2002, 35:139-141.
    [6] K. Kahn, T.C.Bruice. Comparison of reaction energetics and leaving group interactions during the enzyme-catalyzed and uncatalyzed displacement of chloride from haloalkanes[J]. J Phys Chem B 2003, 107:6876-6885.
    [7] A. Shurki, M. Strajbl, J. Villa, A. Warshel. How much do enzymes really gain by restraining their reacting fragments[J]. J Am Chem Soc 2002, 124:4097-4107.
    [8] A. Soriano, E. Silla, I. Tunon. Internal rotation of 1, 2-dichloroethane in haloalkane dehalogenase[J]. J Phys Chem B 2003, 107:6234-6238.
    [9] L. S. DeviKesavan, J. Gao. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase[J]. J Am Chem Soc 2003, 125: 1532-1540.
    [10] S. Hur, K. Kahn, T. C. Bruice. Comparison of formation of reactive conformers for the SN2 displacements by CH3CO2 in water and by Asp124-CO2 in a haloalkane dehalogenase[J]. Proc Natl Acad Sci U.S.A. 2003, 100: 2215-2219.
    [11] E. Y. Lau, K. Kahn, P. A. Bash, T. C. Bruice. The importance of reactant positioning in enzyme catalysis: A hybrid quantum mechanics/molecular mechanics study of a haloalkane dehalogenase[J]. Proc. Natl. Acad. Sci. USA. 2000, 97: 9937–9942.
    [12] A. Soriano, E. Silla, I. Tuňón, M. F. Ruiz-López. Dynamic and electrostatic effects in enzymatic processes. An analysis of the nucleophilic substitution reaction in haloalkane dehalogenase[J]. J Am Chem Soc 2005, 127:1946-1957.
    [13] M. H. M. Olsson, A. Warshel. Solute solvent dynamics and energetics in enzyme catalysis: The SN2 reaction of dehalogenase as a general benchmark[J]. J Am Chem Soc 2004, 126:15167-15179.
    [14] N.A. Murugan, H. ?gren. 1,2-Dichloroethane in haloalkane dehalogenase protein and in water Solvent: A case study of the confinement effect on structural and dynamical properties[J]. J Phys Chem B 2009, 113: 3257–3263.
    [15] M. Kuty, J. Damborsky, M. Prokop, J. Ko aA. Molecular modeling study of the catalytic mechanism of haloalkane dehalogenase. 2. Quantum chemical study of complete reaction mechanism[J]. J. Chem. Inf. Comput. Sci. 1998, 38: 736-741.
    [16] L.S. Devi-Kesavan, M. Garcia-Viloca, J. Gao. Semiempirical QM/MM potential with simple valence bond (SVB) for enzyme reactions. Application to the nucleophilic addition reaction in haloalkane dehalogenase[J]. Theor Chem Acc 2003, 109: 133–139
    [17] M. Otyepka, P. Baná, A. Magistrato, P. Carloni, J. Damborsky. Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods[J]. Proteins 2008, 70:707–717.
    [18] Z. Prokop, M. Monincova, R. Chaloupkova, M. Klvana, Y. Nagata, D. B. Janssen, J. Damborsky. Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26[J]. J Biol Chem 2003, 278:45094–45100.
    [19] A. Negri, E. Marco, J. Damborsky, F.Gago. Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics[J]. J Mol Graph Model 2007, 26: 643–651.
    [20] F. H?ffner, C. H. Hu, T. Brinck, T. Norin. The catalytic effect of water in basic hydrolysis of methyl acetate: a theoretical study[J]. Journal of Molecular Structure (Theochem) 1999, 459:85-93.
    [21] C. G. Zhan, D. W. Landry, R. L. Ornstein. Reaction pathways and energy barriers for alkaline hydrolysis of carboxylic acid esters in water studied by a hybrid supermolecule-polarizable continuum approach[J]. J.Am.Chem.Soc.2000, 122: 2621-2627.
    [22] J. R. Pliego, Jr., J. M. Riveros. Free energy profile of the reaction between the hydroxide ion and ethyl acetate in aqueous and dimethyl sulfoxide solutions: a theoretical analysis of the changes induced by the solvent on the different reactionpathways[J].J.Phys.Chem.A.,2004, 108:2520-2526
    [23] C. G. Zhan, D. W. Landry, R. L.Ornstein. Theoretical studies of fundamental pathways for alkaline hydrolysis of carboxylic acid esters in gas phase[J]. J.Am.Chem.Soc.2000, 122:1522-1530
    [24] K. Hori, Y. Ikenaga, K. Arata, T. Takahashi, K. Kasai, Y. Noguchi, M. Sumimoto, H. Yamamoto. Theoretical study on the reaction mechanism for the hydrolysis of esters and amides under acidic conditions[J]. Tetrahedron 2007, 63:1264-1269.
    [25] M. Bohá?, Y. Nagata, Z. Prokop, M. Prokop, M. Monincová, M. Tsuda, J. Ko?a, J. Damborsky. Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis[J]. Biochemistry 2002, 41: 14272-14280.
    [26] A. E. Reed, L. A. Curtiss, F. Weinhold. Intermolecular interactions from a natural bond orbital, donor-acceptor view point [J]. Chem. Rev., 1988, 88: 899–926.
    [27] C. N. Schutz, A. Warshel. What are the dielectric constants of proteins and how to validate electrostatic models[J]. Proteins 2001, 44: 400-417.
    [28]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheesman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.. Scalmani, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishoda, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Otcherski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Danneberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. V. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G.. Liu, A. Liashenko, P. Piskorz, I. Kamaromi, L.R. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C. Y. Peng, A. Nanaykkara, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M. W. Wong, G. Gonzalez, J. A. Pople, Gaussian 03. Revison B.03, Gaussian Inc., Pittsburgh PA, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700