用户名: 密码: 验证码:
某炼油厂地下水系统石油烃运移机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国经济的快速发展给环境带来了极大的压力,除大量开采自然资源外,生产加工过程所排放的各种污染物质也产生了一系列环境问题,其中,石油烃类污染由于有机烃类物质特殊的理化性质和危害程度,已成为当今世界面临的一种主要污染形式。本文以济南市西部某炼油厂周边地区为研究对象,研究石油烃类污染物的污染特征和其在岩溶介质含水层系统中的运移机理。
     研究区所在地区为古生届奥陶系灰岩及第四系松散岩类含水地层,主要发育奥陶系灰岩岩溶裂隙。地势南高北低,含水层稳定,渗透性和导水性较强。由于炼油厂生产加工过程中的跑冒滴漏和隐蔽排污沟渠,石油类污染物通过包气带石灰岩或双层介质渗入含水层,引入已受污染的地下水灌溉又造成二次污染。
     对取自研究区的原状土进行吸附机理实验,实验结果显示,pH值降低,作为土壤骨架颗粒的碳酸钙与氢离子发生反应,使土壤固相颗粒表面积增大,从而吸附能力增强。吸附模式可以使用Henry型吸附等温曲线表征。对取自炼油厂附近的污染土壤进行释放机理实验,结果发现,溶液碱性增强后胶体颗粒的表面特性改变,使固相吸附量下降,从而液相含油浓度增大。
     原状土污水淋滤实验由取自研究区周边未受污染的原状土,装填两支相同条件的土柱进行平行实验,分别加入污水浓度56.52mg/L和污水浓度5.6mg/L的石油烃类污水淋滤,结果显示,研究区土层对石油烃类截留能力有一定限度,石油烃类污染物将进入含水层污染地下水。淋滤污水的浓度差异对土层的截留能力也有一定的影响,污水浓度较低时,淋滤出水中的浓度变化较小。对采自炼油厂附近的已被污染的土壤进行污染土柱清水淋滤实验,共加入相当于当地多年年平均降雨量的淋滤清水,充分淋滤后,含油污土中石油烃类物质的释放量仅占0.3%,如果淋滤继续,该释放量将随时间延续而增加,但增加幅度不大,被石油烃类污染的包气带环境将长期受其影响。
     对土柱淋滤实验的数学模拟结果显示,吸附作用是控制石油烃类在包气带运移的主要因素,对流项对模型方程的作用小于弥散项。含石油烃污水浓度较高时,模型方程的拟合越好。计算中使用了显示差分与隐式差分格式,通过比较误差函数ERROR,表明在模拟土柱淋滤的一维对流弥散过程时,显示差分格式即能较好的满足计算要求。
     沿炼油厂-井家沟-腊山一线作剖面,根据水文地质条件在垂向上将矩形剖面概化为上层第四系含砂粘土层和下层奥陶系灰岩裂隙含水层。研究区岩溶裂隙含水层层位稳定,岩溶裂隙发育相对均匀,可将下层奥陶系灰岩含水介质概化为均质介质层。建立二维对流弥散方程模拟该剖面上石油烃类运移,利用交替方向隐式差分格式计算,应用MATLAB软件进行矩阵计算并生成浓度分布等值线图,比较剖面所经各观测井的计算值与实测值,相对误差<10%,符合计算要求。应用该模型模拟预测10年期与15年期石油烃扩散,结果显示研究区未来呈石油烃类污染态势,井家沟附近与后魏华污染严重,大部分地区污染浓度超过标准值0.05mg/L。
With the rapid development of economic, our environment is facing great pressure. In addition to excessive exploitation of natural resources, various kinds of pollutants discharged from industrial production also create a series of environmental problems. Petroleum hydrocarbon contamination has become a main kind of pollution of the world because of the special physical and chemical properties of organic hydrocarbon material and the harm extent of it. In this paper, I take the area surrounding the refinery in the southwest of Jinan City as the research object, and study the pollution characteristics of petroleum hydrocarbon pollutants in the underground environment as well as the transport mechanism of it in the aquifer system.
     Most parts of the refinery area are covered with exposed limestone and thinner layer of Quaternary soil. It is Paleozoic Ordovician limestone and quaternary loose rocks aquifer in this area. And the main rock group is Ordovician limestone, which is karst developed and has water-rich conditions, aquifer stability and water permeability. The contaminants are carried into the aquifer mainly with the surface water passing through unsaturated zone. Therefore, the general pollution system of groundwater is composed of pollution sources, unsaturated zone and aquifer.
     The experiments designed to study the adsorption mechanism of petroleum hydrocarbon in the undisturbed soil show that, with the decreasing of pH values, the surface area of the solid particles of soil increase as a result of the reaction between calcium carbonate and hydrogen ion, thus adsorption capacity of the solid-phase increases. Ionic strength has a certain role in promoting the adsorption function, and the adsorption mode can be described as Henry-type adsorption isotherm. The experiments designed to study the desorption mechanism of petroleum hydrocarbon in the disturbed soil show that, the surface of solid particles has been changed as the increasing of pH, so that the amount of adsorption on solid-phase decreased.
     In the leaching experiments of undisturbed soil by sewage with petroleum hydrocarbon, we set two parallel soil columns with the same state of experiment conditions, but filling with different concentration of sewage into each column, one with 56.52mg/L and another 5.6mg/L. The leaching results show that the retention capacity of this study area for petroleum hydrocarbon is limited, and beyond a certain level, the petroleum hydrocarbon pollutants will enter the aquifer system and cause groundwater contamination. Differences in the concentration of leaching water have a certain influence on the retaining capacity of the soil. When the sewage concentration is low, the concentration of the water leaching out has no notable change. The experiments of disturbed soil leached by clean water show that the release of petroleum hydrocarbons from oil-contaminated soil material accounted for only 0.3%. While the leaching continues, the release amount is certainly increasing over time, but with a low rate. The vadose zone environment will be polluted in the long-term.
     As a conclusion of the soil column leaching experiments, sorption is one of the most important functions that controls the transportation of petroleum hydrocarbons in vadose zone. The model equation is impacted by convection less than diffusion. The model equation will fit better if wastewater containing high concentration of petroleum hydrocarbons. By comparing the error function ERROR, I find that the display difference scheme is able to better simulating one-dimensional advection-dispersion process.
     I choose a profile through the line from Jingjia Ditch to Lashan Mountain, and generalize it with two layers, the Quaternary clay layer and the ordovician limestone fracture. For the limestone fracture is stable and uniform, it can be generalized as a layer with homogeneous medium. In this situation, I use a two dimensional convection dispersion equation to simulate the migration of petroleum hydrocarbon with implicit difference method. All the matrix calculation is done within the software MATLAB, and the results show the relative error is less than 10%, which means the model is right for simulating the migration of petroleum hydrocarbon contaminants. The calculating results in the future 10 and 15 years show that the oil pollution condition in the aquifer system is getting worse, and the concentration is over 0.05mg/L in most parts, especially around Jingjia Ditch and Back Weihua.
引文
[1]孙清,陆秀君.土壤的石油污染研究进展.沈阳农业大学学报, 2002, 33(005): 390-393.
    [2]朱艳吉,王宝辉,盖翠萍.石油类污染物的环境行为及其对环境的影响.化工时刊, 2006, 20(09): 66-69.
    [3]王东利,张晓鸣,刘玉敏.持久性有机污染物的环境行为及对人体健康的危害.国外医学:卫生学分册, 2003, 30(003): 169-173.
    [4]孙剑辉,王国良,张干,等.水体沉积物中有毒有机污染物的监测研究进展.中国环境监测, 2007, 23(001): 30-35.
    [5] R. Freeze,D. McWhorter. A framework for assessing risk reduction due to DNAPL mass removal from low-permeability soils. Ground Water, 1997, 35(1): 111-123.
    [6] B. Parker,D. McWhorter,J. Cherry. Diffusive loss of non-aqueous phase organic solvents from idealized fracture networks in geologic media. Ground Water, 1997, 35(6): 1077-1088.
    [7] S. Panday,Y. Wu,P. Huyakorn, et al. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents. Journal of Contaminant Hydrology, 1997, 25(1-2): 39-62.
    [8]黄廷林,李仲恺. NAPL态石油类污染物在黄土中迁移的稳态数学模型.四川环境, 2003, 22(001): 71-73.
    [9]耿春香,路帅.西北地区土壤中石油类污染物的垂直渗透规律.环境污染与防治, 2003, 25(001): 61-62.
    [10]陈记文,薛强,刘磊,等.非平衡吸附模型在研究渗滤液对土壤污染影响中的应用.岩土力学, 2006, 27(012): 2186-2190.
    [11]王金生,滕彦国,吴东杰.不流动水与非平衡吸附作用对溶质运移影响的数值模型―MIENESOR.吉林大学学报:地球科学版, 2007, 37(002): 266-270.
    [12]王金生,王国华,李书绅,等.不流动水对黄土包气带溶质运移影响的实验研究.水利学报, 2004, 6: 1-5.
    [13]王锦国,周志芳.基于分形理论的裂隙岩体地下水溶质运移模拟.岩石力学与工程学报, 2004, 23(008): 1358-1362.
    [14]吴蓉,周志芳.基于单裂隙开度算法的溶质运移研究.河海大学学报:自然科学版, 2004,32(001): 87-90.
    [15]赵全升,戴其祥,吕月娥,等.二重孔隙介质地下水溶质运移模型应用研究.青岛海洋大学学报:自然科学版, 2003, 33(005): 680-686.
    [16]徐绍辉,张佳宝,刘建立.非饱和土壤中溶质运移对流占优问题的通量校正运移解法.地球科学-中国地质大学学报, 2001, 26(05): 529-532.
    [17]冯杰,张佳宝,郝振纯,等.水及溶质在有大孔隙的土壤中运移的研究(Ⅱ):数值模拟.水文地质工程地质, 2004, 31(004): 77-82.
    [18]黄廷林,史红星,等.石油类污染物在黄土地区土壤中竖向迁移特性试验研究.西安建筑科技大学学报, 2001, 33(2): 108-111.
    [19]刘晓艳,史鹏飞,孙德智,等.大庆土壤中石油类污染物迁移模拟.中国石油大学学报:自然科学版, 2006, 30(002): 120-124.
    [20]纪学雁,刘晓艳,李兴伟,等.分层土柱法研究石油类污染物在土壤中的迁移.能源环境保护, 2005, 19(001): 43-45.
    [21]梁冰,王岩.于家沟地下水反应溶质运移规律数值仿真.地球科学与环境学报, 2006, 28(004): 58-63.
    [22]张丛志,张佳宝,徐绍辉,等.反应性溶质在不同质地饱和土柱中运移的数值模拟.水科学进展, 2008, 19(04): 552-557.
    [23]常福宣,吴吉春,薛禹群,等.多孔介质溶质运移问题中的分数弥散.水动力学研究与进展: A辑, 2005, 20(001): 50-55.
    [24]常福宣,吴吉春,戴水汉.多孔介质溶质运移的分数弥散过程与Lévy分布.南京大学学报:自然科学版, 2004, 40(003): 287-291.
    [25]王惠芸,马士进.地下水溶质运移模型的优化数值算法.武汉工业学院学报, 2004, 23(004): 101-103.
    [26]黄勇,周志芳,王锦国.改进的随机步行法在溶质运移模拟中的应用.岩石力学与工程学报, 2004, 23(014): 2326-2330.
    [27]吴蓉,周志芳.单裂隙中溶质运移模型和求参方法综述.勘察科学技术, 2004, (005): 21-25.
    [28]王锦国,周志芳.裂隙岩体地下水溶质运移的尺度问题.水科学进展, 2002, 13(002): 239-245.
    [29]薛强,梁冰,冯夏庭,等.石油污染物在地下环境系统中运移的多相流数值模型.化工学报, 2005, (05): 920-924.
    [30]魏保军,孙会霞.多重网格―特征有限元方法计算地下水溶质运移问题.工程数学学报,2004, 21(004): 561-566.
    [31]周毅,李正朝.溶质运移模型数值分析.河南科学, 2002, 20(003): 221-225.
    [32]刘春平,夏卫生,邵明安,等.多孔介质中溶质运移参数拟线性化估计方法.水利学报, 2005, 36(012): 1445-1449.
    [33]杨文涛,刘春平,文红艳.一种估计溶质运移参数的统计-确定性方法.勘察科学技术, 2006, (005): 16-19.
    [34]李功胜,姚德,马昱,等.一维溶质运移源(汇)项系数反演的迭代正则化算法.地球物理学报, 2008, 51(002): 582-588.
    [35]武新乾,张德生.非均匀土壤中溶质运移的数值模拟.纺织高校基础科学学报, 2003, 16(001): 5-9.
    [36]侯杰.大庆市地下水石油类系统形成机制研究.中国岩溶, 1999, 18(004): 361-366.
    [37]侯杰,李亚新.多层介质含水系统中石油类污染预测评价:以大庆市纳污湖泡区为例.水文地质工程地质, 1999, 26(006): 41-44.
    [38]侯杰,李亚新.具有弱透水层的多层介质含水系统中污染质运移数值模拟研究--以大庆市纳污湖泡区为例.地球科学-中国地质大学学报, 2000, 25(1): 66-69.
    [39] B. Forsyth. Numerical simulation of gas venting for NAPL site remediation. Advances in Water Resources, 1991, 14(6): 354-367.
    [40] R. Falta,K. Pruess,I. Javandel, et al. Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface 1. Numerical formulation. Water Resources Research, 1992, 28(2): 433-449.
    [41] C. Faust,P. Sims,C. Spalding, et al. FTWORK: A three-dimensional groundwater flow and solute transport code. Aiken: Westinghouse Savannah River Co, 1990.
    [42] D. Kupper. Calcination behavior of cement raw meals. ZKG, Zement-Kalk-Gips, Edition A, 1983, 36(5): 275-280.
    [43] T. Kupper,T. Bucheli,R. Br?ndli, et al. Dissipation of pesticides during composting and anaerobic digestion of source-separated organic waste at full-scale plants. Bioresource Technology, 2008, 99(17): 7988-7994.
    [44] L. Abriola,G. Pinder. A multiphase approach to the modeling of porous media contamination by organic compounds 1. Equation development. Water Resources Research, 1985, 21(1): 11-18.
    [45] L. Abriola,G. Pinder. Multiphase Approach to the Modeling of Porous Media Contamination byOrganic Compounds: 2. Numerical Simulation. Water Resources Research, 1985, 21(1): 19-26.
    [46] J. Morshed,J. Kaluarachchi. Application of artificial neural network and genetic algorithm in flow and transport simulations. Advances in Water Resources, 1998, 22(2): 145-158.
    [47] M. Almasri,J. Kaluarachchi. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling and Software, 2005, 20(7): 851-871.
    [48] R. Lenhard,J. Parker,J. Kaluarachchi. Numerical Model for Areal Migration of Water and Light Hydrocarbon in Unconfined Aquifers. Advances in Water Resources AWREDI, 1990, 13(1).
    [49] L. Newman,C. Reynolds. Phytodegradation of organic compounds. Current Opinion in Biotechnology, 2004, 15(3): 225-230.
    [50] Khan,C. Kuek,T. Chaudhry, et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000, 41(1-2): 197-207.
    [51] C. Chaineau,J. Morel,J. Oudot. Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. Journal of Environmental Quality, 2000, 29(2): 569.
    [52]王蓓,张旭,李广贺,等.芦苇根系对土壤中石油污染物纵向迁移转化的影响.环境科学学报, 2007, 27(008): 1281-1287.
    [53]徐建明,何艳.根-土界面的微生态过程与有机污染物的环境行为研究.土壤, 2006, 38(004): 353-358.
    [54] T. Günther,U. Dornberger,W. Fritsche. Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere, 1996, 33(2): 203-215.
    [55]赵光辉,冯晓斌,孙俊.土著嗜油微生物对土壤中石油类污染物的降解性研究.环境保护科学, 2005, 31(005): 38-39.
    [56]苏荣国,倪方天.微生物对石油烃的降解机理及影响因素.化工环保, 2001, 21(004): 205-208.
    [57]徐向阳,任艳红,黄绚,等.典型有机污染物微生物降解及其分子生物学机理的研究进展.浙江大学学报:农业与生命科学版, 2004, 30(006): 684-689.
    [58]钟毅,李广贺,张旭,等.污染土壤石油生物降解与调控效应研究.地学前缘, 2006, 13(001): 128-133.
    [59]张旭,黄巍.包气带土层中石油污染物生物降解的温度效应.环境科学, 2001, 22(004): 108-110.
    [60]陈嫣,李广贺,张旭,等.石油污染土壤植物根际微生态环境与降解效应.清华大学学报:自然科学版, 2005, 45(006): 784-787.
    [61] R. Miya,M. Firestone. Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. Journal of Environmental Quality, 2000, 29(2): 584.
    [62] Kuiper,E. Lagendijk,G. Bloemberg, et al. Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 2004, 17(1): 6-15.
    [63]熊汉辉,易绍金.极端环境下的石油烃生物降解及其在生物修复中的应用.油气田环境保护, 2005, 15(003): 21-24.
    [64]郎印海,曹正梅.地下石油污染物的地下水曝气修复技术.环境科学动态, 2001, (002): 17-20.
    [65]郑艳梅,李鑫钢,黄国强.地下水曝气过程中空气流场的数学模拟.化工学报, 2007, 58(005): 1277-1282.
    [66] Mohamed,N. El-menshawy,A. Saif. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement. Journal of Environmental Management, 2007, 83(3): 339-350.
    [67]王志强,武强,邹祖光,等.地下水石油污染曝气治理技术研究.环境科学, 2007, 28(004): 754-760.
    [68] T. Guerin,T. McGovern,S. Horner. A funnel and gate system for remediation of dissolved phase petroleum hydrocarbons in groundwater. Land Contamination & Reclamation, 2001, 9(2): 209-224.
    [69] T. F. Guerin,S. Horner,T. McGovern, et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 2002, 36(1): 15-24.
    [70] M. Lee,H. Kang,W. Do. Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site. Water Research, 2005, 39(1): 139-146.
    [71]杨建涛,朱琨.表面活性剂对黄土中石油污染物的解吸影响研究.环境污染治理技术与设备, 2003, 4(002): 6-9.
    [72] Z. Liang,M. Zhenmin,L. Qingguo. Study on Pollution Mechanism of Petroleum Contamination in a Groundwater System under a Refinery in Jinan City. In: 2009 International Conference Environmental Science and Information Application Technology. Wuhan: 2009.
    [73]张亮,马振民,于玮玮,等.某炼油厂地下水系统石油烃污染机制.济南大学学报:自然科学版, 2009, 23(003): 288-291.
    [74]孙亚平,石辉.土壤和沉积物对多环芳烃吸附作用的研究进展.四川环境, 2007, 26(005): 102-106.
    [75]李晓华,许嘉琳,王华东,等.污染土壤环境中石油组分迁移特征研究.中国环境科学, 1998, 18(Z1): 54-58.
    [76]赵元慧,丁蕴铮.有机物在沉积物上吸附与解吸动力学常数的计算.环境化学, 1993, 12(002): 155-159.
    [77]赵元慧,何艺兵.有机化合物在自然沉积物上吸附与解吸动力学常数快速测定方法.环境化学, 1994, 13(003): 222-224.
    [78]王东海,贾道昌.河滩包气带油污土层残油释放实验研究.环境化学, 1998, 17(006): 558-563.
    [79]晁晓波,赵文谦.石油从泥沙上解吸的特性研究.环境科学学报, 1997, 17(004): 434-438.
    [80]刘晓艳,纪学雁,李兴伟,等.石油类污染物在土壤中迁移的实验研究进展.土壤, 2005, 37(5): 482-486.
    [81]岳战林,蒋平安.石油类污染物的特性及环境行为.石化技术与应用, 2006, 24(004): 307-309.
    [82]杨艳,王全九,樊军,等.利用同一土柱测定土壤水分和保守性溶质运移参数.水利学报, 2007, 38(001): 120-126.
    [83]陈崇希,李国敏.地下水溶质运移理论及模型.北京:中国地质大学出版社, 1996.
    [84] L. Lingling,M. Zhenmin,Z. Liang. Study on Migration Prediction of Petroleum Hydrocarbon Contaminants in Groundwater System. In: 2009 Second International Conference on Environmental and Computer Science. Dubai: IEEE Computer Society Conference Publishing Services(CPS), 2009.
    [85]胡建伟,汤怀民.微分方程数值方法.北京:科学出版社, 2007.
    [86]刘晓丽,梁冰.地下水环境中有机污染物迁移转化动力学模型的研究.工程勘察, 2003, (001): 24-28.
    [87]刘苑,武晓峰.地下水中污染物运移过程数值模拟算法的比较.环境工程学报, 2008, 2(02): 229-234. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700