用户名: 密码: 验证码:
不同温度热疗对人宫颈癌细胞凋亡和增殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景宫颈癌是女性生殖系统发病率最高的恶性肿瘤,与高危型HPV感染直接相关,近年来发病率呈上升和年轻化的趋势。晚期宫颈癌以放化疗为主。由于放化疗抵抗以及放化疗的毒性反应,晚期宫颈癌的5年生存率为50%左右。热疗引起细胞凋亡和坏死,同时具有放化疗增敏优势,在宫颈癌的综合治疗中提高了5年生存率和局部控制率,而远期毒性反应没有增加。
     热疗对宫颈癌的作用机制尚不清楚。传统的热疗认为43℃是大多数细胞发生凋亡的临界点,但近期研究发现,43℃热疗并不是对所有种类的癌细胞均具有杀伤作用。细胞对热疗的敏感性与细胞的种类和基因特征有关。探索不同细胞株对热疗的敏感性有助于临床个体化的热疗方案。
     磁热疗是一种新兴的热疗手段,与传统的热疗方式相比具有靶向定位升温的优势,而对周围正常组织的损伤小,在国外的前列腺癌等Ⅱ期临床试验中显示较好的疗效,但是对宫颈癌的研究未见报道。
     因此,我们采用不同温度体内外加热宫颈癌细胞,探讨不同温度热疗对细胞凋亡和增殖的影响,以及凋亡的内在作用机制,为热疗在宫颈癌的临床运用提供部分理论依据。
     第一章不同温度热疗对宫颈癌Caski细胞凋亡和增殖的影响
     目的探讨不同温度热疗对宫颈癌Caski细胞凋亡、增殖以及细胞周期的影响。
     方法采用水浴对宫颈癌Caski细胞行43℃、45℃、47℃实验组和37℃对照组热疗,四甲基偶氮唑蓝(MTT)检测细胞增殖抑制率,流式细胞仪测定细胞凋亡率、坏死率和细胞周期的变化,免疫组化检测增殖细胞核抗原(PCNA)的表达。
     结果45℃,47℃组的细胞增殖抑制率在24h、48h、72h、96h分别为76.11±5.32%、81.08±4.03%、74.71±3.78%、72.16±4.75%和88.57±3.77%、91.33±2.43%、91.09±1.17%、92.05±1.67%,明显高于43℃组的26.57±3.46%、25.49±2.76%、22.80±3.16%、26.87±4.01%(P<0.05)。45℃与47℃组的细胞增殖抑制率之间的差异无显著性(P>0.05)。45℃组的细胞凋亡率最高,为12.82±1.77%,与其它各组之间的差异具有显著性(P<0.05)。47℃组的细胞坏死率最高,为39.15±5.67%,各组之间的差异均有显著性(P<0.05)。43℃、45℃、47℃组的G_1期细胞比对照组明显减少(P<0.05),而S期细胞明显增加(P<0.05)。PCNA的表达随着热疗温度的增加而降低。45℃,47℃组的平均光密度值(AOD)分别是0.228±0.022、0.214±0.018,与对照组和43℃相比差异具有显著性(P<0.05)。
     结论45℃及以上的热疗能够明显抑制Caski细胞的增殖,增加凋亡率和坏死率,细胞周期阻滞在S期,降低PCNA的表达。
     第二章热疗诱导Smac/DIABLO表达促进Caski细胞凋亡
     目的研究宫颈癌Caski细胞经过不同温度热疗后凋亡相关基因p53、Smac/DIABLO、survivin、caspase-3的表达变化。
     方法采用水浴对宫颈癌Caski细胞行43℃、45℃、47℃热疗40min,实时荧光定量PCR检测不同温度热疗后继续培养2h、6h、12h、24h HPV16E6、p53、Smac/DIABLO、survivin、caspase-3在mRNA水平的表达变化。Western Blotting检测不同温度热疗后2h、6h、12h、24h Smac/DIABLO、survivin、caspase-3在蛋白水平的表达变化。免疫组化检测不同温度热疗后24h caspase-3蛋白在细胞内的表达变化。
     结果(1) 43℃热疗后各时间点HPV16E6、Smac/DIABLO、survivin、caspase-3 mRNA的表达均比对照组增加(P<0.05)。与对照组相比,43℃热疗后2h出现survivin蛋白的表达降低,其后survivin蛋白的表达反而上调(P<0.05)。43℃热疗后6h和24h Smac/DIABLO蛋白的表达明显增加(P<0.05);而caspase-3蛋白表达增加出现在热疗后12-24h(P<0.05)。(2) 45℃热疗后各时间点HPV16E6 mRNA、survivin mRNA和蛋白的表达比对照组降低(P<0.05)。45℃热疗后12-24h Smac/DIABLO和caspase-3 mRNA的表达比对照组明显增加(P<0.05)。45℃热疗后6h Smac/DIABLO和caspase-3蛋白表达明显上调,并维持至热疗后24h(P<0.05)。(3) 47℃热疗后各时间点HPV16E6、Smac/DIABLO、survivin mRNA的表达均比对照组明显降低(P<0.05);而caspase-3 mRNA在热疗后24h比对照组增加(P<0.05)。47℃热疗后2h Smac/DIABLO蛋白的表达和2-6hcaspase-3蛋白的表达比对照组明显增加(P<0.05),之后两者的表达明显低于对照组(P<0.05)。47℃热疗后在各时间点survivin蛋白的表达显著降低甚至缺失(P<0.05)。(4) 43℃、45℃和47℃热疗后野生型p53 mRNA的表达比对照组明显减少(P<0.05)。(5)43℃和45℃热疗后24h caspase-3的AOD值比37℃和47℃明显增加(P<0.05)。而45℃和47℃热疗后caspase-3的核阳性指数增加,与37℃和43℃相比,差异具有显著性(P<0.05)。
     结论宫颈癌Caski细胞中Smac/DIABLO、survivn和caspase-3在mRNA和蛋白水平的表达变化与热疗温度和培养时间有关。45℃以上的热疗抑制HPV16E6 mRNA的表达。热疗后Smac/DIABLO通路诱导的Caski细胞凋亡可能不依赖于野生型p53基因的调控。热疗后caspase-3从细胞浆易位至细胞核是细胞凋亡的重要事件。
     第三章不同温度磁热疗对人宫颈癌裸鼠皮下移植瘤的影响
     目的探讨不同温度磁热疗对人宫颈癌裸鼠皮下移植瘤的作用。
     方法用人宫颈癌Hela细胞株建立裸鼠皮下移植瘤模型,将Fe_3O_4磁性纳米颗粒直接注入肿瘤组织内,在交变磁场中进行磁感应加热治疗,分别控温在43℃和47℃持续30min,3天后重复加热一次,比较43℃组磁热疗组(43℃MFH)、47℃磁热疗组(47℃CMFH)、单纯磁流体组(MF组)、生理盐水(NS组)和对照组的肿瘤体积的大小、肿瘤体积抑制率、生存期和PCNA的阳性指数。
     结果热疗后的第1-4周47℃MFH组的肿瘤体积抑制率分别为47.05%、89.21%、88.55%、87.19%;43℃MFH组的分别为32.26%、52.64%、48.84%、38.42%。与对照组相比,43℃MFH组和47℃MFH组均能抑制肿瘤的生长(P<0.05)。与43℃MFH组比较,47℃MFH组抑瘤作用更显著,有33.33%的肿瘤消退率(P<0.05)。43℃MFH组和47℃MFH组的生存期分别为36.67±1.28d、49.33±3.19d,比对照组的27.33±1.41d明显延长(P<0.05)。而47℃MFH组与43℃MFH组的生存期之间的差异亦具有显著性(P<0.05)。PCNA的阳性指数在47℃MFH组显著降低为12.33±3.40%,与其它组相比,差异具有显著性(P<0.05)。
     结论43℃MFH组和47℃MFH组均能抑制人宫颈癌裸鼠皮下移植瘤的生长,延长裸鼠的生存期,抑制PCNA的增殖,但是以47℃MFH组的作用更为显著,甚至可以达到肿瘤完全消退的效应。
Background: Cervical cancer has become one of the most prevalent gynecological neoplasma and the main cause is persistent infection of high-risk human papillovirus. The incidence of cervical cancer experiences a significant rise and sufferers become younger in average age. The primary possible treatment of advanced cervical cancer may be a combination of radiation and chemotherapeutic agent such as cisplatin. However, owing to lack of acknowledgment of tumor resistance and side effects of chemo-radiotherapy, the 5-year overall survival rate is only 50% for advanced cervical cancer. When tumors cells expose to higher thermal conditions, more apoptosis and necrosis are often induced and cells usually exhibit hypersensitivity to radiation and/or chemotherapy after heat treatment. The combined treatment of advanced cervical cancer has resulted in long-term major improvement in local control and survival without increasing late toxicity.
     The mechanism of hyperthermia on cervical cancer is not clear. Traditional hyperthermia believes that there is an apoaptosis transition at 43℃for majority of cells. However, recent studies found that hyperthermia at 43℃could not kill all kinds of cancer cells. The cell sensitivity to hyperthermia is correlated with category of cell and feature of gene. Investigation for cell sensitivity to hyperthermia contributes to the clinic treatment.
     A new nanotechnology based thermotherapy using magnetic nanoparticles, also referred to as magnetic fluid hyperthermia (MFH) was developed. Compared with traditional hyperthermia, magnetic fluid hyperthermia is a better temperature homogeneity and targeted orient in the tumor with less damnification to peripheral normal tissues. It shows significant effects in phaseⅡclinical trial, but there are no reports about the investigation of cervical cancer.
     Therefore, in order to find the appropriate temperature for treatment cervical cancer, we heat cervical cancer cells at different temperature in vitro and in vivo then explore the effect on apoptosis and proliferation of cells.
     Objective To investigate the effect of hyperthermia on the apoptosis, proliferation and cell cycle of Caski cells.
     Methods Caski cells were heated at 43℃, 45℃, 47℃and 37℃in temperature-controlled water bath, MTT assay, flow cytometry and immunohistochemical technique were applied to analyze the growth inhibition, apoptosis rate,necrosis rate, cell cycle as well as expression of PCNA.
     Results The inhibitive rates of cell growth after 24h, 48h, 72h, 96h at 45℃and 47℃was 76.11±5.32%, 81.08±4.03%, 74.71±3.78%, 72.16±4.75% and 88.57±3.77%, 91.33±2.43%, 91.09±1.17%, 92.05±1.67% respectively, which was remarkably higher than that of 26.57±3.46%, 25.49±2.76%, 22.80±3.16%, 26.87±4.01% at 43℃(P<0.05). There is no significant difference in inhibitive effect of cell growth between 45℃and 47℃(P<0.05). While the highest apoptosis rate happened at 45℃, the highest necrosis rate was observed at 47℃, both with statistical significance as compared with other groups (P<0.05). Results from flow cytometry indicate G_1 phase cells after 24h at 43℃, 45℃and 47℃were remarkably lower than that of the control group (P<0.05). However, S phase cells was remarkably higher as compared with the control group (P<0.05). Immunohistochemical analysis demonstrates that the expression of PCNA decreased with the increase of the temperature for heating treatment. When compared with the controlled group and 43℃group, the expression was descented at 45℃and 47℃, which was respectively 0.228±0.022 and 0.214±0.018(P<0.05).
     Conclusions The hyperthermia at 45℃or higher termperaturecould remarkably inhibit the proliferation of Caski cells , increase the apoptosis rates and necrosis rates, arrest the cells cycle in S phase and decrease the expression of PCNA.
     Objective To study the effect of temperatures for in vitro heating treatment of Caski cells on the protein and mRNA expression of p53, Smac/DIABLO, survivin and caspase-3.
     Methods Caski cells were harvested at 2h, 6h, 12h and 24h after heating treatment at 43℃, 45℃, 47℃and 37℃for 40min in temperature-controlled water bath, Real time PCR, western blotting, as well as immunohistochemical technique were employed to determine the mRNA and protein expressions of HPV16E6, p53, Smac/DIABLO, survivin and caspase-3.
     Results (1) The mRNA expression of HPV16E6, Smac/DIABLO, survivin and caspase-3 was increased within 24h at 43℃when compared with the control group (P<0.05). However, protein expression demonstrated time-dependent under the 43℃heating treatment. Expression of survivin was increased from 6h to 24h with statistical significance (P<0.05), though a decreased expression was observed at 2h. Expression of Smac/DIABLO at 6h and 24h was higher than that of the control group (P<0.05). When compared with the control group, caspase-3 was increased from 12h to 24h (P<0.05). (2) At 45℃, the heating treatment could inhibit the mRNA expression of HPV16E6 and survivin, as well as protein expression of survivin within 24h with statistical significance (P<0.05). When compared with the control group, the mRNA expression Smac/DIABLO and caspase-3 was increased 12-24h after heating treatment at 45℃(P<0.05). Meanwhile, the protein expression of Smac/DIABLO and caspase-3 was increased from 6h until 24h after heating (P<0.05). (3) When compared with the control group, the mRNA expression of HPV16E6, Smac/DIABLO and survivin was remarkably decreased within 24h at 47℃(P<0.05), but the mRNA expression of caspase-3 was increased at 24h (P<0.05). Protein expression of Smac/DIABLO at 2h and caspase-3 from 2h to 6h was increased with statistical significance after heating treatment (P<0.05). Protein expression of survivin was remarkably inhibited (P<0.05). (4) When compared with the control group, a reductive mRNA expression of wild type p53 was observed regardless of the heating temperature (P<0.05). (5) Compared with the control group and the 47℃group, AOD value of caspase-3 expression for the 43℃and 45℃groups was increased (P<0.05). Nucleus positive index of caspase-3 expression for the 45℃and 47℃groups was higher than that of the control group and the 43℃group (P<0.05).
     Conclusions Protein and mRNA expression of Smac/DIABLO, survivin and caspase-3 was dependent on the temperature and culture time. The hyperthermia at 45℃or higher temperature could inhibit the mRNA expression of HPV16E6. However, no noticeable change was observed on the mRNA expression of wild-type p53 subjected to heating treatment regardless of the temperature, which indicating the apoptosis induced by Smac/DIABLO after heating treatment could not depend on wild-type p53 gene. Caspase-3 translocated from cytoplasm to the nucleus was an important event for the apoptosis of the cells.
     Objective To study the temperature effect of magnetic fluid hyperthermia (MFH) at 43℃or 47℃in a murine xenograft model of human cervical cancer.
     Methods Murine xenograft model of human cervical cancer was established by transplanting minced fragment of tumours into the subcutaneous tissue of the thigh of nude mouse using a trocar. The tumor-bearing mice then underwent radiation by an alternative magnetic filed (AMF) after the Fe_3O_4 magnetic fluid (MF) was locally injected in the tumor area. The parameters of the AMF were carefully adjusted until a local tumor temperature (43℃or 47℃) was maintained for 30 min. The MFH was performed twice with 72h interval. The tumour volume, rate of tumor volume inhibition, mice survival and the index of PCNA were examined.
     Results MFH at 43℃or 47℃could inhibit the tumor growth. Compared with 43℃MFH, 47℃MFH had a greater inhibitive effect on tumor growth (P<0.05). The inhibitive rates of tumor volume from the first week to the fourth week at 43℃MFH group and 47℃MFH grou was 32.26%, 52.64%, 48.84%, 38.42% and 47.05%, 89.21%, 88.55%, 87.19% respectively. The survival of 47℃MFH group and 43℃MFH group were more prolonged than that of control group (P<0.05). When compared with the other groups, the expression of PCNA was remarkably decreased at 47℃MFH group (P<0.05).
     Conclusion MFH at 43℃or 47℃could inhibit the tumor growth, prolong survival as well as decreased the expression of PCNA with more remarkable effect at 47℃MFH group, in which the total tumour regression was observed.
引文
[1] Kukolja-Taradi S, Taradi M, Andreis L. Themotherapy of tumors [J]. Lijec Vjesn, 1994,116(3-4): 102-105
    [2] Franckena M, Stalpers LJ, Koper PC, et al. Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: an update of the Dutch Deep Hyperthermia Trial [J]. Int J Radiation Oncology Biol Phys, 2008, 70(4): 1176-1182
    [3] 沈湘,余忠华,梁荣,等。放射治疗结合热疗治疗宫颈癌的疗效观察[J].四川肿瘤防治,2006,19(2):92-94
    [4] Franckena M, De Wit R, Ansink AC,, et al. Weekly systemic cisplatin plus locoregional hyperthermia: an effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area [J]. Int J Hyperthermia, 2007, 23(5):443-450
    [5] Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia [J]. Crit Rev Oncol Hematol, 2002: 43(1): 33-56
    [6] Fukami T, Nakasu S, Baba K, et al. Hyperthermia induces translocation of apoptosis-inducing factor (AIF) an apoptosis in human glioma cell lines [J]. J Neurooncol, 2004, 70(3): 319-331
    [7] Tang R, Zhu ZG, Qu Y, et al. The impact of hyperthermic chemotherapy on human gastric cancer cell lines: preliminary results [J]. Oncol Rep, 2006, 16(3): 631-641
    [8] 秦春宏,李永国,张树友,等.重复加热对肝癌HepG2细胞增增殖及细胞周期蛋白D1的影响[J].中国医学工程,2006,14(12):125-127
    [9] van der Zee J. Heating the patient: a promising approach ? [J]. Ann Oncol 2002; 13(8): 1173-1184
    [10] Ghussen F, Kr(?)ger I, Groth W, et al. The role of regional hyperthermic cytostatic perfusion in the treatment of extremity melanoma [J]. Cancer, 1988; 61(4): 654-659
    [11] Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer [J]. J Clin Oncol, 2003; 21(20): 3737-3743
    [12] Valdagni R, Amichetti M, Pani G. Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial [J]. Int J Radiat Oncol Biol Phys, 1988, 15(1): 13-24
    [13] Roti Roti JL. Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events [J]. Int J Hyperthermia, 2008, 24(1): 3-15
    [14] Iliakis G, Krieg T, Guan J, et al. Evidence for an S-phase checkpoint regulating DNA replication after heat shock: a review [J]. Int J Hyperthermia, 2004, 20(2): 240-249
    [15] Moyer HR, Delman KA. The role of hyperthermia in optimizing tumor response to regional therapy [J]. Int J Hyperthermia, 2008,24(3): 251-261
    [16] 史玉荣,李丰彤,于满,等.热疗对人宫颈癌Hela细胞凋亡的影响[J].中国肿瘤临床,2004,31(9):496-498
    [17] Lim CU, Zhang Y, Fox MH. Cell cycle dependent apoptosis and cell cycle blocks induced by hyperthermia in HL-60 cells [J]. Int J Hyperthermia, 2006, 22(1): 77-91
    [18] O'Neill KL, Fairbairn DW, Smith MJ, et al. Critical parameters influencing hyperthermia-induced apoptosis in human lymphoid cell lines [J]. Apoptosis, 1998, 3(5): 369-375
    [19] Yasumoto J, Kirita T, Takahashi A, et al. Apoptosis-related gene expression after hyperthermia in human tongue squamous cell carcinoma cells harboring wild-type or mutated-type p53 [J]. Cancer Lett, 2004,204(1): 41-51
    [20] Dewey WC, Westra A, Miller HH, et al. Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine [J]. Int J Radiat Biol Relat Stud Phys Chem Med, 1971, 20(6):505-520
    [21] Wang GW, Cui YL, Qu GF, et al. The study of the therapeutic effect and molecular mechanisms of hyperthermia on the S-180 tumor cell line [J]. Chin J Bone Tumor & Bone Disease, 2006, 5(1): 20-22
    [22] Henle KJ, Leeper DB. Effects of hyperthermia (45℃) on macromolecular synthesis in Chinese hamster ovary cells [J]. Cancer Res, 1979, 39(7): 2665-2674
    [23] Waiters RL, Stone OL. The effects of hyperthermia on DNA replication in HeLa Cells [J]. Radiat Res, 1983, 93(1): 71-84
    [24] Warters RL, Stone OL. Histone protein and DNA synthesis in HeLa cells after thermal shock [J]. J Cell Physiol, 1984,118(2): 153-160
    [25] 刘颖,林新生,刘慧.细胞凋亡和P53、PCNA表达在宫颈癌的研究[J].临床肿瘤学杂志,2004,9(5):461-463
    [26] 任宝红,李佩玲.CD44、LN和PCNA在宫颈癌组织中的表达及临床意义[J].吉林医药学院学报,2008,29(2):78-80
    [27] Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition [J]. Cell, 2000,102 (1): 33-42
    [28] Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins [J]. Cell, 2000,102(1): 43-53
    [29] Guo F, Nimmanapalli R, Paranawithana S,, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis [J]. Blood, 2002, 99 (9): 3419-3426
    [30] Arain C, Creagh EM, Martin SJ, et al. Apoptosis associated release of Smac/ DIABLO from mitochondria requires active caspases and is blocked by Bcl-2 [J]. EMBO J, 2001,20(23): 6627-6636
    [31] Zhao J, Jin J, Zhang X, et al. Transfection of Smac sensitizes tumor cells to etoposide induced apoptosis and eradicates established human hepatoma in vivo [J]. Cancer Gene Ther, 2006,13(4): 420-427
    [32] Okamoto K. Adenovirus-mediated transfer of p53 augments hyperthermia - induced apoptosis in U251 glioma celis [J]. Int J Radiat Oncol Biol Phys, 2001, 50(2): 525-532
    [33] Kokura S, Yoshida N, Ueda M, et al. Hyperthermia enhances tumor necrosis factor alpha-induced apoptosis of a human gastric cancer cell line [J]. Cancer Lett, 2003,201(1): 89-96
    [34] Nishita M. Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia [J]. Exp Cell Res, 1998,244(1): 357-364
    [35] Tirr(?) E, Consoli ML, Massimino M, et al. Altered expression of c-IAP1, survivin, and Smac contributes to chemotherapy resistance in thyroid cancer cells [J]. Cancer Res, 2006, 66 (8): 4263-4272
    [36] Zheng LD, Xiong ZF, Zhu JW, et al. Effects of Smac gene over-expression on the radiotherapeutic sensitivities of cervical cancer cell line HeLa [J]. Chin Med J (Engl),2005,118(3):226-230
    [37] Gao F, Guo W, Wang J, et al. The effect of Smac/DIABLO associating with Surviv in siRNA on the cell growth and apoptosis of Lovo [J]. China Oncology, 2008, 18 (2): 86-89
    [38] Andersson S, Rylander E, Larsson B, et al. The role of huma papillomavirus in cervical adenocarcinoma carcinogenesis [J]. Eur J Cancer, 2001, 37(2): 246-250
    [39] De Villiers EM, Fauquet C, Broker TR, et al. Classification of papillomaviruses [J]. Virology, 2004,4(1): 17-27
    [40] Sekimura A, Konishi A, Mizuno K, et al. Expression of Smac/ DIABLO is a novel prognostic marker in lung cancer[J]. Oncol Rep, 2004,11(4): 797-802
    [41] 丛江琳,李歌,王泽华.Smac基因在卵巢上皮性肿瘤中的表达及其临床意义[J].中华妇产科杂志,2006,41(8):570-571
    [42] Espinosa M, Cantu D, Lopez CM, et al. SMAC is expressed de novo in a subset of cervical cancer tumors [J]. BMC Cancer, 2004,4: 84-90
    [43] Arellano-Llamas A, Garcia FJ, Perez D, et al. High Smac/DIABLO expression is associated with early local recurrence of cervical cancer [J]. BMC Cancer, 2006, 6: 256-265
    [44] Wang M, Wang B, Wang X. A novel antiapoptosis gene, survivin, bcl-2, p53 expression in cervical carcinomas [J]. Zhonghua Fu Chan Ke Za Zhi, 2001, 36(9): 546-548
    [45] Lu S, Zhang B, Wang Z. Expression of survivin, cyclinD1, p21(WAFl), caspase-3 in cervical cancer and its relation with prognosis [J]. J Huazhong Univ Sci Technolog Med Sci, 2005,25(1): 78-81
    [46] 惠燕,黄利鸣,叶红.survivin在人宫颈癌前病变和宫颈浸润癌组织中的定量分析及其临床价值的评估[J].肿瘤防治研究,2008,35(1):39-42
    [47] Lanham S, Herbert A, Watt P. HPV detection and measurement of HPV-16, telomerase, and survivin transcripts in colposcopy clinic patients [J]. J Clin Pathol, 2001, 54 (4): 304-308
    [48] Frost M, Jarboe EA, Orlicky D, et al. Immunohistochemical localization of survivin in benign cervical mucosa, cervical dysplasia, and invasive squamous cell carcinomal [J]. Am J Clin Pathol, 2002,117(5): 738-744
    [49] Zanotti S, Fisseler-Eckhoff A, Mannherz HG Changes in the topological expression of markers of differentiation and apoptosis in defined stages of human cervical dysplasia and carcinoma [J]. Gynecol Oncol, 2003, 89(3): 376-384
    [50] Xu H, Jiang DX , Hu JY, et al. Expression of Survivin and Caspase-3 in cervical carcinogenesis [J]. Journal of Zhengzhou University (Medical Sciences), 2007,42(2): 263-265
    [51] 余淑坤,高航.Ref-1、Caspase-3在宫颈癌中的表达及生物学意义[D].吉林大学硕士学位论文,2008,32-34
    [52] Jiang M, Milner J. Selective silencing of viral gene E6 and E7 expression in HPV-positive human cervical carcinoma cells using small interfering RNAs [J]. Methods Mol Biol, 2004,292:401-420
    [53] Butz K, Ristriani T, Hengstermann A, et al. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells [J]. Oncogene, 2003,22(38): 5938-5945
    [54] 罗贤雯,刘仁刚,周洁萍,等.高温阻滞HeLa细胞于G_1期并引起G_1期细胞凋亡[J].华中科技大学学报(医学版),2005,34(1):17-20
    [55] Sreenivasa G, Hildebrandt B, Kiimmel S, et al. Radiochemotherapy combined with regionalpelvic hyperthermia induces high response and respectability rates in patients with nonresectable cervical cancer > FIGO Ⅱb "Bulky" [J]. Int J Radiat Oncol Biol Phys, 2006, 66(4): 1159-1167
    [56] El-Tonsy MH, Anbar TE, El-Domyati M, et al. Density of viral particles in pre and post Nd: YAG laser hyperthermia therapy and cryotherapy in plantar warts [J]. Int J Dermatol, 1999, 38(5): 393-398
    [57] Kobayashi D, Watanabe N, Yamauchi N, et al. Heat-induced apoptosis via caspase-3 activation in tumour cells carrying mutant p53 [J]. Int J Hyperthermia, 2000,16(6): 471-480
    [58] Basile A, Biziato D, Sherbet GV, et al. Hyperthermia inhibits cell proliferation and induces apoptosis: relative signaling status of P53, S100A4, and Notch in heat sensitive and resistant cell lines [J]. J Cell Biochem, 2008, 103(1):212-220
    [59] Xie W, Jiang P, Miao L, et al. Novel link between E2F1 and Smac/DIABLO: proapoptotic Smac/DIABLO is transcriptionally upregulated by E2F1 [J]. Nucleic Acids Res, 2006, 34(7): 2046-2055
    [60] Vasanthan A, Mitsumori M, Park JH, et al. Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the international atomic energy agency [J]. Int J Radiat Oncol Biol Phys, 2005, 61(1): 145-153
    [61] Colombo R, Da Pozzo LF, Lev A, et al. Neoadjuvant combined microwave induced local hyperthermia and topical chemotherapy versus chemotherapy alone for superficial bladder cancer [J]. J Urol, 1996,155(4): 1227-1232
    [62] Shellman YG, Howe WR, Miller LA, et al. Hyperthermia induces endoplasmic reticulum-mediated apoptosis in melanoma and non-melanoma skin cancer cells [J]. J Invest Dermatol, 2008,128(4): 949-956
    [63] Borkamo ED, Dahl O, Bruland O, et al. Global gene expression analyses reveal changes in biological processes after hyperthermia in a rat glioma model [J]. Int J Hyperthermia, 2008,24(5): 425-441
    [64] Vucic D, Deshayes K, Ackerly H, et al. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP) [J]. J Biol Chem, 2002, 277(14): 12275-12279
    [65] Creagh EM, Murphy BM, Duriez PJ, et al. Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins [J]. J Biol Chem, 2004, 279 (26): 26906-26914
    [66] 郑丽端,汪良,童强松,等.Smac基因过表达对宫颈癌HeLa细胞放疗敏感性的影响[J].中华放射医学与防护杂志,2005,25(3):245-249
    [67] Ar(?)chaga-Ocampo E, Pereira-Su(?)rez AL, del Moral-Hern(?)ndez O, et al. HPV+ cervical carcinomas and cell lines display altered expression of caspases [J]. Gynecol Oncol, 2008, 108(1): 10-18
    [68] Grote P, Schaeuble K, Ferrando-May E. Commuting (to) suicide: an update on nucleocytoplasmic transport in apoptosis [J]. Arch Biochem Biophys, 2007,462(2): 156-161
    [69] Ferrando-May E. Nucleocytoplasmic transport in apoptosis [J]. Cell Death Differ 2005,12(10): 1263-1276
    [70] Xerri L, Palmerini F, Devilard E, et al. Frequent nuclear localization of ICAD and cytoplasmic co-expression of caspase-8 and caspase-3 in human lymphomas [J]. J Pathol, 2000, 192(2): 194-202
    [71] 李隆玉,李诚信.宫颈癌的预防及普查[J].中国实用妇科与产科杂志,2003,19(3):151-152
    [72] Jordan A, Scholz R, Wust P, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo [J]. Int J Hyperthermia, 1997, 13(6): 587-605
    [73] Minamimura T, Sato H, Kasaoka S, et al. Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite- incorporated microspheres in rats [J]. Int J Oncol, 2000,16(6): 1153-1158
    [74] Johannsen M, Thiesen B, Jordan A. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model [J]. Prostate, 2005, 64(3): 283-292
    [75] Jordan A, Scholz R, Maier-Hauff K, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma [J]. J Neurooncol, 2006, 78(1): 7-14
    [76] Matsumine A, Kusuzaki K, Matsubara T, et al. Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field [J]. Clin Exp Metastasis, 2007,24(3): 191-200
    [77] Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase Ⅰ trial [J]. Int J Hyperthermia, 2007, 23(3): 315-323
    [78] Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme [J]. J Neurooncol, 2007,81(4): 53-60
    [79] 张东生,王子好,贾秀鹏.As_2O_3磁性纳米微球磁感应加热治疗宫颈癌的研究[J].南京中医药大学学报,2006,22(1):22-27
    [80] Hilger I, Hiergeist R, Hergt R, et al. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study [J]. Invest Radiol, 2002, 37(10): 580-586
    [81] Gilchrist RK, Shorey WD, Hanselman RC, et al. Effects of electromagnetic heating on internal viscera: a preliminary to the treatment of human tumors [J]. Ann Surg, 1965, 161:890-896
    [82] Shinkai M, Yanase M, Honda H, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study [J]. Jpn J Cancer Res, 1996, 87(11): 1179-1183
    [83] Jordan A, Scholz R, Maier-Hauff K, et al. Presentation of a new magnetic field therapy system for the treatment of human solic tumors with magnetic fluid hyperthermia [J]. J Magn Magn Mate, 2001,225(1-2): 118-126
    [84] 马勇杰,李红,鄢祝兵,等.细胞内磁热疗诱导人肺腺癌细胞SPC-Al凋亡的体外实验研究[J].生物医学工程学杂志,2007,24(6):1305-1308
    [85] Gordon RT, Hines JR, Gordon D. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations [J]. Med Hypotheses, 1979, 5(1): 83-102
    [86] Moroz P, Jones SK, Winter J, et al. Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model [J]. J Surg Oncol, 2001, 78(1): 22-29
    [87] Moroz P, Jones SK, Gray BN. The effect of tumour size on ferromagnetic embolization hyperthermia in a rabbit liver tumour model [J]. Int J Hyperthermia, 2002,18(2):129-140
    [88] Yanase M, Shinkai M, Honda H, et al. Intracelluar hyperthermia for cancer using magnetic cationic liposomes: an in vivo study [J]. Jpn J Cancer Res, 1998, 89(4): 463-469
    [89] 翟羽,王晓亮,王煦漫,等.葡聚糖磁流体皮下注射的安全性评价[J].生物医学工程学杂志,2006,23(6):1275-1278
    [90] Kawai N, Futakuchi M, Yoshida T, et al. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone[J]. Prostate, 2008 15, 68(7): 784-792
    [91] Ito A, Shinkai M, Honda H, et al. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy [J]. Cancer Gene Ther, 2001, 8(9): 649-654
    [92] Brusentsova N, Kuznetsovb V, Brusentsovab T, et al. Magnetisation of ferrifluids and effects of intracellular deposition of ferrite nanoparticles [J]. Journal of Magnetism and Magnetic Materials. 2004,272-276(3): 2350-2351
    [93] Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique [J]. Int J Hyperthermia. 2005, 21(7): 637-47
    [94] Falk MH, Issels RD. Hyperthermia in oncology [J]. Int J Hyperthermia, 2001, 17(1): 1-18
    [95] Brusentsova N, Nikitinb Lev, Brusentsovac T, et al. Magnetic fluid hyperthermia of the mouse experimental tumor [J]. Journal of Magnetism and Magnetic Materials, 2002, 252: 378-380
    [96] Jordan A, Wust P, Schirra H, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro [J]. Journal of Magnetism and Magnetic Materials, 1999,194(1): 185-196
    [97] Shinkai M, Yanase M, Suzuki M, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes [J]. Journal of Magnetism and Magnetic Materials, 1999,194(1-3): 176-184
    [98] Bettaieb A, Averill-Bates DA. Thermotolerance induced at a mild temperature of 40 degrees C protects cells against heat shock-induced apoptosis [J]. J Cell Physiol. 2005; 205(1): 47-57
    [99] Brusentsov NA, Brusentsova TN, Filinova EY, et al. Magnetic fluid thermochemotherapy of murine tumors [J]. Journal of Magnetism and Magnetic Materials, 2005,293(1): 450-454
    [100] Wang S, Diller KR, Aggarwal SJ. Kinetics study of endogenous heat shock protein 70 expression [J]. J Biomech Eng, 2003,125: 794-797
    [101] Wang SH, Xie WJ, Rylander MN, et al. HSP70 Kinetics Study by Continuous Observation of HSP-GFP Fusion Protein Expression on a Perfusion Heating Stage [J]. Biotechnology and Bioengineering, 2008, 99(1): 146-154
    [1] Fukami T, Nakasu S, Baba K, et al. Hyperthermia induces translocation of apoptosis-inducing factor (AIF) an apoptosis in human glioma cell lines [J]. J Neurooncol, 2004, 70(3): 319-331
    [2] Shellman Y, Howe W, Mille L, et al. Hyperthermia Induces Endoplasmic Reticulum-Mediated Apoptosis in Melanoma and Non-Melanoma Skin Cancer Cells [J]. Journal of Investigative Dermatology, 2008,128(4): 949-956
    [3] Vasanthan A, Mitsumori M, Park J, et al. Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the international atomic energy agency [J]. Int J Radiation Oncology Biol Phys, 2005,61(1): 145-153
    [4] Colombo R. Neoadjuvant combined microwave induced local hyperthermia and topical chemotherapy versus chemotherapy alone for superficial bladder cancer [J]. J Urol, 1996, 155(4): 1227-1232
    [5] 史玉荣,李丰彤,于满,等.热疗对人宫颈癌Hela细胞凋亡的影响[J].中国肿瘤临床,2004,31(9):496-498
    [6] Lim CU, Zhang Y, Fox MH. Cell cycle dependent apoptosis and cell cycle blocks induced by hyperthermia in HL-60 cells [J]. Int J Hyperthermia, 2006, 22(1): 77-91
    [7] Yasumoto J, Kirita T, Takahashi A, et al. Apoptosis- related gene expression after hyperthermia in human tongue squamous cell carcinomas harboring wild-type or mutated-type P53 [J]. Cancer Lett, 2004,204(1): 41-51
    [8] Tamamoto T, Yoshimurah H, Takahashi A, et al. Heat-induced growth inhibition and apoptosis in transplanted human head and neck squamous cell carcinomas with different status of p53 [J]. Int J Hyperthermia, 2003,19(6): 590-597
    [9] Kajihara A, Takahashi A, Ohnishi Ken. Protein microarray analysis of apoptosis-related protein expression following heat shock in human tongue squamous cell carcinomas containing different p53 phenotypes [J]. Int J Hyperthermia, 2008, 24(8): 605-612
    [10] Basile A, Biziato D, Sherbet G, et al. Hyperthermia Inhibits Cell Proliferation and Induces Apoptosis: Relative Signaling Status of P53, S100A4,and Notch in Heat Sensitive and Resistant Cell Lines [J]. Journal of Cellular Biochemistry, 2008,103(1): 212-220
    [11] Liang H, Zhan HJ, Wang BG, et al .Change in expression of apoptosis genes after hyperthermia,chemotherapy and radiotherapy in human colon cancer transplanted into nude mice [J]. World J Gastroenterol, 2007, 13(32): 4365-4371
    [12] Ren GX, Guo W, Ye DX, et al. A study on the mechanism of inducing apoptosis of Tca8113 cells by means of ultrasound hyperthermia [J]. Shang hai Kou Qiang Yi Xue, 2006, 15(5): 507-511
    [13] Vertrees RA, Das GC, Coseio AM, et al. A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells [J]. Mol Carcinog, 2005, 44(2): 111-121
    [14] Klostergaard J, Leroux ME, Auzenne E, et al. HyPerthermia engages the intrinsic apoptotic pathway by enhancing upstream caspase activation to overcome apoptotie resistance in MCF-7 breast adenoeareinom ceells [J]. J Cell Biochem, 2006, 98(2): 356-369
    [15] Yoo J, Kim HR, Lee YJ. Hyperthermia enhances tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human cancer cells [J]. Int J Hyperthermia, 2006,22(8): 713-28
    [16] Henle KJ, Leeper DB. Effects of hyperthermia (45°C) on macromolecular synthesis in Chinese hamster ovary cells [J]. Cancer Res, 1979, 39(7): 2665-2674
    [17] Waiters RL, Stone OL. The effects of hyperthermia on DNA replication in HeLa Cells [J]. Radiat Res, 1983, 93(1): 71-84
    [18] Warters RL, Stone OL. Histone protein and DNA synthesis in HeLa cells after thermal shock [J]. J Cell Physiol, 1984,118(2): 153-160
    [19] Wong RSL, Thompson LL, Dewey WC. Recovery from effects of heat on DNA synthesis in Chinese hamster ovary cells [J]. Radiat Res, 1988,114(1): 125-137
    [20] Dewey WC, Westra A, Miller HH, Nagasawa H. Heatinduced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine [J]. Int J Radiat Biol, 1971, 20(6): 505-520
    [21] Zolzer F, Strefer C. G2-phase delays after irradiation and /or heat treatment as assessed by two-parameter flow cytometry [J]. Radiat Res, 2001, 155(1): 50-56
    [22] Atallah D, Marsaud V, Radanyi C, et al. Thermal enhancement of oxaliplatin-induced inhibition of cell proliferation and cell cycle progression in human carcinoma cell lines [J]. Int J Hyperthermia, 2004,20(4): 405-419
    [23] Wang GW, Cui YL, Qu GF, et al. The study of the therapeutic effect and molecular mechanisms of hyperthermia on the S-180 tumor cell line [J]. Chin J Bone Tumor & Bone Disease, 2006, 5(1): 20-22
    [24] Mackey MA, Anolik SL, Roti Roti JL. Changes in heat and radiation sensitivity during long duration, moderate hyperthermia in HeLa S3 cells [J]. Int J Radiat Biol Oncol Phys, 1992,24(3):543-550
    [25] Mackey MA, Roti Roti JL. A model of heat-induced clonogenic cell death [J]. JTheor Biol, 1992,156(2): 133-146
    [26] Mackey MA, Dewey WC. Time-temperature analyses of cell killing of synchronous G1and S phase Chinese hamster cells in vitro [J]. Radiat Res, 1988, 113(2): 318-333
    [27] VanderWaal RP, Griffith CL, Wright WD, et al. Delaying S-phase progression rescues cells from heat-induced S-phase hypertoxicity [J]. J Cell Physiol, 2001,187(2): 236-243
    [28] 罗贤雯,刘仁刚,周洁萍,等.高温阻滞HeLa细胞于G_1期并引起G_1期细胞凋亡[J].华中科技大学学报(医学版),2005,34(1):17-20
    [29] 胡润磊,刘轩,徐波,等.磁流体热疗对荷Lewis肺癌小鼠肿瘤细胞凋亡和周期的影响[J].中国微创外科杂志,2007,7(11):1046-1048
    [30] Pienta KJ, Getzenberg RH, Coffey DS. Cell structure and DNA organization [J]. Crit Rev Eukaryot Gene Expr, 1991,1: 355-385
    [31] Wong RSL, Kapp LN, Dewey WC. DNA for displacement rate measurements in heated Chinese hamster ovary cells [J]. Biochim Biophys Acta, 1989,1007(2): 224-227
    [32] Wong RSL, Kapp LN, Krishnaswamy G, et al. Critical steps for induction of chromosomal aberrations in CHO cells heated in S phase [J]. Radiat Res, 1989, 133(1): 52-59
    [33] Chu GL, Ross G, Wong RSL, et al. Content of nonhistone protein in nuclei after hyperthermic treatment [J]. J Cell Physiol, 1993,154(2): 217-221
    [34] Lepock JR, Frey HE, Ritchie KP. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock [J]. J Cell Biol, 1993, 122(6): 1267-1276
    [35] Michels AA, Nguyen VT, Konings AWT, et al. Thermostability of a nuclear-targeted luciferase expressed in mammalian cells: Destabilizing influence of the intranuclear microenvironment [J]. Europ J Biochem, 1995,234(2): 382-389
    [36] Lepock JR, Frey HE, Rodahl AM, et al. Thermal analysis of CHL V79 cells using differential scanning calorimetry:Implications for hyperthermia cell killing and the heat shock response [J]. J Cell Physiol, 1988, 137(1): 14-24
    [37] Stege GJ, Li L, Kampinga HH, et al. Importance of the ATP a binding domain and nucleolar localization domain of HSP72 in the protection of nuclear proteins against heat-induced aggregation [J]. Exp Cell Res, 1994,21(1): 279-284
    [38] Kampinga HH, Brunsting JF, Stege GJ, et al. Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation [J]. Biochem Biophys Res Commun, 1994, 204(3): 1170-1177
    [39] 李伟明,崔亚利,王国文,等.热疗联合放疗对S180细胞凋亡及血管再生的影响[J].哈尔滨医科大学学报,2007,41(2):154-157
    [40] Franckena M, Stalpers LJ, Koper PC, et al. Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionallyadvanced cervix cancer:an update of the Dutch deep hyperthermia trial [J]. Int J Radiation Oncology Biol Phys, 2008, 70(4): 1176-1182
    [41] Kitamura K. Prospective randomized study of hyperthermia combined with chemoradiotherapy for esophageal carcinoma [J]. J Surg Oncol, 1995, 60(1): 55-58
    [42] Vernon CC. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. International Collaborative Hyperthermia Group [J]. Int J Radiat Oncol Biol Phys,1996, 35(4): 731-744
    [43] Sapareto SA, Raaphorst P, Dewey WC. Cell killing and the sequencing of hyperthermia and radiation [J]. Int J Radiat Oncol Biol Phys, 1979, 5(3): 343-347
    [44] 刘雨声,牛巨伟,张卫华等.联合放疗热疗对人宫颈癌HeLa细胞作用的实验研究[J].首都医科大学学报,2005,26(5):593-596
    [45] Gillette EL, Ensley BA. Effect of heating order on radiation response of mouse tumor and skin [J]. Int J Radiat Oncol Biol Phys, 1979, 5(2): 209-213
    [46] Overgaard J. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo [J]. Int J Radiat Oncol Biol Phys, 1980, 6(11): 1507-1517
    [47] Horsman MR, Overgaard J. Hyperthermia: a Potent Enhancer of Radiotherapy [J]. Clinical Oncology, 2007, 19(6): 418-426
    [48] 王宁,杨海山,刘洁,等.热疗联合ADM诱导肝癌细胞BEL-7402/ADM凋亡的实验研究[J].中国实验诊断学,2005,9(1):108-110
    [49] 张洪新,郭卫平,王执民,等.阿霉素化疗与热化疗对人肝癌细胞耐药模型作用的比较[J].第四军医大学学报,2000,21(8):964-966
    [50] Mohamed F, Marchettini P, Stuart OA, et al. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia [J]. Ann Surg Oncol, 2003,10(4): 463-468
    [51] Dorkamoa ED, Flugec Y, Mella O, et al. Hyperthermia improves the antitumour effect of metronomic cyclophosphamide in a rat transplantable brain tumour [J]. Radiotherapy and Oncology, 2008, 86(3): 435-442
    [52] Franckena M, Dewit R, Ansink AC. Weekly systemic cisplatin plus locoregional hyperthermia: An effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area [J]. Int J Hyperthermia, 2007, 23(5): 443-450
    [53] 徐旭东,高雪梅,杨仁荣.区域亚高温联合奥沙利铂方案治疗晚期直肠癌[J].实用肿瘤杂志,2006,21(5):446-448
    [54] Fujimoto S. Successful intraperitoneal hyperthermic chemoperfusion for the prevention of postoperative peritoneal recurrence in patients with advanced gastric carcinoma [J]. Cancer, 1999, 85(3): 529-534
    [55] Bhowmick S, Swanlund DJ, Bischof JC. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells [J]. Journal of Biomechanical Engineering, 2000,122(1): 51-59
    [56] Hilger I, Rapp A, Greulich KO, et al. Assessment of DNA damage in target tumor cells after thermoablation in mice [J]. Radiology, 2005,237(2): 500-506
    [57] Przybytkowski E, Bates JH, Averill-Bates DA, et al. Thermal adaptation in CHO cells at 40 degrees C: The influence of growth conditions and the role of heat shock proteins [J]. Radiat Res, 1986,107(3): 317-331
    [58] Luft JC, Benjamin IJ, Mestril R, et al. Heat shock factor 1-mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest [J]. Cell Stress Chaperones, 2001, 6(4): 326-336
    [59] McMillan DR, Xiao X, Shao L, et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis [J]. J Biol Chem, 1998,273(13): 7523-7528
    [60] Rossi A, Ciafre S, Balsamo M, et al.Targeting the Heat Shock Factor 1 by RNA Interference: A Potent Tool to Enhance Hyperthermochemotherapy Efficacy in Cervical Cancer [J]. Cancer Res, 2006, 66(15): 7678-7685
    [61] Wang SH, Xie WJ, Rylander MN, et al. HSP70 Kinetics Study by Continuous Observation of HSP-GFP Fusion Protein Expression on a Perfusion Heating Stage [J]. Biotechnology and Bioengineering, 2008, 99(1): 150-154
    [62] Ahmed B, Diana A, Averill V. Thermotolerance induced at a mild temperatureof 43℃ protects cells against heat shock-induced apoptosis [J]. Journal of Cellular Physiology, 2005, 205(1): 47-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700