用户名: 密码: 验证码:
调控Smac-IAPs凋亡通路对胃癌细胞化疗敏感性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分XIAP、Smac、Caspase-3在胃癌组织中的表达及其相关性研究
     目的探讨凋亡相关基因XIAP、Smac和Caspase-3在人胃癌组织中的表达及其与临床病理特征的相关性。
     方法采用免疫组织化学SP法检测80例胃癌组织和40例癌旁正常胃粘膜中XIAP、Smac、Caspase-3的表达情况。
     结果80例胃癌组织中XIAP、Smac、Caspase-3的阳性率分别为90%(72/80)、67.5%(54/80)和62.5%(50/80)。XLAP阳性表达与胃癌分化程度负相关(P<0.05);Smac、Caspase-3与分化程度正相关(P<0.05)。XLAP、Smac、Caspase-3表达在肠型和弥漫型胃癌之间有显著性差异(P<0.05),与淋巴结转移相关(P<0.05),但与胃癌部位、大小、浸润深度无关。胃癌组织中XIAP、Smac的表达分别与Caspase-3呈负相关、正相关。40例正常胃粘膜中XIAP弱阳性表达6例(15%),而Smac、Caspase-3的阳性率分别高达92.5%(37/40)、90%(36/40)。
     结论随胃癌恶性程度的增加,XIAP的表达增高,而Smac和Caspase-3表达降低,可能参与胃癌的发生、发展,是评估胃癌预后的潜在指标。
     第二部分瞬时转染外源性Smac基因对胃癌细胞株化疗敏感性的调控作用
     目的细胞凋亡异常是肿瘤耐药性产生的关键因素之一。Smac是新近发现的一种凋亡调节基因,在介导化疗药物对肿瘤细胞的诱导凋亡效应中起重要作用。本研究旨在观察Smac基因过表达对胃癌细胞株化疗敏感性的影响,为进一步改善胃癌化疗效果奠定基础。
     方法采用脂质体GeneSHUTTLE-40介导的方法,将Smac基因转入胃癌细胞株MKN-45,RT-PCR和western blot法检测癌细胞中Smac的表达;选用顺铂、丝裂霉素分别处理转染前后的胃癌细胞,四甲基偶氮唑盐(MTF)比色法检测细胞增殖活性,倒置显微镜下观察细胞形态变化并摄影,Annexin V-FITC和碘化丙锭双染色流式细胞术(FCM)检测细胞凋亡。
     结果同未转染对照组比较,转染外源性Smac基因后MKN-45细胞Smac的mRNA和蛋白表达水平显著增高(P<0.01),各浓度顺铂、丝裂霉素处理24h后细胞生长抑制率分别增加10.10%~23.80%(P<0.01)、10.01%~15.86%(P<0.01),细胞明显变圆、折光增强、漂浮细胞增多,细胞凋亡比率分别增加6.7%~20.2%(P<0.01)、5.4%~13.2%(P<0.01)。
     结论转染外源性Smac基因并使其在胃癌细胞中过表达,能提高MKN-45对化疗药物的敏感性,是改善胃癌化疗效果的潜在途径。
     第三部分稳定过表达Smac基因胃癌细胞株的建立及其化疗敏感性研究
     目的探讨稳定过表达Smac基因对胃癌细胞株化疗敏感性的影响。
     方法采用脂质体将Smac基因真核表达载体pcDNA3.1-Smac及空白载体pcDNA3.1转染入胃癌细胞株MKN-45,G_(418)筛选获得抗性亚克隆细胞株,RT-PCR和western blot检测癌细胞Smac基因表达,四甲基偶氮唑盐(MTT)比色法、克隆形成实验检测丝裂霉素(MMC)对癌细胞的生长抑制效率。
     结果建立分别稳定表达Smac基因、新霉素抗性基因(neo)的胃癌亚克隆细胞株MKN-45/Smac、MKN-45/neo。RT-PCR和western blot证实MKN-45/Smac细胞的Smac mRNA及蛋白表达水平均显著高于MKN-45、MKN-45/neo(P<0.01)。10μg/ml MMC作用24h后,MKN-45、MKN-45/neo细胞生长抑制率分别为27.85%、28.12%,而MKN-45/Smac则高达43.71%(P<0.01);同MKN-45、MKN-45/neo细胞株比较,MKN-45/Smac的克隆形成能力分别降低了14.07%(P<0.01)、15.13%(P<0.01)。
     结论稳定转染Smac基因使其在胃癌细胞株中过表达,能显著提高癌细胞对MMC的敏感性,为改善胃癌化疗效果奠定了实验基础。
     第四部分稳定转染外源性Smac基因对胃癌细胞凋亡通路的影响
     目的探讨稳定过表达Smac基因对胃癌细胞凋亡的影响。
     方法体外培养胃癌细胞株MKN-45、MKN-45/neo、MKN-45/Smac,以丝裂霉素(MMC)作为凋亡诱导因子,采用台盼兰活细胞拒染法检测癌细胞体外生长活性,透射电镜、吖啶橙-溴化乙啶荧光染色法、末端TdT酶标记技术(TUNEL)观察癌细胞凋亡及比率;western blot、比色法检测细胞内caspase-3表达和活性。
     结果10μg/ml MMC作用6~24 h后,与MKN-45细胞比较,MKN-45/Smac细胞生长活性减弱10.0%~30.8%(P<0.01),部分MKN-45/Smac细胞发生典型的凋亡形态学改变,凋亡率增高21.2%(P<0.01)。MMC作用后,MKN-45/Smac细胞内caspase-3的表达和活性均较MKN-45细胞显著增强(P<0.01)。
     结论胃癌细胞中Smac基因的过表达,能提高MMC作用后细胞中caspase-3的表达和活性,显著诱导癌细胞凋亡,为调控胃癌细胞凋亡活性提供了新的途径。
     第五部分下调XIAP表达对胃癌细胞株化疗敏感性的影响
     目的观察下调XIAP基因表达对胃癌细胞化疗敏感性的影响。
     方法构建XIAP基因反义真核表达载体,稳定转染胃癌细胞株MKN-45,RT-PCR和western blot法检测癌细胞XIAP基因表达。选用顺铂、丝裂霉素分别处理转染前后的胃癌细胞,采用MTT比色法、克隆形成抑制实验检测癌细胞体外生长活性;透射电镜、流式细胞术、TUNEL检测癌细胞凋亡及比率;western blot和比色法检测细胞内caspase-3蛋白表达和活性水平。
     结果RT-PCR和western blot证实,稳定转染反义XIAP基因的胃癌细胞MKN-45的XIAP mRNA和蛋白表达水平分别降低84.75%(P<0.01)、89.75%(P<0.01)。各浓度顺铂、丝裂霉素处理24h后,转染反义XIAP基因的MKN-45细胞生长抑制率分别增加7.3%~25.3%(P<0.01),12.3%~16.3%(P<0.01)。透射电镜下可见部分细胞发生典型的凋亡形态学改变,凋亡率分别为34.1%和32.5%,显著高于未转染对照组MKN-45细胞(凋亡率为14.2%,P<0.05)。与MKN-45细胞比较,稳定转染反义XIAP基因的MKN-45细胞内caspase-3表达水平增高2.45倍(P<0.01),活性水平提高3.68倍(P<0.01)。
     结论通过反义RNA技术下调XIAP基因表达,能提高癌细胞中caspase-3的表达和活性,增强化疗药物对癌细胞的诱导凋亡作用。
     第六部分姜黄素对胃癌细胞株IAP家族及Smac基因表达的影响
     目的观察姜黄素(Curcumin)对人胃癌细胞株IAP家族和Smac基因表达的影响,探讨姜黄素诱导胃癌细胞凋亡的分子机制。
     方法10~40μmol/L姜黄素分别处理胃癌细胞株MKN-45 6~24 h后,MTF比色法检测癌细胞生长活性,末端TdT酶标记技术和DNA Ladder检测细胞凋亡;逆转录聚合酶链反应fRT-PCR)和western blot法检测IAP家族(Survivin、XIAP)和Smac基因表达;比色法检测癌细胞Caspase-3活性改变。
     结果同未加药对照组比较,各浓度姜黄素作用后癌细胞生长明显减慢,抑制率为12.18%~68.15%(P<0.01),部分细胞呈现典型凋亡形态学改变,凝胶电泳可见“梯形”条带,凋亡率为9.24%~28.12%(P<0.01);Survivin、XIAP基因mRNA和蛋白水平显著下调(P<0.01),而Smac基因表达增强(P<0.01),癌细胞Caspase-3活性增强2.27~6.67倍(P<0.01)。
     结论姜黄素可显著诱导胃癌MKN-45细胞凋亡,通过上调Smac、下调Survivin和XIAP基因表达,进而活化Caspase-3是其作用机制之一。
Part One Expression and correlation of XIAP,Smac and caspase-3 in gastric cancer
     Objective To study the expression of XIAP,Smac and caspase-3 in human gastric cancer tissues and its correlation with clinical and pathological characteristics.
     Methods Immunohistochemical staining was applied to detect the expression of XIAP,Smac and caspase-3 in 80 cases of gastric cancer and 40 cases of adjacent normal gastric mucosa.
     Results In 80 cases of gastric cancer,the expression rates of XIAP,Smac and caspase-3 were 90%(72/80),67.5%(54/80),and 62.5%(50/80),respectively.The XIAP expression was negatively correlated with tissue differentiation(P<0.05),while expression of Smac and caspase-3 was positively correlated with tissue differentiation(P<0.05).The expression of XIAP,Smac and caspase-3 was significantly different between intestinal-type and diffuse-type gastric cancer(P<0.05),and correlated with lymph node metastasis (P<0.05),but not with location,volume and invasion.The expression of XIAP and Smac in gastric cancer was negatively and positively correlated with caspase-3,respectively.In 40 cases of normal gastric mucosa,6 cases(15%) presented weak expression of XIAP,and the expression rates of Smac and caspase-3 were 92.5%(37/40) and 90%(36/40),respectively.
     Conclusions XIAP expression increased along with the malignant degree of gastric cancer,while expression of Smac and caspase-3 decreased,which may participate in the development and progression of gastric cancer.These proteins may serve as potential biomarkers for evaluating the prognosis of gastric cancer.
     Part Two Effects of transient transfection of Smac on chemotherapeutic sensitivities of gastric cancer cell line
     Objective Abnormal apoptosis is one of key factors for the drug resistance of neoplasms.Smac is a novel gene involved in the regulation of apoptosis,which plays an important role in the inducing apoptosis effects of chemotherapeutic drugs on tumor cells. This study was designed to explore the effects of over-expression of Smac gene on chemotherapeutic sensitivities of gastric cancer cell line,in order to establish a basis for further improving chemotherapy of gastric cancer.
     Methods Under induction of liposome GeneSHUTTLE-40,Smac gene was transfected into gastric cancer cell line MKN-45.Cellular Smac gene expression was determined by reverse transcription-polymerase chain reaction(RT-PCR) and western blot analysis.Cisplatin and MMC were administrated to un-transfeted and transfected MKN-45 cells.Cellular proliferation activities were assayed by tetrazolium bromide(MTT) colorimetry.The morphological changes of cancer cells were observed under an inversion microscope.Cellular apoptosis was determined by Annexin V-FITC and propidium iodide staining flow cytometry.
     Results Compared with un-transfected control group,Smac mRNA and protein levels in transfected MKN-45 cells were significantly improved(P<0.01).The growth inhibition rates of various concentrations of cisplatin and MMC on MKN-45 cells were improved by 10.10%-23.80%(P<0.01) and 10.01%-15.86%(P<0.01),respectively,with the cells presenting roundness,obvious refraction,and cellular fragment.Cellular apoptosis rates were improved by 6.7%-20.2%(P<0.01) and 5.4%-13.2%(P<0.01),respectively.
     Conclusions Transfection of extrinsic Smac gene resulted in its over-expression in gastric cancer cells,which could improve the chemotherapeutic sensitivities of MKN-45 cells.This is a potential strategy for ameliorating chemotherapeutic effects of gastric cancer.
     Part Three Establishment of gastric cancer cell line stably overexpressing Smac gene and its chemotherapeutic sensitivities
     Objective To explore the effects of stable over-expression of Smac gene on chemotherapeutic sensitivities of gastric cancer cell line.
     Methods Under the induction of liposome,the eukaryotic expression vector pcDNA3.1-Smac for Smac gene and its control vector pcDNA3.1 were transfected into gastric cancer cell line MKN-45.The subclone cell lines were obtained by persistent G_(418) selection.Smac gene expression of cancer cells was detected by RT-PCR and western blot methods.The growth inhibition effects of MMC on cancer cells were also observed by MTT colorimetry and clone formation assay.
     Results The subclone gastric cancer cell lines,stably expressing Smac and neo gene respectively,were successfully selected,and named as MKN-45/Smac and MKN-45/neo. RT-PCR and western blot results demonstrated that Smac mRNA and protein levels of MKN-45/Smac cells were significantly higher than those of MKN-45 and MKN-45/neo (P<0.01).After incubation with 10μg/ml MMC for 24 h,the growth inhibition rates of MKN-45 and MKN-45/neo were 27.85%,28.12%respectively,while that of MKN-45/Smac cells was 43.71%(P<0.01).When compared with MKN-45 and MKN-45/neo cells,the clone formation abilities of MKN-45/Smac were reduced by 14.07%(P<0.01) and 15.13%(P<0.01),respectively.
     Conclusions Stable transfection of Smac gene and its over-expression in gastric cancer cell line could significantly improve their chemotherapeutic sensitivities to MMC, which established an experimental basis for ameliorating chemotherapy of gastric cancer.
     Part Four Regulatory effects of over-expression of Smac gene on apoptosis activities of gastric cancer cell line
     Objective To explore the effects of over-expression of Smac gene on apoptosis activities of gastric cancer cell line.
     Methods The gastric cancer cell lines MKN-45,MKN-45/neo and MKN-45/Smac were cultured in vitro.After teatment with MMC as an apoptosis inducer,cellular growth activities were investigated by trypan blue staining method.Apoptosis of cancer cells was detected by electronic microscopy,AO-EB fluorescent staining and TUNEL methods. Cellular protein levels and its activities of caspase-3 were assayed by western blot and colorimetry.
     Results After incubation with 10μg/ml MMC for 24 h,growth activities of MKN-45/Smac were reduced by 10.0%~30.8%(P<0.01),when compared with those of MKN-45. Partial MKN-45/Smac cells presented characteristic morphological changes of apoptosis under the electric and fluorescence microscopes,with apoptosis rates being 36.4%,which was significantly higher than that of MKN-45(15.2%,P<0.01).After treatment with MMC, caspase-3 expression levels in MKN-45/Smac cells were significantly improved than those of MKN-45(P<0.01),with caspase-3 activities enhanced by 3.25 times(P<0.01).
     Conclusions Transfection of extrinsic Smac gene and its over-expression in gastric cancer cell line could significantly improve expression and activity levels of caspase-3 induced by MMC,resulting in obvious apoptosis-inducing effects,which established a novel strategy for regulating apoptosis activities of gastric cancer.
     Part Five The effects of downregulating XIAP expression on the apoptosis of gastric cancer cells induced by chemotherapeutic drugs
     Objective To observe the effects of downregulating XIAP expression on the chemotherapeutic sensitivities of gastric cancer cells.
     Methods The antisense eukaryotic vector for XIAP was constructed and stably transferred into gastric cancer cell line MKN-45.RT-PCR and western blot were applied to detect the XIAP gene expression.Cisplatin and MMC were administrated to untransfected and transfected gastric cancer cells.MTT colorimetry and clone formation assay were performed to measure the in vitro cell viability.Apoptosis and its rates were detected by electronic microscopy,AO-EB fluorescent staining and TUNEL.Cellular caspase-3 protein expression and its activities were assayed by western blot and colorimetry.
     Results RT-PCR and western blot indicated that the mRNA and protein levels of XIAP within gastric cancer MKN-45 cells stably transfected with antisense XIAP vector were significantly decreased by 84.75%(P<0.01) and 89.75%(P<0.01),respectively.After treatment with various concentrations of cisplatin and MMC for 24 hours,the cell growth inhibition of MKN-45 cells stably transfected with antisense XIAP was enhanced by 7.3%~25.3%(P<0.01) and 12.3%~16.3%(P<0.01),respectively.Partial cancer cells presented characteristic changes of apoptosis under an electronic microscope,while the apoptosis rates were 34.1%and 32.5%,respectively,which were significantly higher than that of untransfected control MKN-45 cells(14.2%,P<0.05).Compared with MKN-45 cells,the caspase-3 expression within cells stably transfected with antisense XIAP was significantly increased by 2.45 times(P<0.01),while the activity of caspase-3 was enhanced by 3.68 times(P<0.01).
     Conclusions Downregulation of XIAP expression via antisense RNA could increase the expression and activity of caspase-3,enhance the apoptosis of cancer cells induced by chemotherapeutic drugs.
     Part Six Effects of curcumin on IAPs and Smac gene expression of gastric cancer cell line
     Objective To explore the effects of curcumin on gene expression of IAPs and Smac in gastric cancer cell line,in order to explore the inducing apoptosis mechanisms of curcumin.
     Methods After being treated with 10~40μmol/L curcumin for 6~24 h,growth activities of MKN-45 cells were detected by MTT colorimetry.Cellular apoptosis was assayed by TUNEL and DNA Ladder methods.IAPs(Survivin,XIAP) and Smac gene expression was detected by RT-PCR and western blot.Cellular caspase-3 activities were detected by colorimetry method. expression was detected by RT-PCR and western blot.Cellular caspase-3 activities were detected by colorimetry method.
     Results When compared with untreated control group,cellular growth of antisense XIAP-transfected cells was significantly inhibited by various concentrations of curcumin, with inhibitory ratios being 12.18%~68.15%(P<0.01).Partial MKN-45 cells presented characteristic morphological changes of apoptosis,with trapezia bands on gel electrophoresis.The apoptosis rates were 9.24%~28.12%(P<0.01).Cellular mRNA and protein levels of Survivin and XIAP were significantly down-regulated(P<0.01),with those of Smac being up-regulated(P<0.01).Cellular caspase-3 activities were improved by 2.27~6.67 times(P<0.01).
     Conclusions Curcumin could significantly induce apoptosis of gastric cancer cell line MKN-45,one of its mechanisms was through up-regulating Smac and down-regulating Survivin and XIAP expression,leading to activation of caspase-3.
引文
1.Thornberry NA,Lazebnik Y.Caspases:enemies within.Science,1998,281(5381):1312-1316.
    2.Liston P,Fong WG,Korneluk RG.The inhibitors of apoptosis:there is more to life than Bcl2.Oncogene,2003,22(53):8568-8580.
    3.Du C,Fang M,Li Y,et al.Smac,a mitochondrial protein that promotes cytochrome cdependent caspase activation by eliminating lAP inhibition.Cell,2000,102(1):33-42.
    4.中国抗癌协会.新编常见恶性肿瘤诊治规范.第一版,北京:中国协和医科大学出版社.1999:1-58.
    5.Vucic D,Kaiser WJ,Miller LK,et al.A mutational analysis of the baculovirus inhibitor of apoptosis Op-IAP.J Biol Chem,1998,273(51):33915-33921.
    6.Vaux DL,Silke J.Mammalian mitochondrial lAP binding proteins.Biochem Biophys Res Commun.2003,304(3):499-504.
    7.Rajcan-Separovic E,Liston P,Lefebvre C,et al.Assignment of human inhibitor of apoptosis protein(IAP) genes xiap,hiap-1,and hiap-2 to chromosomes Xq25 and 11q22-q23 by fluorescence in situ hybridization.Genomics,1996,37(3):404-406.
    8.Deveraux QL,Takahashi R,Salvesen GS,et al.X-linked IAP is a direct inhibitor of cell-death proteases.Nature,1997,388(6639):300-304.
    9.Takahashi R,Deveraux Q,Tamm I,et al.A single BIR domain of XIAP sufficient for inhibiting caspases.J Biol Chem,1998,273(14):7787-7790.
    10.Riedl SJ,Renatus M,Schwarzenbacher R,et al.Structural basis for the inhibition of caspase-3 by XIAP.Cell,2001,104(5):791-800.
    11.Liston P,Roy N,Tamaik,et al.Suppression of apoptosis in mammalian cells by NAIP and a related family of lAP genes.Nature,1996,379(6563):349-353.
    12.Tamm I,Kornblau SM,Segall H,et al.Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias.Clin Cancer Res,2000,6(5):1796-1803.
    13.Carter BZ,Milella M,Tsao T,et al.Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia.Leukemia,2003,17(11):2081-2089.
    14. Ramp U, Krieg T, Caliskan E, et al. XIAP expression is an independent prognostic marker in clear-cell renal carcinomas. Hum Pathol, 2004, 35(8): 1022-1028.
    
    15. Verhagen AM, Vaux DL. Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis, 2002, 7 (2): 163-166.
    
    16. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell,2000,102 (1): 43-53.
    
    17. Li J, Sasaki H, Sheng YL, et al. Apoptosis and chemoresistance in human ovarian cancer: is Xiap a determinant? Biol Signals Recept, 2000, 9 (2): 122-130.
    
    18. Zheng LD, Tong QS, Tao KX, et al. Effects of Smac gene overexpression on chemotherapeutic sensitivity of gastric cancer cell line MKN-45. Ai Zheng, 2004, 23(4): 361-366.
    
    19. Liu J, Yin S, Reddy N, Spencer C, Sheng S. Bax mediates the apoptosis-sensitizing effect of maspin. Cancer Res, 2004, 64(5): 1703-1711.
    1. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by elimination IAP inhibition. Cell, 2000,102 (1): 33-42.
    
    2. Li Jia,Yasmeen Patwari,Stephen M Kelsey, et al. Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene, 2003, 22 (11): 1589-1599
    
    3. Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood, 1997, 89 (6):1845-1853.
    
    4. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell, 2002,108 (2): 153-164.
    
    5. Li J, Feng Q, Kim JM, et al. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology, 2001,142 (1): 370-380.
    
    6. Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun, 2003, 304 (3): 499-504.
    
    7. Verhagen AM, Vaux DL. Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis, 2002, 7(2): 163-166.
    
    8. Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 2000, 406(6798): 855-862.
    
    9. Adrain C, Creagh EM, Martin SJ. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J, 2001, 20(23):6627-6636.
    
    10. MacFarlane M. Smac agonists blaze the TRAIL to tumor cells. Trends Cell Biol, 2002,12(11): 499.
    
    11. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000,102(1): 33-42.
    
    12. Srinivasula SM, Datta P, Fan XJ, et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem, 2000, 275(46): 36152-36157.
    
    13. Chauhan D, Hideshima T, Rosen S, et al. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem,2001, 276(27): 24453-24456.
    14. McNeish IA, Bell S, McKay T, et al. Expression of Smac/DIABLO in ovarian carcinoma cells induces apoptosis via a caspase-9-mediated pathway. Exp Cell Res,2003, 286 (2): 186-198.
    
    15. Fulda S, Wick W, Weller M, et al. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo.Nat Med, 2002, 8 (8): 808-815.
    
    16. Yamamoto M, Maehara Y, Sakaguchi Y, et al. Transforming growth factor-beta 1 induces apoptosis in gastric cancer cells through a p53-independent pathway. Cancer,1996, 77(8 Suppl):1628-1633.
    
    17. Kuwahara D, Tsutsumi K, Kobayashi T, et al. Caspase-9 regulates cisplatin-induced apoptosis in human head and neck squamous cell carcinoma cells. Cancer Lett, 2000,148(1): 65-71.
    
    18. Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac) or cotreatment with N-terminus of Smac peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood, 2002, 99 (9): 3419-3426.
    1.Du C,Fang M,Li Y,et al.Smac,a mitochondrial protein that promotes cytochrome cdependent caspase activation by elimination IAP inhibition.Cell,2000,102(1):33-42.
    2.Alnemri ES,Livingston DJ,Nicholson DW,et al.Human ICE/CED-3 protease nomenclature.Cell,1996,87(2):171.
    3.Bantel H,Bruning T,Schulze-Osthoff K.Activation of caspases by death receptors.Eur Cytokine Netw,1998,9(4):681-684.
    4.Caulin C,Salvesen GS,Oshima RG.Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis.J Cell Biol,1997,138(6):1379-1394.
    5.Petit PX,Zamzami N,Vayssiere JL,et al.Implication of mitochondria in apoptosis.Mol Cell Biochem,1997,174(1-2):185-188.
    6.Jia L,Patwari Y,Kelsey SM,et al.Role of Smac in human leukemic cell apoptosis and proliferation.Oncogene,2003,22(11):1589-1599.
    7.Yoo NJ,Kim HS,Kim SY,et al.Immunohistochemical analysis of Smac/DIABLO expression in human carcinomas and sarcomas.APMIS,2003,111(3):382-388.
    8.辛华雯,吴笑春,李罄等.胃癌体外化疗药物敏感性及临床疗效研究.中国临床药理学与治疗学,2002,7(2):147-149.
    9.Fulda S,Wick W,Weller M,et al.Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo.Nat Med,2002,8(8):808-815.
    1.Du C,Fang M,Li Y,et al.Smac,a mitochondrial protein that promotes cytochrome cdependent caspase activation by elimination IAP inhibition.Cell,2000,102(1):33-42.
    2.陈丽娟,盛瑞兰,汪承亚.AO/EB荧光染色法测定阿糖胞苷诱导HL-60细胞凋亡.中华血液学杂志,1998,19(1):41-42.
    3.Eastman A,Rigas JR.Modulation of apoptosis signaling pathways and cell cycle regulation.Semin Oncol,1999,26(5 Suppl 16):7-16.
    4.Walker PR,Sikorska M.New aspects of the mechanism of DNA fragmentation in apoptosis.Biochem Cell Biol,1997,75(4):287-299.
    5.Pan G,O'Rourke K,Dixit VM,et al.Caspase-9,Bcl-XL,and Apaf-1 form a ternary complex.J Biol Chem,1998,273(10):5841-5845.
    6.Slee EA,Harte MT,Kluck RM,et al.Ordering the cytochrome c-initiated caspase cascade:hierarchical activation of caspases-2,-3,-6,-7,-8,and-10 in a caspase-9-dependent manner.J Cell Biol,1999,144(2):281-292.
    7.Shi Y.Mechanisms of caspase activation and inhibition during apoptosis.Mol Cell,2002,9(3):459-470.
    8.Deveraux QL,Takahashi R,Salvesen GS,et al.X-linked IAP is a direct inhibitor of cell-death proteases.Nature,1997,388(6639):300-304.
    9.Suzuki Y,Nakabayashi Y,Nakata K,et al.X-linked inhibitor of apoptosis protein (XLAP) inhibits caspase-3 and -7 in distinct modes.J.Biol.Chem,2001,276(29):27058-27063.
    10.Riedl SJ,Renatus M,Schwarzenbacher R,et al.Structural basis for the inhibition of caspase-3 by XIAP.Cell,2001,104(5):791-800.
    11.Tamm I,Kornblau SM,Segall H,et al.Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias.Clin Cancer Res,2000,6(5):1796-1803.
    12.Earnshaw WC,Martins LM,Kaufmann SH.Mammalian caspases:structure,activation,substrates,and functions during apoptosis.Annu Rev Biochem,1999,68(3):383-424.
    13. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000, 102(1): 33-42.
    
    14. Verhagen AM, Verhagen AM, Ekert PG, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 2000,102(1): 43-53.
    
    15. Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 2000,406(6798): 855-862.
    
    16. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998, 391(6662): 43-50.
    
    17. Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature, 2000, 408(6815): 1004-1008.
    
    18. Wu G, Chai J, Suber TL, et al. Structural basis of IAP recognition by Smac/DIABLO.Nature, 2000,408(6815): 1008-1012.
    
    19. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 2001,410(6824): 112-116.
    
    20. Jia L, Patwari Y, Kelsey SM, et al. Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene, 2003, 22 (11): 1589-1599.
    
    21. Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood, 2002, 99 (9): 3419-3426.
    
    22. Fulda S, Wick W, Weller M, et al. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo.Nat Med, 2002, 8 (8): 808-815.
    1. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell, 2002,108(2): 153-164.
    
    2. Szostak MJ, Kyprianou N. Radiation-induced apoptosis: predictive and therapeutic significance in radiotherapy of prostate cancer. Oncol Rep, 2000, 7(4): 699-706.
    
    3. Schulze PC, Adams V, Busert C, Bettag M, Kahn T, Schober R. Effects of laser-induced thermotherapy (LITT) on proliferation and apoptosis of glioma cells in rat brain transplantation tumors. Lasers Surg Med, 2002,30(3): 227-232.
    
    4. Martin SJ. Destabilizing influences in apoptosis: sowing the seeds of LAP destruction.Cell, 2002,109(7): 793-796.
    
    5. Deveraux QL, Reed JC. LAP family proteins-suppressors of apoptosis. Genes Dev,1999,13(3): 239-252.
    
    6. Li J, Sasaki H, Sheng YL, Schneiderman D, Xiao CW, Kotsuji F, Tsang BK. Apoptosis and chemoresistance in human ovarian cancer: is Xiap a determinant? Biol Signals Recept, 2000, 9(2): 122-130.
    
    7. Vaziri SA, Grabowski DR, Tabata M, Holmes KA, Sterk J, Takigawa N, Bukowski RM, Ganapathi MK, Ganapathi R. c-LAP1 is overexpressed in HL-60 cells selected for doxorubicin resistance: effects on etoposide-induced apoptosis. Anticancer Res, 2003,23(5A): 3657-3661.
    
    8. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer.Oncogene, 2003, 22(53): 8581-8589.
    
    9. Notarbartolo M, Cervello M, Dusonchet L, Cusimano A, D'Alessandro N. Resistance to diverse apoptotic triggers in multidrug resistant HL60 cells and its possible relationship to the expression of P-glycoprotein, Fas and of the novel anti-apoptosis factors LAP (inhibitory of apoptosis proteins). Cancer Lett, 2002,180(1): 91-101.
    
    10. Gulmann C, Hegarty H, Grace A, Leader M, Patchett S, Kay E. Differences in proximal (cardia) versus distal (antral) gastric carcinogenesis via the retinoblastoma pathway. World J Gastroenterol, 2004, 10(1):17-21.
    11. Ding YB, Chen GY, Xia JG, Zang XW, Yang HY, Yang L, Liu YX. Correlation of tumor-positive ratio and number of perigastric lymph nodes with prognosis of patients with surgically-removed gastric carcinoma. World J Gastroenterol, 2004, 10(2):182-185.
    
    12. Dubrez L, Savoy I, Hamman A, Solary E. Pivotal role of a DEVD-sensitive step in etoposide-induced and Fas-mediated apoptotic pathways. EMBO J, 1996, 15(20):5504-5512.
    
    13. Yoshida A, Takauji R, Inuzuka M, Ueda T, Nakamura T. Role of serine and ICE-like proteases in induction of apoptosis by etoposide in human leukemia HL-60 cells.Leukemia, 1996,10(5): 821-824.
    
    14. Wosikowski K, Regis JT, Robey RW, Alvarez M, Buters JT, Gudas JM, Bates SE.Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Cell Growth Differ, 1995, 6(11): 1395-1403.
    
    15. McCarthy NJ, Hazlewood SA, Huen DS, Rickinson AB, Williams GT. The Epstein-Barr virus gene BHRF1, a homologue of the cellular oncogene Bcl-2, inhibits apoptosis induced by gamma radiation and chemotherapeutic drugs. Adv Exp Med Biol, 1996, 406(1): 83-97.
    
    16. Caponigro F, French RC, Kaye SB. Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs, 1997, 8(1): 26-33.
    
    17. Campone M, Vavasseur F, Le Cabellec MT, Meflah K, Vallette FM, Oliver L.Induction of chemoresistance in HL-60 cells concomitantly causes a resistance to apoptosis and the synthesis of P-glycoprotein. Leukemia, 2001,15(9): 1377-1387.
    
    18. Brockdorff BL, Skouv J, Reiter BE, Lykkesfeldt AE. Increased expression of cytochrome p450 1A1 and 1B1 genes in anti-estrogen-resistant human breast cancer cell lines. Int J Cancer, 2000, 88(6): 902-906.
    
    19. Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene, 2003,22(47): 7537-7552.
    
    20. Zhou R, Frostvik Stolt M, Kronenwett U, Gruber A, Liliemark J, Liliemark E. Realtime RT-PCR for the determination of topoisomerase II mRNA level in leukaemic cells.Leuk Res, 2002, 26(5): 487-494.
    21. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene, 2003,22(20): 3138-3151.
    
    22. Schmitt CA, Lowe SW. Apoptosis and chemoresistance in transgenic cancer models. J Mol Med, 2002, 80(3): 137-146.
    
    23. Fennell DA. Bcl-2 as a target for overcoming chemoresistance in small-cell lung cancer. Clin Lung Cancer, 2003,4(5): 307-313.
    
    24. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance.Oncogene, 2003, 22(47): 7265-7279.
    
    25. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 2004,23(16): 2934-2949.
    
    26. Zheng LD, Tong QS, Tao KX, Wang L, Zhang B. Effects of Smac Gene Overexpression on Chemotherapeutic Sensitivity of Gastric Cancer Cell Line MKN-45.Ai Zheng, 2004, 23(4): 361-366.
    
    27. Blagosklonny MV. Prospective strategies to enforce selectively cell death in cancer cells. Oncogene, 2004, 23(16): 2967-2975.
    
    28. Liston P, Fong WG, Korneluk RG. The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene, 2003, 22(53): 8568-8580.
    
    29. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene, 1998,17(25): 3247-3259.
    
    30. Rajcan-Separovic E, Liston P, Lefebvre C, Korneluk RG. Assignment of human inhibitor of apoptosis protein (IAP) genes xiap, hiap-1, and hiap-2 to chromosomes Xq25 and 11q22-q23 by fluorescence in situ hybridization. Genomics, 1996, 37(3):404-406.
    
    31. Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A,2001, 98(15): 8662-8667.
    32. Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem, 1998,273(14): 7787-7790.
    
    33. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J, 1999,18(19): 5242-5251.
    
    34. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC,Salvesen GS. Structural basis for the inhibition of caspase-3 by XIAP. Cell, 2001,104(5): 791-800.
    
    35. Messmer UK, Pereda-Fernandez C, Manderscheid M, Pfeilschifter J. Dexamethasone inhibits TNF-alpha-induced apoptosis and LAP protein downregulation in MCF-7 cells.Br J Pharmacol, 2001,133(4): 467-476.
    
    36. Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W, Dean NM, Steelman L, McCubrey JA, Andreeff M. Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia, 2003,17(11): 2081-2089.
    
    37. Mansouri A, Zhang Q, Ridgway LD, Tian L, Claret FX. Cisplatin resistance in an ovarian carcinoma is associated with a defect in programmed cell death control through XIAP regulation. Oncol Res, 2003,13(6-10): 399-404.
    
    38. Ekedahl J, Joseph B, Grigoriev MY, Muller M, Magnusson C, Lewensohn R,Zhivotovsky B. Expression of inhibitor of apoptosis proteins in small- and non-small-cell lung carcinoma cells. Exp Cell Res, 2002, 279(2): 277-290.
    
    39. Holcik M, Yeh C, Korneluk RG, Chow T. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death.Oncogene, 2000,19(36): 4174-4177.
    
    40. Sasaki H, Sheng Y, Kotsuji F, Tsang BK. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells.Cancer Res, 2000, 60(20): 5659-5666.
    1. Lin JK, Pan MH, Lin-Shiau SY. Recent studies on the biofunctions and biotransformations of curcumin. Biofactors, 2000,13(1-4): 153-158.
    
    2. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by elimination IAP inhibition. Cell, 2000,102(1): 33-42.
    
    3. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. Third ed. New York: Cold Spring Harbor Laboratory Press. 1998, 254-325.
    
    4. Lin JK, Lin-shiau SY. Mechanisms of cancer chemoprevention by curcumin. Proc Natl Sci Counc ROC (B), 2001, 25(2): 59-66.
    
    5. Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun, 2003, 304(3): 499-504.
    
    6. Andersen MH, thor SP. Survivin--a universal tumor antigen. Histol Histopathol,2002,17(2): 669-675.
    
    7. Holcik M, Gibson H, Korneluk RG. XIAP: apoptotic brake and promising therapeutic target. Apoptosis, 2001, 6 (4): 253-261.
    
    8. Chow KU, Nowak D, Boehrer S, et al. Synergistic effects of chemotherapeutic drugs in lymphoma cells are associated with down-regulation of inhibitor of apoptosis proteins (IAPs), prostate-apoptosis- response-gene 4 (Par-4), death-associated protein (Daxx) and with enforced caspase activation. Biochem Pharmacol, 2003, 66 (5): 711-724.
    
    9. Enari M, Sakahira H, Yokoyam a H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998, 391(6662): 43-50.
    1. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell,1997, 88(3): 347-354.
    
    2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science, 1995,267(5203): 1456-1462.
    
    3. Spring SL, Diavolitsis VM, Goodhouse J, et al. The kinetics of translocation of Smac/DIABLO from the mitochondria to the cytosol in Hela cells. J Biol Chem, 2002,277(48): 45715-45718.
    
    4. Hu S, Yang X. Cellular inhabitor of apoptosis 1 and 2 are ubiquition ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem, 2003, 278(12): 10055-10060.
    
    5. Goyal L, McCall K, Agapite J, et al. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J, 2000,19(4): 589-597.
    
    6. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000,102(1): 33-42.
    
    7. Verhagen AM, Verhagen AM, Ekert PG, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell,2000,102(1): 43-53.
    
    8. Srinivasula SM, Datta P, Fan XJ, et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem, 2000, 275(46): 36152-36157.
    
    9. Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun. 2003, 304(3): 499-504.
    
    10. Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptosic activation by Smac/DIABLO. Nature, 2000, 406(6798): 855-862.
    
    11. Shi Y. A structural view of mitochondria-mediated apoptosis. Nature Struct Biol, 2001,8(5): 394-401.
    
    12. Wu G, Chai J, Suber TL, et al. Structural basis of IAP recognition by Smac /DIABLO.Nature, 2000, 408(6815): 1008-1012.
    13. Adrain C, Creagh EM, Martin SJ. Apoptosis-associated release of Smac/ DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J, 2001, 20(23):6627-6636.
    
    14. Huang Y, Park YC, Rich RL, et al. Structural basis of caspase inhibition by XlAP:differential role of linker versus the BIR domain. Cell, 2001,104(5):781-790.
    
    15. Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell, 2001,104(5): 791-800.
    
    16. Liu Z, Sun C, Olejniczak ET, et al. Structural basis forbinding of Smac/DIABLO to the XIAP BIR3 domain. Nature, 2000, 408(6815): 1004-1008.
    
    17. Srinivasula SM, Hedge R, Saleh A, et al. A conserved XIAP motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis.Nature, 2001, 410(6824): 112-116.
    
    18. Chauhan D, Hideshima T, Rosen S, et al. Apaf-I/cytochrome C indepen-dent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem, 2001, 276(27): 24453-24456.
    
    19. Deng Y, Lin Y, Wu X, et al. TRAIL-induced apoptosis requires bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev, 2002,16(1): 33-45.
    
    20. Roberts DL, Merrison W, Marion MacFarlane M, et al. The inhibitor of apoptosis protein - binding domain of Smac is not essential for its proapoptotic activity. J Cell Biol, 2001,153(1): 221-228.
    
    21. Jia L, Patwari Y, Kelsey SM, et al. Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene, 2003, 22(11): 1589-1599.
    
    22. Altieri DC. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med, 2001,7(12): 542-547.
    
    23. Li R, Ruttinger D, Urba W, et al. Targeting and amplification of immune killing of tumor cells by pro-Smac. Int J Cancer, 2004,109(1): 85-94.
    
    24. Bellain AM, Steven Bell, Tristan Mckay, et al. Adenoviral delivery of Smac/DIABLO to ovarian carcinoma cells induces apoptosis via a caspase-9-mediated pathway and enhances sensitivity of caspase. Proc AACR, 2002, 43(12): 1100.
    25. Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic over-expression of second motochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates Epothilone B derivative-(BMS 247550) and Apol-2L/TRAlL-induced apoptosis. Blood, 2002, 99(9): 3419-3426.
    
    26. Arnt CR, Chiorean MV, Heldebrant MP, et al. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAPl in situ. J Biol Chem, 2002, 277(46): 44236-44243.
    
    27. Hunter AM, Kottachchi D, Lewis J, et al. A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO. J Biol Chem, 2003,278(9): 7494-7499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700