用户名: 密码: 验证码:
太湖湖滨生态修复区底栖动物群落结构及梯度分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖滨带是连接湖泊水域生态系统与陆地生态系统的功能过渡区,是湖泊生产力、生境多样性和生物多样性最集中的区域,在涵养水源、净化水体、维护生物多样性和保持生态平衡等方面有重要的作用。随着工农业发展、人口增长以及人类不合理开发活动的加剧,越来越多的湖滨带结构、生态过程受到干扰和破坏,生态功能下降,外在表现为生物多样性下降及自然景观的退化,湖滨带生态修复成为湖泊生态治理的重要措施。其主要措施包括生境修复、群落结构修复和生态系统功能修复3个方面。可通过基底修复、选择适宜的先锋植物和群落结构配置,实行水体、底泥、植被与群落同步分级恢复,逐步使湖滨带生态系统的结构、功能和生态学潜力恢复到原有水平。
     大型底栖动物是水生态系统食物链中重要组成部分,其优势类群主要包括水栖寡毛类、软体动物和水生昆虫等,在加速碎屑分解,调节泥水界面物质交换,促进水体自净等方面具有重要作用。由于底栖动物寿命较长,迁移能力有限,对环境变化反应敏感,因此,当水体富营养化或受到污染时,底栖动物群落结构及多样性会发生明显改变,而河流湖泊的底质、水环境等生境差异也会对底栖动物的分布造成影响。
     太湖贡湖湾生态修复工程区是国家林业局太湖治理湿地生态保护与恢复工程的一个工程点,于2008年11月竣工,面积约0.2km2,北接湖岸,南面由留有缺口的几段低浅人工桩基消浪堰与太湖相接,形成了一个东西向长约1100m、南北宽约160m的半封闭型的矩形人工湖湾。其生态修复工程已实施近四年,其消浪堰内、外形成了3个不同生境梯度,为研究工程区内底栖动物的分布状况、群落结构及其与水质指标等的相互关系,于2010年-2011年调查了修复区内几种典型生境梯度内的底栖动物种类和密度,并且同步调查了各梯度带的水质状况,对底栖动物群落和水质状况之间的关系做了研究,结果表明:
     (1)修复工程的实施使得消浪堰内、外形成了3个不同生境梯度,即滨岸挺水植物带、湾相沉水植物带、堰外开敞水体,分别记为Ⅰ带、Ⅱ带和Ⅲ带。不同生境梯度的底栖动物在物种组成和群落结构上均存在差异。底栖动物种类数量为Ⅲ带>Ⅰ带>Ⅱ带,种群密度为Ⅲ带>Ⅱ带>Ⅰ带,消浪堰内的底栖动物种类数和密度均低于堰外。3个生境梯度带均有物种仅出现于相应的生境梯度带中,且共有12个物种的种群密度存在生境梯度间差异,占总物种数的66.7%;
     (2)从摄食功能类群来看,刮食者和收集者在工程区内是优势类群,其中刮食者在Ⅰ带和Ⅲ带相对丰度较高,在Ⅱ带相对丰富最低;收集者在Ⅱ带种数最少,相对丰度最高;滤食者在Ⅰ带相对丰度最低,仅出现与该生境梯度的种类数最少;从生活类群来看,物种数和相对丰度的GS/GSB均为Ⅰ带最高,Ⅱ带最低;
     (3)工程区水质状况是影响底栖动物群落分布的重要环境因素,DO、TN、 NH4-N、NO2-N、NO3-N、TP、PO4-P、COD等8个水质参数共可以解释54.5%的底栖动物群落的结构差异。其中DO以及N、P元素动态是最关键的影响因子,工程区大多数底栖动物群落分布均与其密切相关。环节类和昆虫与DO呈正相关,对水体富营养化耐受能力较强,而软体动物大多与水体富营养化程度负相关,一些运动能力较强的腹足类对于低DO环境的耐受能力较强,在还原性较强的区域有较多分布。
     本文通过在对工程区内底栖动物群落状况调查,发现了底栖动物在不同生境梯度下的分布状况;同时通过研究底栖动物群落状况与水质之间的关系,揭示了不同类群底栖动物对于不同水质因子的响应。研究结果在一定程度上揭示了滨岸带生态修复区内底栖动物与环境间的关系,可为湖滨带生态修复工程的设计与建设提供参考。
As a kind of aquatic-terrestrial ecotone, riparian area plays an important role in the lake basin ecosystem, and has high ecological, social and economic values. Its functions include lake buffer, conservation of biological diversities and special habitats, dike protection from soil erosion, and economic and esthetics values. The main factors inducting riparian area degradation are the anthropogenic activities that caused the converse succession of communities and the decline of ecological function. The theoretical basis of ecological restoration and reconstruction of degraded riparian area is restoration ecology; while the technologies are of three types, i. e., habitat restoration and reconstruction, species restoration and reconstruction, and structural and functional restoration.
     Macrobenthos is an important component of wetland ecosystems. Auatic Oligochaetes, mollusks and aquatic insects are the dominant groups of macrobenthos in freshwater. Macrobenthos in freshwater plays an important role in accelerating debris decomposition, regulating the material exchange on the interface water, and the promotion of self-purification of water. Macrobenthos is sensitive to the variation habitat due to the limited migration ability and the comparative long life. The distribution of macrobenthos will change significantly with different sediments of rivers and lakes, water environments and habitats. It has great significance to understand the structure, function and evolution of wetland ecosystems. Current researched had no enough attention on relationship between the macrobenthos composition and the habitat in ecological restoration pilot area. In this study, The T-Park ecological restoration project zone was taken as the study area. We wanted to study the macrobenthos composition, the habitat gradient, and the relationships between them, which had an important reference value on researches on the ecological restoration engineering.
     To examine the relationships between habitat gradient and macrobenthos composition, a field investigation was undertaken in three different habitats, riparian zone with emerged vegetation (zone Ⅰ), lake-bay zone with submerged vegetation (zone Ⅱ) and open water zone outside the weir (zone Ⅲ) in an ecological restoration pilot area of Gonghu Bay, Taihu Lake, during2010-2011. The result shows:
     (1) Collectively,18species of macrobenthos were identified from12sampling sites. Of those,7species were found in association with only one habitat type. Of the other11species,5ones showed significant differences in abundance across the habitat gradient.
     (2) By investigating the distribution of functional feeding groups of macrobenthos, significant differences were observed among the habitat types. For the scrapers, the highest relative abundance was shown in zone I, while that was present in zone II and III for gather-collectors and filter-collectors, respectively. In terms of species richness and relative abundance, the ratio between group of surface and group of surface below (GS/GSB) were the highest in zone I and the lowest in zone II.
     (3) Redundancy analysis was applied to examine the influence of water quality on macrobenthos composition. The results showed that annelids and aquatic insects were positively correlated with DO, NO3--N, PO43--P. Mollusks were negatively correlated with NO3--N and PO43--P. Some mollusks were able to endure the stress from low DO and correlated positively with NH4+-N and COD.
     Overall, the three distinctive habitat types were formed via the restoration project and varied in hydraulic conditions, water quality and substrates. As a result, they can lead to three different types of macrobenthos in terms of life form and feeding attributes.
     This study identified macrobenthos composition in three different habitats in an ecological restoration pilot area of Gonghu Bay, Taihu Lake; while by investigating distribution of functional feeding groups and life groups of the macrobenthos, revealed the communities difference among the three habitats. Redundancy analysis in the relationships between habitat gradient and macrobenthos composition showed the three distinctive habitat types lead to three different types of macrobenthos in terms of life form and feeding attributes. The results could provide a reference for protection on ecological restoration and reconstruction of degraded riparian area.
引文
1.蔡永久,龚志军,秦伯强.2010.太湖大型底栖动物群落结构及多样性.生物多样性,18(1):50-59.
    2.柴培宏,代嫣然,梁威,等.2010.湖滨带生态修复研究进展.中国工程科学,12(6):32-35.
    3. 陈吉泉.1996.河岸植被特征及其在生态系统和景观中的作用.应用生态学报,7(4):439-448.
    4.陈 凯,张宗祥,刘朔孺,等.2011.溱湖国家湿地公园水环境特征及底栖动物群落结构研究.湿地科学,9(1):26-32.
    5. 陈其羽,梁彦龄,吴天惠.1980.武汉东湖底栖动物群落结构和动态的研究.水生生物学集刊,7(1):41-56.
    6.陈中义,雷泽湘,周进,等.2000.梁子湖六种沉水植物种群数量和生物量周年动态.水生生物学报,24(6):582-588.
    7. 邓红兵,王庆礼,蔡庆华.1998.流域生态学——新学科、新思想、新途径.应用生态学报,9(4):443-449.
    8.段学花,王兆印,程冬升.2007b.典型河床底质组成中底栖动物群落及多样性.生态学报,27(4):1664-1672.
    9.段学花,王兆印,田世民.2007a.河床底质对大型底栖动物多样性影响的野外试验.清华大学学报(自然科学版),47(9):1553-1556.
    10.范航清,何斌源,韦受庆.2000.海岸红树林地沙丘移动对林内大型底栖动物的影响.生态学报,20(5):722-727.
    11.冯建祥,董双林,高勤峰,等.2011.海蜇养殖对池塘底泥营养盐和大型底栖动物群落结构的影响.生态学报,31(4):0964-0971.
    12.葛宝明,鲍毅新,邓祥.2005.灵昆岛围垦滩涂潮沟大型底栖动物群落生态学研究.生态学报,25(3):446-453.
    13.顾丁锡.1983.二十年来太湖生态环境状况的若干变化.上海师范学院学报(自然科学版环境保护专辑),50-59.
    14.国家环境保护总局.2002.地表水环境质量标准.北京:中国科学环境出版 社.
    15.韩洁,张志南,于子山.2001.渤海大型底栖动物丰度和生物量的研究.青岛海洋大学学报,31(6):889-596.
    16.何志辉.2000.淡水生态学.北京:中国农业出版社出版.
    17.黄睿婧,蔡立哲,叶洁琼,等.2010.广州南沙十四涌潮间带三种生境的大型底栖动物群落比较.生态学杂志,29(6):1187-1192.
    18.江明喜,邓红兵,蔡庆华.2002.神农架地区珍稀植物沿河岸带的分布格局及其保护意义.应用生态学报,13(11):1373-1376.
    19.姜苹红,梁小民,陈芳,等.2006.月湖底栖动物的空间格局及其对水草可恢复区的指示.长江流域资源与环境,15(4):502-505.
    20.蒋万祥,蔡庆华,唐涛,等.2009.香溪河水系大型底栖动物功能摄食类群生态学.生态学报,29(10):5207-5218.
    21.蒋万祥,唐涛,贾兴焕,等.2008.硫铁矿酸性矿山废水对大型底栖动物群落结构的影响.生态学报,28(10):4805-4814.
    22.金相灿.2001.湖泊富营养化控制和管理技术.北京:化学工业出版社.
    23.李辛夫,陈宜俞.1998.内陆水体生物学研究与淡水渔业的可持续发展.水生生物学报,2(22):174-180.
    24.厉红梅,李适宇,蔡立哲.2003.深圳湾潮间带底栖动物群落与环境因子的关系.中山大学学报:自然科学版,42(5):93-96.
    25.刘保元,邱东茹,吴振斌.1997.富营养浅湖水生植被重建对底栖动物的影响.应用与环境生物学报,3(4):323-327.
    26.刘建康.1990.东湖生态学研究(一).北京:科学出版社.
    27.刘建康.1995.东湖生态学研究(二).北京:科学出版社.
    28.刘凌云,郑光美.2004.普通动物学(第3版).北京:高等教育出版社.
    29.刘其跟,孔优佳,陈立侨,等.2005.网围养殖对滆湖底栖动物群落结构组成及物种多样性的影响.应用与环境生物学报,11(5):566-570.
    30.刘玉,Vermaat JE, Ruyter ED,等.2003.珠江、流溪河大型底栖动物分布和氮磷因子的相关分析.中山大学学报(自然科学版),42(1):95-99.
    31.卢宏玮,曾光明,金相灿,等.2003.湖滨带生态系统恢复与重建的理论、技 术及其应用.城市环境与城市生态,16(6):91-93.
    32.卢晓明,金承翔,黄民生,等.2007.底栖软体动物净化富营养化河水实验研究.环境科学与技术,30(7):7-9.
    33.马陶武,黄清辉,王海,等.2008.太湖水质评价中底栖动物综合生物指数的筛选及生物基准的确立.生态学报,28(3):1192-1200.
    34.潘文斌,唐涛,邓红兵,等.2002.湖泊生态系统服务功能评估初探——以湖北保安湖为例.应用生态学报,13(10):1315-1318.
    35.彭少麟,任海,张倩媚.2003.退化湿地生态系统恢复的一些理论问题.应用生态学报,14(11):2026-2030.
    36.彭少麟.2001.退化生态系统恢复与恢复生态学.中国基础科学,(3):18-24.
    37.秦伯强,胡维平,陈伟民,等.2004.太湖水环境演化过程与机理.北京:科学出版社.
    38.全为民,沈新强,严力蛟.2003.富营养化水体生物净化效应的研究进展.应用生态学报,14(11):2057-2061.
    39.任淑智.1991.京津及邻近地区底栖动物群落特征与水质等级.生态学报,2(3):262-268.
    40.任艳芹,陈开宁.2011.巢湖沉水植物现状(2011年)及其与环境因子的关系.湖泊科学,23(3):409-416.
    41.阮景荣,戎克文,王少梅.1995.微型生态系统中鲢-鳙下行影响的实验研究——浮游生物群落和初级生产力.湖泊科学,3(7):226-234.
    42.苏华武,江晶,温芳妮,等.2008.湖北清江流域叹气沟河底栖动物群落结构与水质生物学评价.湖泊科学,20(4):520-528.
    43.田光俊,熊邦喜,刘敏,等.2009.不同营养类型水库大型底栖动物的群落结构特征及其水质评价.生态学报,29(10):5339-5349.
    44.屠清瑛,顾丁锡,尹澄清,等.1990.巢湖:富营养研究.合肥:中国科学技术大学出版社.
    45.王琴,王海军,崔永德.2010.武汉东湖水网区底栖动物群落特征及其水质的生物学评价.水生生物学报,34(4):739-746.
    46.王备新,徐东炯,杨莲芳,等.2007.常州地区太湖流域上游水系大型底栖无 脊椎动物群落结构特征及其与环境的关系.生态与农村环境学报,23(2):47-51.
    47.王备新,杨莲芳.2004.我国东部底栖无脊椎动物主要分类单元耐污值.生态学报,24(12):2769-2775.
    48.王海珍.2002.生物操纵对滇池浮游植物的群落结构和初级生产力的影响研究.上海:上海师范大学.
    49.王建国,黄恢柏,杨明旭,等.2003.庐山地区底栖大型无脊椎动物耐污值与水质生物学评价.应用与环境生物学报,9(3):279-284.
    50.吴迪,岳峰,罗祖奎,等.2011.上海大莲湖湖滨带湿地的生态修复.生态学报,31(11):2999-3008.
    51.吴东浩,刘伟,赵煜,等.2010.秦淮河上游水体大型底栖无脊椎动物群落结构及其水质生物学评价.环境检测管理与技术,22(5):19-22,30.
    52.吴志华,王晓辉.2006.巢湖东端湖滨带物理基底及生态修复.合肥工业大学学报(自然科学版),29(9):1068-1076.
    53.谢钦铭,李云,熊国根.1995.鄱阳湖底栖动物生态研究及其底层鱼产力的估算.江西科学,13(3):161-170.
    54.谢志才,张君倩,陈静,等.2007.东洞庭湖保护区大型底栖动物空间分布格局及水质评价.湖泊科学,19(3):289-298.
    55.熊金林,梅兴国,胡传林.2003.不同污染程度湖泊底栖动物群落结构及多样性比较.湖泊科学,15(2):160-168.
    56.徐小雨,周立志,朱文中,等.2011.安徽菜子湖大型底栖动物的群落结构特征.生态学报,31(4):943-953.
    57.许朋柱,秦伯强.2002.太湖湖滨带生态系统退化原因以及恢复与重建设想.水资源保护,(3):56-63.
    58.闫云君,李晓宇,梁彦龄.2005.草型湖泊和藻型湖泊中大型底栖动物群落结构的比较.湖泊科学,17(2):176-182.
    59.颜昌宙,金相灿,赵景柱,等.2005.湖滨带的功能及其管理.生态环境,14(2):294-298.
    60.颜昌宙,许秋瑾,赵景柱,等.2004.五里湖生态重建影响因素及其对策探讨. 环境科学研究,17(3):44-47.
    61.颜昌宙,叶春,刘文祥.2003.云南洱海湖滨带生态重建方案研究.上海环境科学,22(7):459-464.
    62.颜玲,赵颖,韩翠香,等.2007.粤北地区溪流中的树叶分解及大型底栖动物功能摄食群.应用生态学报,18(11):2573-2579.
    63.杨龙元,梁海棠,胡维平,等.2002.太湖北部滨岸带区水生植被自然修复观测研究.湖泊科学,14(1):60-66.
    64.杨明生,熊郑喜,杨学芬.2007.武汉市南湖大型底栖动物的时空分布和氮磷评价.湖泊科学,19(6):658-663.
    65.杨清心,李文朝.1996.高密度网围养鱼对水生植被的影响及生态对策探讨.应用生态学报,7(1):83-88.
    66.杨泽华,童春富,陆健健.2006.长江口湿地三个演替阶段大型底栖动物群落特征.动物学研究,27(4):411-418.
    67.叶春,金相灿,王临清,等.2004.洱海湖滨带生态修复设计原则与工程模式.中国环境科学,24(6):717-721.
    68.叶属峰,纪焕红,曹恋,等.2004.河口大型工程对长江河口底栖动物种类组成及生物量的影响研究.海洋通报,23(4):32-37.
    69.尹锴,崔胜辉,赵千钧,等.2009.基于冗余分析的城市森林林下层植物多样性预测.生态学报,29(11):6085-6094.
    70.尹澄清.1995.内陆水-陆地交错带的生态功能及其保护与开发前景.生态学报,15(3):331-335
    71.余作岳,彭少麟.1996.热带亚热带退化生态系统植被恢复生态学研究.广州:广东科学技术出版社.
    72.袁兴中,陆健健,刘红.2002.河口盐沼植物对大型底栖动物群落的影响.生态学报,22(3):326-333.
    73.袁兴中,陆健健.2001a.长江口潮沟大型底栖动物群落的初步研究.动物学研究,22(3):211-215.
    74.袁兴中,陆健健.2001b.围垦对长江口南岸底栖动物群落结构及多样性的影响.生态学报,21(10):1641-1647.
    75.翟淑华,张红举.2006.环太湖河流进出湖水量及污染负荷(2000-2002)年.湖泊科学,18(3):225-230.
    76.张爱菊,叶金云,尹文林,等.2010.水华爆发前后南太湖底栖动物的比较研究.水生态学杂志,3(1):56-59.
    77.张国华,曹文宣,陈宜俞.1997.湖泊放养渔业对我国湖泊生态系统的影响.水生生物学报,21(3):271-280.
    78.张建春,彭补拙.2002.河岸带及其生态重建研究.地理研究,21(3):373-383.
    79.张晴波.2002.云南洱海湖滨带生态恢复工程基底修复方案研究.水运工程,10:45-47.
    80.张训蒲,朱伟义.2005.普通动物学.北京:中国农业出版社.
    81.张永泽,王炬.2001.自然湿地生态恢复研究综述.生态学报,21(2):309-314.
    82.张志南,图立红.1990.黄河口及其邻近海域大型底栖动物分布特征.青岛海洋大学学报(自然科学版),20(2):45-52.
    83.张志南,周红,郭玉清,等.2001.黄河口水下三角洲及其邻近水域线虫群落结构的比较研究.海洋与湖沼,32(4):436-444.
    84.章申,唐以剑.1995.白洋淀区域水污染控制研究(第一集:水陆交错带水环境特征与调控机理).北京:科学出版社.
    85.钟功甫,蔡国雄.1987.我国基(田)塘系统生态经济模式以珠江三角洲和长江三角洲为例.北京:科学出版社.
    86.朱广伟.2008.太湖富营养化现状及原因分析.湖泊科学,20(1):21-26.
    87.朱季文,季子修,蒋自巽.2002.太湖湖滨带的生态建设.湖泊科学,14(1):77-82.
    88. Amaral MJ, Costa MH.1999. Macrobenthic communities of saltpans from the Sado estuary (Portugal). Acta Oecologica,20(4):327-332.
    89. Armitage PD, Moss D, Wright JF, et al.1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research,17(3):333-347.
    90. Bakker JP, Grootjans AP, Hermy M, et al.2000. How to define targets for ecological restoration? Applied Vegetation Science,3:3-6.
    91. Barbour MT, Gerristen J, Snyder BD, et al.1999. Rapid bioassessment protocols for use in streams and wadeable rivers:periphyton, benthic macroinvertebrates, and fish, second edition. Washington, D.C:U.S. Environmental Protection Agency.
    92. Bern LJ.1998. The geometry of a constant buffer loading design method for humid watersheds. Forest Ecology and Management,110:113-125.
    93. Bode RW, Novak MA, Abele LE.2002. Quality Assurance Work Plan for Biology Stream Monitoring in New York State. Albany, NY:NYS Department of Environmental Conservation. [EB/OL]. [2011-10-11]. http://www.dec.ny.gov/docs/water_pdf/sbuqa02.pdf.
    94. Cummins KW.1974. Structure and function of stream ecosystems. BioScience,24: 631-641.
    95. Day JW, Hall CAS, Kemp WM, et al.1989. Estuarine Ecology. New York:Wiley Interscience.
    96. Diaz RJ, Rosenberg R.1995. Marine benthic hypoxia:A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology,33:245-303.
    97. Edgar GJ, Barrett NS.2002. Benthic macrofauna in Tasmanian estuaries:scales of distribution and relationships with environmental variables. Journal of Experimental Marine Biology and Ecology,270(1):1-24.
    98. Edwin TP, Ronald G, Jose HV.2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia, 519:103-115.
    99. Fanini LG, Marchetti M.2009. Effects of beach nourishment and groynes building on population and community descriptors of mobile arthropodofauna. Ecological Indicators,9:167-178.
    100. Gen K, Eisuke K.2008. Spatial changes in a macrozoobenthic community along environmental gradients in a shallow brackish lagoon facing Sendai Bay Japan. Estuarine, Coastal and Shelf Science,78:674-684.
    101. Giovanni MV, Goretti E, Tamanti V.1996. Macrobenthos in Montedoglio Reservior, central Italy. Hydrobiologia,321:17-28.
    102. Gregory SV, Swanson FJ, McKee WA, et al.1991. An ecosystem perspective of riparian zone. Bioscience,41:540-551.
    103. Heino J.2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology, 50(9):1578-1587.
    104. Heips CHR, Goosen NK, Herman PMJ, et al.1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology:An Annual Review,33:1-149.
    105. Higgins RP, Thiel H.1988. Introduction to the study of meiofauna. Washington: Smithsonian Institutio Press.
    106. Hilsenhoff WL.1987. An improved biotic index of organic stream pollution. Great Lakes Entomologist,20:31-39.
    107. Hilsenhoff WL.1988. Rapid field assessment of organic pollution with a family level biotic index. Journal of the North American Benthological Society,7(1): 65-68.
    108. Jean NB, Philippe UP, Jean CM.2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia, 422: 163-171.
    109. Josefson AB, Hansen JLS.2004. Species richness of benthic macrofauna in Danish estuaries and coastal areas. Global Ecology and Biogeography,13(3): 273-288.
    110. Kalff J.2002. Limnology:inland water ecosystems. New Jersey:Upper Saddle River:Prentice Hall.
    111. Lathrop RC.1992. Decline in zoobenthos densities in the profoundal sediments of Lake Mendota (Wiseonsin, USA). Hydrobiologia,235:353-361.
    112. Legendre P, Anderson MJ.1999. Distance-based redundancy analysis:testing multispecies responses in multifactorial ecological experiments. Ecological Monographs,69(1):1-24.
    113. Leps J, Smilauer P.2003. Multivariate Analysis of Ecological Data using Canoco. Cambridge:Cambridge University Press.
    114. MacKay F, Cyrus D.2010. Macrobenthic invertebrate responses to prolonged drought in South Afriea's largestest estuarine lake complex. Estuarine, Coastal and Shelf Science,86:553-567.
    115. Makarenkov V, Legendre P.2002. Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology,83(4): 1146-1161.
    116. Mannino.A, Montagna PA.1997. Small-scale spatial variation of macrobenthic community structure. Estuaries,20(1):159-173.
    117. Maxted JR., Barbour MT, Gerritsen J, et al.2000. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. Journal of the North American Benthological Society,19(1):128-144.
    118. Miller W.1998. An approach for greenway suitability analysis. Landscape Urban Plan,42:91-105.
    119. Morten LP, Nikolai F, Jens S, et al.2007. Restoration of Skjern River and its valley-short-term effects on river habitats, macrophytes and macroinvertebrates. Ecological engineering,30:145-156.
    120. Mosleh YY, Paris-Palacios S, Biagianti-Risbourg S.2006. Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere,64(1):121-128.
    121. National Research Council.1992. Restoration of Aquatic Ecosystems. Washington DC:National Academy Press.
    122. Nobes K, Uthicke S, Henderson R.2008. Is light the limiting factor for the distribution of benthic symbiont bearing foraminifera on the Great Barrier Reef? Journal of Experimental Marine Biology and Ecology,363(1-2):48-57.
    123. Palomo GF, Botto L.2003. Does the Presence of the SW Atlantic burrowing crab Chasmagnathus granulatus Dana affect predator-prey interactions between shorebirds and polyehaetes. Journal of Experimental Marine Biology and Ecology,290(2):211-228.
    124. Pedersen ML, Friberg N, Skriver J, et al.2007. Restoration of Skjern River and its valley-Short-term effects on river habitats, macrophytes and macroinvertebrates. Ecological Engineering,30(2):145-156.
    125. Simpson GG.1964. Species Density of North American Recent Mammals. Systematic Zoology,13:57-73.
    126. Statzner B, Bady P, Doledec S, et al.2005. Invertebrate traits for the biomonitoring of large European rivers:an initial assessment of trait patterns in least impacted river reaches. Freshwater Biology,50(12):2136-2161.
    127. Takamura N, Ito T, Ueno R, et al.2009. Environmental gradients determining the distribution of benthic Macroinvertebrate in lake Takkobu, Kushiro wetland, northern Japan. Ecological Research,24:371-381.
    128. Ter-Braak CJF, Prentice IC.2004. A theory of gradient analysis. Advances in Ecological Research,34:235-282.
    129. Ter-Braak CJF, Smilauer P.2002. CANOCO Reference Manual and Cano Draw for Windows User's Guide:Software for Canonical Community Ordination (Version 4.5). US:Microcomputer Power.
    130. Weis JS, Weis P.2003. Is the invasion of the commonreed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster? Marine Pollution Bulletin,46(7):816-820.
    131. Yan YJ, Liang YL.2003. Energy flow of macrozoobenthos community in an Algal Lake, Houhu Lake (Wuhan, China). Chinese Journal of Oceanology and Limnology,21:229-244.
    132. Ysebaert T, Herman PMJ, Meire P, et al.2003. Large-scale spatial patterns in estuaries:estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuarine. Coastal and Shelf Science,57(1-2):335-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700