用户名: 密码: 验证码:
长江口潮滩湿地鸟类适栖地生态实验工程研究和实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长江河口湿地生态系统的结构和功能为基础,以鸟类生态学原理和生态工程学原理为依据,进行湿地鸟类适栖地营建实验,分析了适栖地营建前后生态系统主要生物组分(植被、大型底栖动物、鱼类和鸟类)的变化,探讨生境改造和优化配置是否可以提高潮滩湿地的鸟类承载力。
     主要研究结论如下:
     (1)生境改造后,植被组成的发生了明显变化
     2005年至2007年间,实验工程一期区优势物种的重要值发生了很大变化。生境改造前,芦苇Phragmites australis重要值是0.632,是区域的优势种,其余物种绝大多数小于0.05。改造后第一年(2006年),糙叶苔草Carex scabrifolia重要值从0.024增加到0.148,无芒稗Echinochloa crusgalli var.mitis重要值从0.039增加到0.151,线叶旋覆花Inula linariaefoia重要值从0.013增加到0.142,,成为主要的优势种。改造后第二年(2007年),糙叶苔草重要值继续上升了0.327,成为工程一期区的第一优势种,其次是线叶旋覆花上升到0.219,无芒稗则迅速下到0.036。工程二期区改造后植被变化与工程一期区改造变化相似。总之,生态实验工程后植被变化增加了景观的异质性,有利于鸟类的隐蔽和底栖动物生境多样性的增加。
     (2)鸟类适栖地营建过程中,大型底栖动物群落结构恢复较快
     由于鸟类适栖地营建时一期区大面积进行过土方工程,大型底栖动物群落受到了较大干扰。工程后第一个月内,一期区的大型底栖动物不管是丰度还是生物量都接近于0。随着时间的推移,丰度、生物量、Shannon-Wiener指数和Margalef指数均迅速增加,春季以后,物种丰富度超过对照区,而生物量虽然增加迅速,但是与对照区的生物量具有很大差距。第一年的大型底栖动物群落结构的变化反映出与时间更替的密切关系。第二年,群落结构的变化与对照区非常相似。两年期间的研究结果显示,大型底栖动物群落结构变化中,生物量的恢复最缓慢。二期区由于土方面积很小,大型底栖动物群落结构恢复更快,但生物量恢复也相对比较慢。
     (3)自然纳饵功能明显
     由于鸟类适栖地营建形成明水面,通过潮汐滞留了鱼类5科17种(其中鲤科鱼类最多,为11种)和甲壳动物2种,从而提高鸟类的捕食机率和丰富了鸟类的饵料。潮水进入后的鱼类丰度和生物量明显比潮水进入前高,充分体现出鸟类适栖地的自然纳饵功能,为潮滩湿地招引水鸟提供了新的途径,是潮滩湿地营建鸟类适栖地应特别关注的新方法。
     (4)生境和生物组分多样性促进鸟类多样性
     一期区营建后,由原来以芦苇群落为主的潮滩湿地变成以明水面、光滩、植被复合结构的湿地鸟类栖息地(明水面面积占40%、浅滩占30%、植被占30%)。2006年监测结果显示,潮滩湿地鸟(鸻形目Charadriiformes和鹳形目Ciconiiformes)以及非目标鸟类的种类和数量均明显高于对照区,共记录到56种,比对照区增加了56%。
     二期区营建后,形成了明水面面积占10%、浅滩占70%、植被占20%复合结构的湿地鸟类栖息地。2008年4月和5月,两个迁徙鸟集中的月份监测结果显示,二期区记录到20种,其中涉禽的种类有11种;对照区记录到9种,其中涉禽1种,一期区同期记录到22种,其中涉禽9种。说明在崇西湿地旅游发展的同时,鸟类适栖地成为了该区域鸟类的主要停歇地,充分显示了在潮滩湿地可通过鸟类适栖地的营建增加湿地水鸟的数量和种类,提升区域的生态服务功能。
Based on the knowledge about functions of the wetland ecosystem at the Yangtze Estuasy wetland ecosystem, the experiment on wetland birds' habitat construction has been conducted in 2005-2007. The change of key components of the habitats before and after this experiment was analyzed, including vegetation, macro-invertebrates, fishes and birds as effects of the construction.
     Major results of this study were:
     (1) The wetland vegetation changes greatly after the habitat construction
     The importance value of dominate species in the experimental area I had changed greatly during the period; before habitat had been constructed, its importance value was 0.632, while the other species were less than 0.05.and in 2006, the first year of habitat had been controlled, the importance values of Carex scabrifolia (0.024 to 0.148), Echinochloa crusgalli vac.mitis (0.039 to 0.151) and Inula linariaefoia (0.013 to 0.142) increased greatly, which become the dominant species. In 2007, the importance value of scabrifolia (0.327) increased, which was the most dominant specie in this area, the following one was linariaefoia (0.219) whose importance value increased, and the important value of crusgalli var.mitis (0.036) decreased quickly. The similar situation happened in the experimental area II. In a conclusion, the changes of vegetation growing in the experimental areas improve their landscape complexity, which is benefit for birds hiding.
     (2) The macro-invertebrate community structure has been restored quickly during the construction of birds' habitats.
     Due to the disturbance brought by the construction in 2006, almost macro-invertebrate communities reduced sharply. One month after the construction, both abundance and biomass were 0. After that, their abundance, biomass, Shannon-Wiener index and Margalef index increased fast. In the later spring, the abundance of the experimental area I was more than the control site, but the biomass was less than the control one. The changes of macro-invertebrate communities showed the close relationship with the seasondity in the first year. And the changes of macro-invertebrate communities were similar in the experimental area and control site. The research results of two years exhibit that the restoration of biomass was the slowest among the changes of macro-invertebrate communities, and it can be expected that, the macro-invertebrate communities tended to be stable after this disturbance
     (3) The function of natural bait retention is obvious
     For the formation of water surface by this experimental engineering, 17species of fish of 5 families (11 Cyprinidae species) and 2 crustacean species have been stranded through tides, which increased the predation chance and prey biomass of birds. Both of the abundance and biomass of fish after the tidal generation engineering were more than the ones before retention, which was enough to show the function of natural bait retention of this experimental birds' habitat. It offers a new method for attracting wetland birds on tidal flat wetland, and should be the special technique that is suitable in building tidal flat wetland birds' habitats.
     (4) The various of habitats supports more birds
     After the construction of the experimental area I , the original tidal flat wetland which was dominated by australis community changed to the compound wetland birds' suitable habitat which was composed by water surface of 40%, bare land of 30% and vegetation of the rest 30%. The data of 2006 showed that the species and total amount of shorebirds (Charadriiformes and Ciconiiformes) and other birds were apparently more than the ones of conrrol site, 56 species had been recorded in the experimental area I, which was 56% more than the species recorded in the control one.
     After the construction of the experimental area II, the compound wetland birds' suitable habitat was composed by water surface of 10%, bare land of 70% and vegetation of the rest 20%. The data in April and May of 2008 showed that 20 species were recorded in the second experimental area II, including 11 wading birds, meanwhile, only 9 species were recorded in the control site, including 1 wading bird, the similar data happened in the experimental area I, 22 species were recorded in this area, and including 9 wading birds. The ratios of wading birds occupying the total one of the experimental areas I and II were 68.9% and 78.3% respectively, which shows the approaching effect of both experimental habitat. It's conduded that through building the tidal habitats for birds, the rechiness and diversity of wetland birds increase, so that the ecological sfunction of this area will be improved.
引文
《全国海岸带和海涂资源综合调查简明规程》编写组.全国海岸带和海涂资源综合调查简明规程.北京:海洋出版社.1986.
    陈水华,丁平,郑光美,诸葛阳.城市化对杭州市湿地水鸟群落的影响研究.动物学研究,2000,21(4):279-285.
    郭振鸣,王天厚,周晓,赵平,施文彧.上海崇明东滩堤内次生人工湿地鸟类冬春季生境选择的因子分析.动物学研究,2006,27(2):144-150.
    胡伟,陆健健.长江口南岸三甲港地区春季迁徙鸻鹬群落结构研究.华东师范大学学报,2001,(4):106-109.
    李永宏.内蒙古典型草原地带退化草原的恢复动态[J].生物多样性,1995,3(3):125-130.
    刘文亮,何文珊.长江口大型底栖无脊椎动物.上海:上海科技出版社.2007.
    陆健健,何文姗,童春富,王伟.湿地生态学.北京:高等教育出版社,2006.241-276.
    陆健健,何文珊,童春富.长江口湿地生态修复关键技术和规划理念的研究[M].生态安全与生态建设.北京:林业出版社,2002,104-109.
    陆健健,何文珊.上海地区湿地的研究.见:郎惠卿、林鹏、陆健健.中国湿地研究何保护.上海:华东师范大学出版社,1998.297-310.
    陆健健,王伟.湿地生态修复.湿地科学与管理,2007,3(1):34-35.
    陆健健.河口生态学.北京:海洋出版社,2003.200-316.
    陆健健.湿地与湿地生态系统的管理对策.农村生态环境,1988,2:39-42.
    陆健健.中国湿地.上海:华东师范大学出版社.1990.
    钱国祯,崔志兴,王天厚.长江口、杭州湾北部的鹤形目鸟类群落.动物学报,1985,31(1):96-97.
    唐承佳,陆健健.围垦堤内迁徙鸻鹬群落的生态学特性.动物学杂志,2002,37(2):27-33.
    童春富.河口湿地生态系统结构、功能与服务一一以长江口为例.上海:华东师范大学博士学位论文.2004.
    吴诗宝,柯亚永,吴桂生,卢开和,毕肖峰.雷州半岛湿地水鸟区系组成及生态分布的初步研究.动物学杂志,2002,37(2):58-62.
    熊李虎,吴翔,高伟,周洁,陆健健.芦苇收割对震旦鸦雀觅食活动的影响.动物学杂志,2007,42(6):41-47.
    熊李虎.过境候鸟及其栖息地需求研究.上海:华东师范大学硕士学位论文.2005.
    杨泽华,童春富,陆健健.盐沼植物对大型底栖动物群落的影响.生态学报,2007, 27(11):4387-4393.
    袁兴中,陆健健,刘红.河口盐沼植物对大型底栖动物群落的影响.生态学报,2002,22(3):326-333.
    张衡,何文珊,童春富,陆健健.崇西湿地冬季潮滩鱼类种类组成及多样性分析.长江流域资源与环境,2007,16(3):308-312.
    张衡.长江河口湿地鱼类的物种多样性和群落生态学特征.上海:华东师范大学博士学位论文.2007.
    章飞军,童春富,谢志发,刘文亮,高伟,陆健健.长江口潮间带大型底栖动物群落演替.生态学报,2007,27(12):4944-4952.
    章飞军,童春富,谢志发,陆健健.Exergy作为生态学指标用于底栖动物群落恢复监测.生态学报,2007,27(5):1910-1916.
    赵平,袁晓,唐思贤,王天厚.崇明东滩冬季水鸟的种类和生境偏好.动物学研究,2003,24(5):387-391.
    朱晓君,陆健健.长江口九段沙潮间带底栖动物的功能群.动物学研究,2003,24(5):355-361.
    Barter M,Sixian D T.Wader numbers on Chongming Dao,Yangtze estuary,China,during early 1996 northward migration and the conservation implications.The Stilt,1997c,30:7-13.
    Barter M,Tokson D.Waders departures form Chongming Dao(Near Shanghai,China)During March/April 1996.The Stilt,1997a,31:1217.
    Barter M,Tonkinson D,Sixian T et al.Staging of Great Knot Calidristenuirostris,Red Knot C.Canutus and Bar-tailed Godwit Limosa lapponica at Chongming Dao,Shanghai:jumpers to hoppers? The Stilt,1997d,31:211.
    Barter M,Tonkinson D.Wader departures from Chongming Dao(Near Shanghai,China)during March/April 1996.The Stilt,1997b,12-17.
    Bartlett D,Carter R W.Seascape ecology:The landscape ecology of the coastal zone.Ecology(CSFR),1991,10(1):43-53.
    Bergh E V,Damme S V,Graveland J,et al.Ecological Rehabilitation of the Schelde Estuary(The Netherlands-Belgium;Northwest Europe):Linking Ecology,Safety against Floods,and Accessibility for Port Development.Restoration Ecology,2005,13(1):204-214.
    Bradshaw A D.What do we mean by restoration? In:Urbanska K M,et al(eds),Restoration Ecology and Sustainable Development,Cambridge University Press,Cambridge,UK.2000.
    Bregnballe T, Amstrup O, Bak M, et al. Occurrence during the migration period and experiments with hunting regulations (in Danish with English summary).Waterbirds in Skjern Meadows 2002-2004. National Environmental Research Institute, 2005b, Working Report no. 218: 114.
    Bregnballe T, Amstrup O, Bak M. Birds. The restoration of Skjern River. Summary of monitoring results 1999-2003 (in Danish with English summary). National Environmental Research Institute, 2005a, Technical Report, no. 531: 96.
    Capehart A A, Hackney C T. The potential role of roots and rhizomes in structuring salt-marsh benthic communities. Estuaries, 1989,12: 119-122.
    Cody M L. Habitat selection in birds. London: Academic Press. 1985.
    Davis C A, Smith L M. Ecology and management of migrant shorebirds in the Playa Lake region of Texas. Wildlife Monograph, 1998,140: 1-48.
    Donald F H, Fischenich T J C, Palermo M R. Wetland research Program: Wetlands Engineering Handbook. US Army Crops of Engineers, 2000.
    Edgar G J, Robertson A I. The ifluence of seagrass structure on the distribution and abundance of mobile epifauna: patterns and process in a Western Australian Amphibilis bed. Journal of experimental Marine Biology and Ecology, 1992, 160:13-31.
    Evans P R, Ward R M, Bone M, et al. Creation of temperate-climate intertidal mudflats: factors affecting colonization and use by benthic invertebrates and their bird predators. Marine Pollution Bulletin, 1998, 37: 535-545.
    Farmer A H, Parent A H. Effects of the landscape on shorebird movements at spring migration stopover. Condor, 1997, 99: 698707.
    Fred V D, Sarah E V K, Christy E P, et al. Restoration efforts for plant and bide communities in Tallgrass Prairies using prescribed burning and mowing.Restoration Ecology, 2004. 12(4): 575-585.
    Friberg N, Kronvang B, Hansen H O, et al. Long-term, habitat-specific response of a macroinvertebrate community to river restoration. Aquatic Conservation, 1998, 8:87-99.
    Helmers D L, Western H. Shorebird Reserve Network, Mahomet, Mass. Shorebird management manual, 1992, 58.
    Hughes F M R, Colston A, Mountford J O. Restoring riparian ecosystems: the challenge of accommodating variability and designing restoration trajectories.Ecology and Society. 2005,10-12.
    Irlandi E A, Ambrose W G, Orlando B A. Landscape ecology and the marine environment: how spatial configuration of seagrass habitat influences growth and survival of the bay scallop, Argopecten irradians. Oikos, 1995, 72: 307-313.
    Irlandi E A. Lanrge- and small-effects of habitat structure on rates of predation; how percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve. Oecologia, 1994,98: 176-183.
    John W, Day Jr, Alejandro Y A, Mitsch W J et al. Using Ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach 2003.
    Kim J H, DeWreede R E. Effects of size and season of disturbance on algal patch recovery in a rocky intertidal community. Marine Ecology Progress Series, 1996,133:217-228.
    Kingsford R T, Curtin A L, Porter J. Water flows on Cooper Creek in arid Australia determine 'boom' and 'bust' periods for waterbirds. Biological Conservation, 1999,88(2):231-248.
    Kreeger D A, Newell R I E. Trophic complexity between producers and invertebrate consumers in salt marshes. Kluwer Academic Publishers, Dordreeht: 2000,187-220.
    Lavers C P Haines-young R H, Avery ML. The habitat associations of dunlin (Calidrisalpine) in the flow country of northern Scotland and an improved model for predicting habitat quality. Journal of Applied Ecology, 1996, 33: 279-290.
    Levin L A, Talley D, Thayer G. Succession of macrobenthos in a created salt marsh. Marine Ecology Progress Series, 1996,141: 67-82.
    Mark A C, Sarah L D. Waterbird communities and habitat relationships in coastal pastures of Northern California. Conservation Biology, 1994, 9(4): 827-834.
    Mitsch W J, Gosselink J G Wetlands (Third edition). New York: John Wiley & Sons,Inc,2000. 10-18.
    Mitsch W J, Jagensen S E. Ecological engineering and ecosystem restoration. John Wiley & Sons, Hoboken, New Jersey, 2004. 120-156.
    Mitsch W J, Jorgensen S E. Ecological Engineering: an Introduction to Ecotechnology.John Wiley, 1989. 78-91.
    
    Mitsch W J, Wilson R F. Improving the success of wetland creation and restoration with know-how, time, and self-design [J]. Ecological Applications, 1996, (6):77-83.
    Morten L P, Jens M A, Kurt N M, et al. Restoration of Skjern River and its valley:Project description and general ecological changes in the project area. Ecological Engineering, 2007, 3 0:131-144.
    
    Odum E P. Fundament of ecology. Philadelphia, PA: Saunders. 1971.
    Odum H T, Odum B. Concepts and methods of ecological engineering. Ecological Engineering, 2003,20: 339-361.
    Oriane W T, Mark A C, Craig R I, et al. Waterbird responses to experimental drawdown: implications for the multispecies management of wetland mosaics.Journal of Applied Ecology, 2002, 39: 987-1001.
    Petranka J W, Kennedy C A, Murray S S. Responses of amphibians to restoration of a southern Appalachian wetland: a long-term analysis of community dynamics.Wetlands, 2003b, 23 (4): 1030-1042.
    Petranka J W, Murray S S, Kennedy C A. Responses of amphibians to restoration of a southern Appalachian wetland: perturbations confound pot-restoration assessment.Wetlands, 2003a, 23 (2): 278-290.
    Richard H M, Eertman B A, Kornman E S, et al. Restoration of the Sieperda Tidal Marsh in the Scheldt Estuary. The Netherlands. Restoration Ecology, 2002, 10 (3):438-449.
    S.Alvarez, Diaz P, Lopez-Archilla A I et al. Phytoplankton composition and dynamics in three shallow temporary salt lakes (Monegros, Spain). Journal of Arid Environments, 2006, 65(4): 553-571.
    Skagen S K, Knopf F L. Migrating shorebirds and habitat dynamics at a prairie wetland complex. Wilson Bulletin, 1994a, 106: 91-105.
    Sutherland W J. The effect of local change in quality on populations of migratory species. Journal Applied Ecology, 1998, 35: 418-421.
    Valiela I. Development of structure in marine communities: colonization and succession. In: Valiela, I. (Ed.), Marine Ecological Process.es. second ed.Springer-Verlag, New York, 1995, 355-381.
    Wilson W H. Relationship between prey abundance and foraging site selection by semipalmated sanpipers on a Bay of Fundy mudflat. Journal Field Ornithology,1990,61:9-19.
    Yosihiro N, Masaaki k, Kaoru G, et al. Creation and adaptive management of a wild bird habitat on reclaimed land in Osaka Port. Landscape and Urban Planning,2005, 70: 283-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700