用户名: 密码: 验证码:
高效微纳结构TiO_2基光催化剂的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiO_2为基础的半导体光催化剂的在环境治理方面研究一直处于实验室研究阶段,没有达到实际应用,我们利用传统的掺杂及复合改性技术结合新兴的纳米材料制备技术对具有纳米结构的TiO_2光催化剂进行改性,然后利用改性后的光催化剂降解对氯苯酚以测试其活性,再结合现代表征技术,对光催化活性提高的机理和进行了细致,合理地分析.主要进行了高效微纳结构TiO_2基光催化剂的制备及其光催化性能研究。通过掺杂及复合改性技术制备出了Ni2+离子表面处理TiO_2纳米粒子光催化剂、B离子掺杂TiO_2光催化剂及SnO_2/TiO_2.N掺杂复合光催化剂,均实现了催化剂紫外和可见光催化活性的提高。在对催化剂的能带结构、表面缺陷等分忻表征的基础上,对这些催化剂的光催化机理进行了深入的探讨。在此基础上他成功地制备了Au与海胆状TiO_2复合微纳结构光催化剂和In离子掺杂TiO_2纳米管可见光催化剂,在光催化降解实验中分别得到了提高的紫外和可见光催化活性,结合表征数据,他在微观水平上探讨了界面光催化反应和相关的紫外及可见光催化机理。这些研究结果为新型纳米TiO_2基光催化剂的制备提供了有益的启示。
TiO_2 photocatalysis has attracted extensive attention as a promising technique for the degradation of inorganic and organic pollutants in water and air. However, TiO_2 photocatalysts have two inherent and significant drawbacks; the one is, the TiO_2 photocatalysts owned wide band-gap can not use solar irradiation or interior lighting efficiently, the other is, the photogenerated charge carriers (hole-electron pairs) can recombine. Therefore, to achieve the practical application of TiO_2, it is important to enhance the absorption of visible light and decrease the recombination of photogenerated carriers. Furthermore, the mechanisms of photocatalysis under visible light are still not clear, there is no suitable theoretical guidance for synthesis of high efficient photocatalyst under visible light.
     The high efficient TiO_2 photocatalysts with nano-micro structures were fabricated by combining the traditional doping and coupling methods with the novel nanotechnology. The photodegradation of 4-chlorophenol was employed to evaluate the photocatalytic activities of the photocatalysts. The reasons of the enhanced photocatalytic activities had been investigated with the help of X-ray diffraction (XRD), Diffuse reflectance UV-Vis spectra, X-ray photoelectron spectra (XPS), surface photovoltage spectra (SPS) and so on.
     The summary of the work are as follows:
     1. Samples of pure TiO_2 and TiO_2-xBx were obtained with Ti (OC4H9)4 by sol-gel methods. Compared with the pure TiO_2, the samples of TiO_2-xBx exhibited higher photocatalytic activity under both ultraviolet and visible light irradiation. The reasons were discussed, based on the characterization with XRD, RAMAN, XPS, UV-Vis and PL spectra. The lattice O is substituted by B, and the orbital of B2p is mixed with O_2p orbital, which is responsible for the band gap narrowing. The raise of the photocatalytic activity is chiefly because B doping enhanced the absorption of visible light, and promoted the separation of photogenerated carriers.
     2. In this work, sol-gel process was employed to prepare TiO_2 and Nickel-doped TiO_2 powder .The photodegradation of 4-chlorophenol was employed to evaluate the photocatalytic activities of the catalysts. Compared to TiO_2, Nickel -doped TiO_2 exhibited improved activity for degradation of 4-chlorophenol under both ultraviolet and visible light irradiation. The properties of these catalysts were investigated with the help of XRD, UV-Vis, IR, Raman spectra, SPS and other analytic methods. We found that Ni2+ was chemisorbed on the surface of TiO_2 and formed the ONiOO which introduced the energy level of surface states 2.84 eV above the valence band. This energy level not only generated response to visible light but also promoted the separation of photogenerated carriers. Thus, the activity under both ultraviolet and visible light irradiation was increased.
     3. Indium doped TiO_2 nanotubes were fabricated by a two-step pre-doping method. It was found that the TiO_2 nanotubes with indium doped content at 3% exhibited the best photocatalytic activity being over twice as much as that of pure TiO_2 nanotubes on the photocatalytic degradation of 4-chlorophenol under visible light. Based on XRD, XPS and SPS, it can be inferred that when the doped content is low, the indium ion substitutes Ti into the TiO_2 lattice forming the InxTi1-xO_2 structure and the In doped energy-band narrows the band gap by mixing with Ti 3d states. With increasing the doped content, In2O3 comes up on the surface of InxTi1-xO_2 nanotubes to form the InxTi1-xO_2/In2O3 composite structure. This composite structure efficiently enhances the visible light response, promotes photogenerated carriers separation and increases the utilization of photogenerated carriers in photocatalytic reactions at the solid/liquid interface, resulting in the higher photocatalytic activity under visible light.
     4. A composite photocatalyst with novel nanostructure was prepared by deposition of Au nanoparticles on needles of sea-urchin-like TiO_2 (s-TiO_2). The Au/s-TiO_2 composite photocatalyst presented higher photocatalytic activity than pure s-TiO_2 under ultraviolet irradiation. IR spectra and XPS analysis suggested that the two components, Au and TiO_2, in the composite might be linked by–O–C(=O)– groups. The transfer process of photogenerated carriers at the interface of s-TiO_2 and Au nanoparticles and the shift of Fermi level of the composite were inferred by SPS. The improved photocatalytic activity of the composite photocatalyst was attributed to the promoted utilization efficiency of the photogenerated carriers upon the deposition of the Au nanoparticles on the needles of s-TiO_2.
     5. The SnO_2/TiO_2-N composite photocatalysts were prepared by depositing SnO_2 onto nitrogen doped TiO_2 nanoparticles. The composite catalysts present much higher photocatalytic activity than TiO_2 and nitrogen-doped TiO_2 under both ultraviolet and visible light irradiation. Diffuse reflectance UV-Vis spectra, XPS analysis and IR spectra show that the nitrogen species existed with two states: the doped N with responsibility for visible light response, the other N specie linking to Sn atom without contribution to visible light response. The enhanced visible light response caused by doped N and the promoted separation of photogenerated carrier driven by coupling with SnO_2 will be attributed to the higher light photocatalytic activity.
引文
[1] Ruppert, G.; Bauer, R.; Heisler, G. The photo-Fenton reaction—an effective photochemical wastewater treatment process. J. Photochem. Photobiol. A 1993, 73, 75.
    [2] Plgnatello, J. J. Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 1992, 26, 944.
    [3] Wu, K.; Zhang, T.; Zhao, J. Photodegradation of Malachite Green in the presence of Fe3+/H2O_2 under visible irradiation. Chem. Lett. 1998, 857.
    [4] Wu, K.; Xie, Y.; Zhao, J. Photo-Fenton degradation of a dye under visible light irradiation. J. Mol. Catal. 1999, 144, 77.
    [5] Haggi, E.; Bertolotti, S.; Miskoski, S.; Amat-Guerri, F.; Garcia, N. A. Environmental photodegradation of pyrimidine fungicides-Kinetics of the visible-light-promoted interactions between riboflavin and 2-amino-4-hydroxy-6-methylpyrimidine. Can. J. Chem. 2002, 80, 62.
    [6] Wilcoxon, J. P. Catalytic photooxidation of pentachlorophenol using semiconductor Nanoclusters. J. Phys. Chem. B 2000, 104, 7334.
    [7] Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671.
    [8] Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341.
    [9] Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69.
    [10] Serpone, N.; Pelizzetti, E. Eds. Photocatalysis-Fundamentals and Applications; Wiley Interscience, New York, 1989.
    [11] Ohko, Y.; Ando, I.; Niwa, C.; Tatauma, T.; Yamamura, T.; Nakashima, T.; Kubota,Y.; Fujishima, A. Degradation of Bisphenol A in water by TiO_2 photocatalyst. Environ. Sci. Technol. 2001, 35, 2365.
    [12] Hidaka, H.; Horikoshi, S.; Ajisaka, K.; Zhao, J.; Serpone, N. Fate of amino acidsupon exposure to aqueous titania irradiated with UV-A and UV-B radiation photocatalyzed formation of NH3, NO3?, and CO_2. J. Photochem. Photobiol. A. 1997, 108, 197.
    [13] Fujishima, A; Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37.
    [14] Carey, J. H.; Lawrence, J.; Tosine, H. M. B. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Environ. Contam. Toxicol. 1976, 16, 697.
    [15] Frank, S. N.; Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO_2 powder. J. Am. Chem. Soc 1977, 99, 303.
    [16] Frank, S. N.; Bard, A. J.; Heterogeneous photocatalytic oxidoion of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem 1977, 81, 1484.
    [17] Pruden, A. L.; Ollis, D. F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water. J. Catal. 1983, 82, 404.
    [18] Hsiao, C. Y.; Lee, C. L.; Ollis, D. F. Heterogeneous photocatalysis: Degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO_2 photocatalyst. J Catal. 1983, 82, 418.
    [19] Vainshtein B K, Fridlkin W M, Indenbom V L. Structure of Crystals. Berlin: Macrmil-lan India Ltd, 1994
    [20] Buchanan, R. C.; Park, T. Matetials Crystal Chemistry. New York: Marcel Dekker, Inc, 1997
    [21] Linsebigler, A. L.; Lu, G.; Yates, J. T. J. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem. Rev, 1995, 95, 735.
    [22] Burdett, J. K. Electronic control of the geometry of rutile and related structures. Inorg. Chem. 1985, 24, 2244.
    [23] Burdett, J. K.; Hughbanks, T.; Miller, G. J. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 1987, 109, 3639.
    [24] Fahmi, A.; Minot; C.; Silvi, B.; Causa, M. Theoretical analysis of the structures of titanium dioxide crystals. Phys. Rev. B 1993, 47, 11717.
    [25] Thompson, T. L.; Yates, J. T., Jr. Surface Science studies of the photoactivation of TiO_2 new photochemical processes. Chem. Rev. 2006, 106, 4428.
    [26] Burdett, J. K. Electronic control of the geometry of rutile and related structures. Inorg. Chem. 1985, 24, 2244.
    [27]沈伟韧,起文宽,贺飞. TiO_2光催化反应及其在废水处理中的应用.化学进展. 1998, 10, 349.
    [28]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用,北京化学工业出版社. 2002. 12, 40.
    [29] Frank, S. N; Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 1977, 81, 1484.
    [30] Frank, S. N; Bard, A. J. Photochemistry of colloidal semiconducting iron oxide polymorphs. J. Phys. Chem. 1987, 91, 5076.
    [31] Martin, S. T.; Herrmann, H.; Choi, W.; Hoffmann, M. R. Time-resolved microwave conductivity. Part 1. TiO_2 photoreactivity and size quantization. Trans. Faraday Soc. 1994, 21, 3315.
    [32] Martin, S. T.; Herrmann, H.; Hoffmann, M. R. Time-resolved microwave conductivity. Part 2.—Quantum-sized TiO_2 and the effect of adsorbates and light intensity on charge-carrier dynamics. Trans. Faraday Soc. 1994, 90, 3323.
    [33] Gerischer, H.; Heller, H. Photocatalytic Oxidation of Organic Molecules at TiO_2 Particles by Sunlight in Aerated Water. J. Electrochem. Soc. 1992, 139, 113 .
    [34] Noda, H.; Oikawa. K.; Kamada, H. ESR Spin-trapping study of active oxygen radicals from photoexcited semiconductors in aqueous H2O_2 solutions. Bull. Chem. Soc. Jpn. 1993, 66, 455.
    [35] Anpo, M.; Shima, T.; Kubokawa, Y. ESR and photoluminescense evidence for the photocatalytic formation of hydroxyl radicals on small TiO_2 particles. Chem. Lett. 1985, 1799.
    [36] Jaeger, C. D.; Bard, A. Spin trapping and electron spin resonance detection ofradical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J. Phys.Chem. 1979, 83, 3146.
    [37] Qu, P.; Zhao, J.; Shen, T.; Hidaka, H. TiO_2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO_2 colloidal solution. J. Mol. Catal. A: Chem. 1998, 129, 257.
    [38]唐玉朝,胡春,王怡中. TiO_2光催化反应机理及动力学研究进展.化学进展, 2002, 14,192.
    [39] Hiroaki, T.; Manabu, A.; Yasuyaki, K. Enhancing effect of SiOx monolayer coverage of TiO_2 on the photoinduced oxidation of Rhodamine 6G in aqueous media. J. Phys. Chem. B 1998, 102, 6360.
    [40] Hong, C. S.; Wang, Y. B.; Bush, B. Kinetics and products of the TiO_2, photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere 1998, 36, 1653.
    [41] Liu, H.; Cheng, S. A.; Zhang, T. Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid. Chemosphere 1999, 38, 283.
    [42] Dionysiou, D. D.; Khodadoust, A. P.; Kern, A. M. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO_2 rotating disk reactor. Appl. Catal. B: Environ. 2000, 24, 139.
    [43] Domenech, X; Peral, T. Kinetics of the photocatalytic oxidation of N(III) and S(IV) on different semiconductor oxides. Chemosphere 1999, 38, 1265.
    [44] Mill, A.; Morris, S. T. Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the initial kinetics of carbon dioxide photogeneration. J. Photochem. Photobiol. A: Chem. 1993, 71, 75.
    [45] Cunningham, T.; A1-savved, G. Factors influencing efficiencies of TiO_2-sensitised photodegradation. Part 1.—Substituted benzoic acids: discrepancies with dark-adsorption parameters. J. Chem. Soc. Faraday Trans., 1990, 86, 3935.
    [46] Zeltner, W. A.; Hill, C. G.; Anderson, M. A. Supported Titania for photodegradation. Chem. Tech. 1993, 32, 21.
    [47] Vorontsov, A. V.; Stovanova, I. V.; Kozlov, D. V. Kinetics of the photocatalyticoxidation of gaseous acetone over platinized Titanium Dioxide. J. Catal. 2000, 189, 360.
    [48] Cunningham, T.; Sedlak, P. Photocatalytic Purification and Treatment of Water and Air, Amsterdam:Elsevier Science Publishers, 1993, 67.
    [49] Davis, A. P.; Huang, C. P. A kinetic model describing photocatalytic oxidation using illuminated semiconductors. Chemosphere 1993, 26, 1119.
    [50] Chen, D. W.; Ray, A. K. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO_2. Appl. Catal. B: Environ. 1999, 23, 143.
    [51] Alexei, V. E.; Vladimir, R.; Sick, S. T. Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions: Prospect of distinguishing between two kinetic models. J. Photochem. Photobiol. A: Chem., 2000, 133, 89.
    [52] Richard, C.; Matra, A. M.; Boul, P. Photocatalytic transformation of 2,5-furandimethanol in aqueous ZnO suspensions. J. Photochem. Photobiol. A: Chem. 1992, 66, 225.
    [53] Cunningham, J.; Srijaranai, S. Sensitized photo-oxidations of dissolved alcohols in homogenous and heterogeneous systems Part 2. TiO_2-sensitized photodehydrogenations of benzyl alcohol. J. Photochem. Photobiol. A: Chem. 1991, 58, 361.
    [54] Sclafani, A.; Herrmann, J. M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of Titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 1996, 100, 13655.
    [55]何建波,张鑫,杨仁斌. TiO_2薄膜晶相组成对苯胺光催化降解的影响.应用化学, 1999, 16, 57.
    [56] Salvado, P.; Garei, M. L. G.; Munoz, F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile. J. Phys. Chem. 1992, 96, 10349.
    [57]岳林海,水森,徐铸德,纳米级粒径超细碳酸钙热分解动力学.无机学报, 1999, 57, 1219.
    [58] Thompson, T. L.; Yates, J. T. Jr. Surface science studies of the photoactivation ofTiO_2 new photochemical processes. Chem. Rev. 2006, 106, 4428.
    [59] Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891.
    [60] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269.
    [61] Cao, Y.; Yang, W.; Zhang, W.; Liu, G.; Yue, P. Improved photocatalytic activity of Sn4+ doped TiO_2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem. 2004, 28, 218.
    [62]龙绘锦,孟庆巨,元晶,杨文胜,曹亚安, B离子掺杂TiO_2催化剂(TiO_2-xBx)光催化活性的研究,化学学报, 2008, 66, 657.
    [63]贺集诚一郎.超微粒子,表面, 1998, 26, 27.
    [64] Takahashi, Y.; Tatsuma, T. Oxidative energy storage ability of a TiO_2?Ni(OH)2 bilayer photocatalyst. Langmuir 2005, 21, 12357.
    [65] Wangi, H.; Wu, Y.; Xu, B. Q. Preparation and characterization of nanosized anatase TiO_2 cuboids for photocatalysis. Appl. Catal. B 2005, 59, 139.
    [66] Yu, J. G.; Yu, J. C.; Leung, M. K.; Ho, W. K.; Cheng, B. X.; Zhao, J. J.; Zhao, C. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous Titania. J. catal. 2003, 217, 69.
    [67] Wang, Y. W.; Zhang, L. Z.; Deng, K. J.; Chen, X. Y.; Zou. Z. G. Low temperature synthesis and photocatalytic activity of rutile TiO_2 nanorod superstructures. J. Phys. Chem. C 2007, 111, 2709.
    [68] Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891.
    [69] Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water Splitting. Nano Lett. 2006, 6, 24.
    [70] Mao, Y.; Kanungo, M.; Hemraj-Benny, T.; Wong, S. S. Synthesis and growth mechanism of titanate and Titania one-dimensional nanostructures Self-Assembled into hollow micrometer-scale spherical aggregates. J. Phys. Chem. B 2006, 110, 702.
    [71] Sato, S.; White, J. M. Photodecomposition of water over Pt/TiO_2 catalysis. Chem.Phys. Lett. 1980, 72, 83.
    [72] Jakob, M.; Levanon, H.; Kamat, P. V. Charge distribution between UV-Irradiated TiO_2 and Gold nanoparticles: determination of shift in the Fermi Level. Nano Lett. 2003, 3, 353.
    [73] Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO_2/Gold nanocomposites. effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943.
    [74] Naoi, K.; Ohko, Y.; Tasuma. T. TiO_2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J. Am. Chem. Soc. 2004, 126, 3664-3668.
    [75] Subramanian, V.; Wolf, E. E.; Kamat. P. V. Influence of Metal/Metal ion concentration on the photocatalytic activity of TiO_2?Au composite nanoparticles. Langmuir 2003, 19, 469-474.
    [76] Hwang, S.; Lee, M. C.; Choi. W. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism. Appl. Catal. B, 2003, 46, 49.
    [77] Wang, Z. S.; Ebina, Y.; Takada, K. Inorganic multilayer assembly of Titania semiconductor nanosheets and Ru complexes. Langmuir, 2003, 19, 9534-9537.
    [78] Gong, X.; Selloni, A.; Dulub, O.; Jacobson, P.; Diebold, U. Small Au and Pt clusters at the anatase TiO_2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 2008, 130, 370.
    [79] Cao, Y. A.; Zhang, X. T.; Yang, W. S.; Du, H.; Bai, Y. B.; Li, T. J.; Yao, J. N. Bicomponent TiO_2/SnO_2 particulate film for photocatalysis. Chem. Mater. 2000, 12, 3445.
    [80] Liu, Z.; Sun, D. D.; Guo, P.; Leckie, J. O. An efficient bicomponent TiO_2/SnO_2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 2007, 7, 1081.
    [81] Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung, W. J.; Lee, W. I. Preparation of transparent particulate MoO3/TiO_2 and WO3/TiO_2 films and their photocatalytic properties. Chem. Mater. 2001, 13, 2349.
    [82] Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. Photocatalytic behavior of WO3-loaded TiO_2 in an oxidation reaction. J. Catal. 2000, 191,192.
    [83] Miyauchi, M.; Nakajima, A.; Hashimoto, K.; Watanabe, T. A Highly hydrophilic thin film under 1μW/cm2 UV illumination. Adv. Mater. 2000, 12, 1923.
    [84] Anderson, A. J.; Bard, A. J. An improved photocatalyst of TiO_2/SiO_2 prepared by Sol-Gel Synthesis. Phys. J. Chem. 1995, 99, 9882.
    [85] Ruetten, S. A.; Thomas, J. K. Photoinduced electron transfer at solid surfaces: the TiO_2–SiO_2 system. Photochem. Photobiol. Sci. 2003, 2, 1018.
    [86] Chun, H.; Wang, Y.; Tang, H. Preparation characterization of surface bond-conjugated TiO_2/SiO_2 and photocatalysis for Azo Dyes. Appl. Catal., B Environ. 2001, 30, 277.
    [87] Fu, X.; Clark, L.; Yang, Q.; Anderson, M. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO_2/SiO_2 and TiO_2/ZrO_2. Environ. Sci. Technol. 1996, 30, 647.
    [88] Hirai, T.; Suzuki, K.; Komasawa, I. Preparation and photocatalytic properties of composite CdS nanoparticles-Titanium Dioxide particles. J. Colloid Interface Sci. 2001, 244, 262.
    [89] Egerton, T. A.; Kosa, S. A. M.; Christensen, P. A. Photoelectrocatalytic disinfection of suspensions by iron doped TiO_2. Phys. Chem. Chem. Phys. 2006, 8, 398.
    [90] Kemp, T. J.; McIntyre, R. A. Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride). Polym. Degrad. Stab. 2006, 91, 165.
    [91] Kim, D. H.; Woo, S. I.; Moon, S. H.; Kim, H. D.; Kim, B. Y.; Cho, J. H.; Joh, Y. G.; Kim, E. C. Effect of Co/Fe co-doping in TiO_2 rutile prepared by solid state reaction. Solid State Commun. 2005, 136, 554.
    [92] Kim, S.; Hwang, S. J.; Choi, W. Visible light active platinum-ion-doped TiO_2 photocatalyst. J. Phys. Chem. B 2005, 109, 24260.
    [93] Park, M. S.; Kwon, S. K.; Min, B. I. Electronic structures of doped anatase TiO_2: Ti1-xMxO_2 (M=Co, Mn, Fe, Ni). Phys. Rev. B 2002, 65, 161201.
    [94] Ranjit, K. T.; Viswanathan, B. Synthesis characterization and photocatalytic properties of iron-doped TiO_2 catalysts. J. Photochem. Photobiol. A 1997, 108, 79.
    [95] Wei, H.; Wu, Y.; Lun, N.; Zhao, F. Preparation and photocatalysis of TiO_2 nanoparticles co-doped with nitrogen and lanthanum. J. Mater. Sci. 2004, 39, 1305.
    [96]曹亚安,沈东方,张昕彤,孟庆巨,马颖,吴志芸,白玉白,李铁津,姚建年, Sn4+掺杂对TiO_2纳米颗粒膜光催化降解苯酚活性的影响.高等学校化学学报, 2001, 22, 1910.
    [97] Xu, J. C.; Lu, M.; Guo, X. Y.; Li, H. L. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J. Mol. Catal. A 2005, 226, 123.
    [98] Xu, K. Preparation and characterization of nanotitanium dioxide coating film doped with Fe3+ ions on porous ceramic. J. Nat. Gas Chem. 2005, 14, 168.
    [99] Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669.
    [100] Choi, W.; Termin, A.; Hoffmann, M. R. Einflüsse von dotierungs-metall-ionen auf die photokatalytische reaktivit?t von TiO_2-quantenteilchen. Angew. Chem. 1994, 106, 1148.
    [101] Karakitsou, K.; Verykios, X. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J. Phys. Chem. 1993, 97, 1184.
    [102] Paola, A.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. Preparation of Polycrystalline TiO_2 Photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B 2002, 106, 637.
    [103] Asahi, R.; Morikawa, T.; Ohwaki. T. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293, 269.
    [104] Sakthivel, S.; Kisch, H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. ChemPhysChem 2003, 4, 487.
    [105] Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2. J. Phys. Chem. B 2004,108, 19384.
    [106] Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y.; Chen, X. Highly dfficient formation of visible light tunable TiO_2-xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 2004, 108, 1230.
    [107] Irie, H.; Watanabem Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO_2-xNx powders J. Phys. Chem. B 2003, 107, 5483.
    [108] Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ. 2003, 42, 403.
    [109] Chen, X.; Burda, C. The Electronic Origin of the visible-light absorption properties of C- N- and S-doped TiO_2 nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018.
    [110] Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y. Electrical characterization of band gap states in C-doped TiO_2 films. Appl. Phys. Lett. 2005, 87, 052111/1.
    [111] S. Sakthivel, H. Kisch. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908.
    [112] Ohno, T. Preparation of visible light active S-doped TiO_2 photocatalysts and their photocatalytic activities. Water Sci. Technol. 2004, 494, 159.
    [113] Ohno, T.; Mitsui, T.; Matsumura, M. Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light. Chem. Lett. 2003, 32, 364.
    [114] Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 2004, 265, 115.
    [115] Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Visible light-induced degradation of methylene blue on S-doped TiO_2. Chem. Lett. 2003, 32, 330.
    [116] Moon, S-C; Mametsuka, H.; Tabata, S.; Suzuki, E. Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2. Catal. Today 2000, 58, 125.
    [117] Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders Chem. Mater. 2002, 14, 3808.
    [118] Zheng, R.; Lin, L.; Xie, J.; Zhu, Y.; Xie, Y. State of doped phosphorus and itsinfluence on the physicochemical and photocatalytic properties of P-doped Titania. J. Phys. Chem. C 2008, 112, 15502.
    [119] Sakatani, Y.; Ando, H.; Okusako, K. Metal ion and N co-doped TiO_2 as a visible-light photocatalyst. J. Mater. Res. 2004, 19, 2100.
    [120]张青红,高濂,郭景坤.煅烧温度对二氧化钛纳米晶性能的影响.无机材料学报, 2000, 15, 929.
    [121] Rothschild, A.; Litzelman, S. J.; Tuller, H. L.; Menesklou, W.; Schneider, T.; Ivers-Tiffee, E. Temperature-independent resistive oxygen sensors based on SrTi1?xFexO3?δsolid solutions. Sens. Actuators, B 2005, 108, 223.
    [122]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001, 1-36.
    [123] Hayden, B. E.; Pletcher, D.; Rendall, M. E.; Suchsland, J. -P. CO oxidation on gold in acidic environments: particle size and substrate effects. J. Phys. Chem. C 2007, 111, 17044.
    [124] Zhang, H. Z.; Finnegan, M.; Banfield, J. F. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett. 2001, 1, 81.
    [125] Bondarchuk, O.; Kim, Y. K.; White, J. M.; Kim, J.; Kay, B. D. Surface chemistry of 2-propanol on TiO_2(110): low and high-temperature dehydration,isotope effects, and influence of local surface structure. J. Phys. Chem. C, 2007, 111, 11059.
    [126]张立德.纳米材科[M].北京:化工出版社, 2000, 56.
    [127] Chu, S.; Moue, S.; Wada, K. Highly porous TiO_2/A12O3 composite nanostructures on glass by anodization and the sol-gel process: fabrication and photocatalytic characteristics. J. Mater. Chem. 2003, 13, 866.
    [128] Mirza, M.; Taqui, K.; Bhardwa. R. C. Catalytic fixation of nitrogen by the photocatalytic CdS/Pt/RuO, particulate system in the presence of aqueous [Ru(Hedta)N2]complex. Angew. Chem. Int. Ed. End. 1988, 27, 923.
    [129] Sato, T.; Masaki, K.; Sato, K. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer. J. Chem. Tech. Biotechnol. 1996, 67, 339.
    [1] Tachikawa, T.; Takai, Y.; Tojo, S.; Fujitsuka, M.; Irie, H.; Hashimoto, K.; Majima, T. Visible Light-Induced Degradation of Ethylene Glycol on Nitrogen-Doped TiO_2 Powders. J. Phys. Chem. B. 2006, 110, 13158.
    [2] Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO_2. Science 2002, 297, 2243.
    [3] Thompson, T. L.; Yates, J. T., Jr. Quantum Dynamical Approach to ultrafast molecular desorption from surfaces. Chem. Rev. 2006, 106, 4428.
    [4]曹亚安,沈东方,张昕彤,孟庆巨,马颖,吴志芸,白玉白,李铁津,姚建年, Sn4+掺杂对TiO_2纳米颗粒膜光催化降解苯酚活性的影响.高等学校化学学报, 2001, 22, 1910.
    [5] Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Facile Synthesis of gold-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 2006, 128, 15666.
    [6] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269.
    [7] Burda, C.; Lou, Y.; Chen, X.; Samia, A. C. S.; Stout, J.; Gole, J. L. Progress in research on visible-light photocatalysis. Nano Lett. 2003, 3, 1049.
    [8] Irie, H.; Watanabe, Y.; Hashimoto, K. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B. 2003, 107, 5483.
    [9] Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 2006, 128, 15666.
    [10] Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide Angew. Chem. Int. Ed. 2003, 42, 4908.
    [11] Bacsa, R.; Kiwi, J.; Ohno, T.; Albers, P.; Nadtochenko, V. Shape-selective synthesis and oxygen storage behavior of ceria nano-polyhedra, rods, and cubes J. Phys.Chem. B. 2005, 109, 5994.
    [12] Yamaki, T.; Umebayashi, T.; Sumita, T.; Yamamoto, S.; Maekawa, M.; Kawasuso, A.; Itoh, H. Characterization of visible light response N-F codoped TiO_2 photocatalyst prepared by acid catalyzed hydrolysis. Nucl. Instrum. Meth. B. 2003, 206, 254.
    [13] Moon, S-C; Mametsuka, H.; Tabata, S.; Suzuki, E. Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2. Catal. Today 2000, 58, 125.
    [14] Jung, K. Y.; Park, S. B.; Ihm, S-K. Activated carbon-supported catalysts for denitrification of flue gas at low temperature. Appl. Catal.: B 2004, 51, 239.
    [15] Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. Efficient degradation of toxic organic pollutants with Ni2O3/TiO_2-xBx under visible irradiation. J. Am. Chem. Soc. 2004, 126, 4782.
    [16] Dean, J. A. Lange’s Hand Book of Chemistry (Thirteenth edition), USA: Mc GrawHill Book Company, New York, 1985, Chapter 3-118.
    [17] Hendrickson, D. N.; Hollander, J. M.; Jolly, W. L. Core-electron binding energies for compounds of boron, carbon, and chromium. Inorg. Chem. 1970, 9, 612.
    [18] Nefedov, V. I.; Gati, D.; Dzhurinskii, B. F.; Sergushin, N. P.; Salyn, Y. V. Zh. Synthesis and application of hollow/porous nanomaterials. Neorg. Khimii. 1975, 20, 2307.
    [19] Mavel, G.; Escard, J.; Costa, P.; Castaing, J. ESCA surface study of metal borides. Surf. Sci. 1973, 35, 109.
    [20] Liu, H. M.; Yang, W. S.; Ma, Y.; Cao, Y. A.; Yao, J. N. Promoted phase transition of titania nanoparticles prepared by a photo-assisted sol-gel method. New J. Chem. 2002, 26, 975.
    [21] Rudoph, P.; Brzezinka, K.; Washe, R. Physical chemistry of the femtosecond and nanosecond laser-material interaction with SiC and a SiC-TiC-TiB2 composite ceramic compound. Appl. Surf. Sci. 2003, 208—209, 285.
    [22] Jing, L. Q.; Xin, B. F. ; Wang, D. J.; Yuan, F. L.; Fu, H. G.; Sun, C. C. Relationships Between Photoluminescence Performance and Photocatalytic Activity of ZnO and TiO_2 Nanoparticles. Chem. J. Chin. Univ. 2005, 26, 111.
    [23] Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N?F?codoped TiO_2 photocatalysts. 2. optical characterization, photocatalysis, and potential application to air purification. Chem. Mater. 2005, 17, 2596.
    [24] Gao, B.; Ma, Y.; Cao, Y.; Yang, W.; Yao, J. Great enhancement on photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. J. Phys. Chem. B 2006, 110, 14391.
    [25] Amy L. Linsebigler ; Lu, G. Q. ; John T. Yates Jr. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735.
    [26] Fujihira, M.; Satoh, Y.; Osa, T. Effect of pH and Cu2+ ions on the photo-Fenton type reaction. Chem. Soc Jpn. 1982, 55, 666.
    [27] Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Effects of F--doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chem. Mater. 2002, 14, 3808.
    [1] Chandrasekharan, N.; Kamat, P. V. Improving the photoelectrochemical performance of nanostructured TiO_2 films by adsorption of gold nanoparticles J. Phys. Chem. B 2000, 104, 10851.
    [2] Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M. One-pot synthesis of Ag@TiO_2 core?shell nanoparticles and their layer-by-layer assembly. Langmuir 2000, 16, 2731.
    [3] Hirakawa, T.; Kamat, P. V. Charge separation and catalytic activity of Ag@TiO_2 core?shell composite clusters under UV?irradiation. J. Am. Chem. Soc. 2005, 127, 3928.
    [4] Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y. Mesoporous Au/TiO_2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 2007, 129, 4538.
    [5] Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2. Catal. Today 2003, 84, 191.
    [6] Yamanaka, N.; Kawano, R.; Kubo, W.; Masaki, N.; Kitamura, T.; Wada, Y.; Watanabe, M.; Yanagida, S. Dye-sensitized TiO_2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes, J. Phys. Chem. B. 2007, 111, 4763.
    [7] Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed., 2003, 42, 4908.
    [8] Chen, X.; Burda, C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO_2 nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018.
    [9] Asahi, R.; T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides Science, 2001, 293, 269.
    [10] Bouras, P.; Stathatos, E.; Lianos, P. Pure versus metal-ion-doped nanocrystallinetitania for photocatalysis. Appl. Catal. B-Environ 2007, 73, 51.
    [11] Tayade, R. J.; Kulkarni, R. G.; Jasra, R. V. Transition metal ion impregnated mesoporous TiO_2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 2006, 45, 5231
    [12] Gracia, F.; Holgado, J. P.; Caballero, A.; Gonzalez-Elipe, A. R. Structural, optical, and photoelectrochemical properties of Mn+?TiO_2 model thin film photocatalysts. J. Phys. Chem. B 2004, 108, 17466.
    [13] Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735.
    [14] Warren, D. S.; McQuillan, A. J. Influence of adsorbed water on phonon and UV-induced IR absorptions of TiO_2 photocatalytic particle films. J. Phys. Chem. B 2004, 108, 19373.
    [15] Citra, A.; Chertihin, G. V.; Andrews, L.; Neurock, M. Reactions of laser-ablated nickel atoms with dioxygen. infrared spectra and density functional calculations of nickel oxides NiO, ONiO, Ni2O_2, and Ni2O3, superoxide NiOO, peroxide Ni(O_2), and higher complexes in solid argon. J. Phys. Chem. A 1997, 101, 3109.
    [16] Liu, H. M.; Yang, W. S.; Ma, Y.; Cao, Y. A.; Yao, J. N. Promoted phase transition of titania nanoparticles prepared by a photo-assisted sol-gel method. New J. Chem., 2002, 26, 975.
    [17] Deabate, S.; Fourgeot, F.; Henn, F. Electrochemical behaviour of theβ(II)-Ni(OH)2/β(III)-NiOOH redox couple upon potentiodynamic cycling conditions. Electrochimica Acta 2006, 51, 5430.
    [18] Hoffmann, M.; Martin S.; Bahnemann, D. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69.
    [1] Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C. The effect of hydrothermal conditions on the mesoporous structure of TiO_2 nanotubes. J. Mater. Chem. 2004, 14, 3370.
    [2] Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Composite Nanocapsules: Lipid Vesicles Covered with Several Layers of Crosslinked Polyelectrolytes. Adv. Mater. 2006, 18, 2807.
    [3] Tsai, C. C.; Teng, H. Structural features of nanotubes synthesized from NaOH treatment on TiO_2 with different post-treatments. Chem. Mater. 2006, 18, 367.
    [4] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307.
    [5] Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Self-organized TiO_2 nanotube layers as highly efficient photocatalysts. Small. 2007, 3, 300.
    [6] Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using Titania nanotube arrays. Nano Lett. 2005, 5, 191.
    [7] Shin, Y.; Lee, S. Self-srganized regular arrays of anodic TiO_2 nanotubes. Nano Lett. 2008, 8, 3171
    [8] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269.
    [9] Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908.
    [10] Chen, X.; Burda, C. The electronic xrigin of the visible-light absorption properties of C-, N- and S-doped TiO_2 nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018.
    [11] Cao, Y.; Yang, W.; Zhang, W.; Liu, G.; Yue, P. Improved photocatalytic activity of Sn4t doped TiO_2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem. 2004, 28, 218.
    [12] Li, X. Y.; Yue, P. L.; Kutal, C. Synthesis and photocatalytic oxidation properties ofiron doped titanium dioxide nanosemiconductor particles. New J. Chem. 2003, 27, 1264.
    [13] Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. A. Investigations of metal-doped titanium dioxide photocatalysts. Appl. Catal. B-Environ. 2002, 37, 91.
    [14] Kim, S.; Hwang, S. J.; Choi, W. Visible light active platinum-ion-doped TiO_2 photocatalyst. J. Phys. Chem. B 2005, 109, 24260.
    [15] Sakata, Y.; Yamamoto, T.; Okazaki, T.; Imamura, H.; Tsuchiya, S. Generation of Visible Light Response on the Photocatalyst of a Copper Ion Containing TiO_2. Chem. Lett.1998, 27, 1253
    [16] Klosek, S.; Raftery, D. Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol. J. Phys. Chem. B 2001, 105, 2815.
    [17] Bryan, J. D.; Heald, S. M.; Chambers, S. A.; Gamelin, D. R. Strong room-temperature ferromagnetism in Co2+-doped TiO_2 made from colloidal nanocrystals. J. Am. Chem. Soc. 2004, 126, 11640.
    [18] Burda, C.; Lou, Y.; Chen, X.; Samia, A. C. S.; Stout, J.; Gole, J. L. Enhanced nitrogen doping in TiO_2 nanoparticles. Nano Lett. 2003, 3, 1049.
    [19] Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chem. Mater. 2002, 14, 3808.
    [20]龙绘锦,孟庆巨,元晶,杨文胜,曹亚安, B离子掺杂TiO_2催化剂(TiO_2-xBx)光催化活性的研究.化学学报2008, 66, 657.
    [21] Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-Doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 2006, 6, 24.
    [22] Shi, J.; Li, J.; Cai, Y. F. Fabrication of C, N-codoped TiO_2 nanotube Photocatalysts with visible light response. Acta Phys.-Chim. Sin. 2008, 24, 1283.
    [23] Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Ion implantation and annealing for an efficient N-doping of TiO_2 nanotubes. Nano Lett. 2006, 6, 1080.
    [24] Lu, N.; Quan, X.; Li, J. Y.; Chen, S.; Yu, H. T.; Chen, G. H. Fabrication of Boron-doped TiO_2 nanotube array electrode and investigation of itsphotoelectrochemical capability. J. Phys. Chem. C 2007, 111, 11836
    [25] Cao, Y.; Zhang, X.; Yang, W.; Hui, D.; Bai, Y.; Li, T.; Yao, J. A bicomponent TiO_2/SnO_2 particulate film for photocatalysis. Chem. Mater. 2000, 12, 3445.
    [26] Dean, J. A. Lange’s Hand Book of Chemistry (Thirteenth edition), USA: Mc GrawHill Book Company, New York, 1985, Chapter 3-118.
    [27] Bertrand, P. A. XPS study of chemically etched GaAs and InP. J. Vac. Sci. Technol. 1981, 18, 28.
    [28] Sen, P.; Hegde, M. S.; Rao, C. N. Magnetic Moment and Saturation of Internal Magnetic Field in Co and Fe Clusters. Appl. Surf. Sci. 1982, 10, 63.
    [29] Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. XPS and FTIR surface characterization of TiO_2 particles used in polymer encapsulation. Langmuir 2001, 17, 2664.
    [30] Dean, J. A. Lange’s Hand Book of Chemistry (Thirteenth edition), USA: Mc GrawHill Book Company, New York, 1985, Chapter 3-9.
    [31] Yang, X.; Wang, Y.; Xu, L.; Yu, X.; Guo, Y. Silver and indium oxide codoped TiO_2 nanocomposites with enhanced photocatalytic activity. J. Phys. Chem. C 2008, 112, 11481.
    [32] Quarto, F. D.; Sunseri, C.; Piazza, S.; Romano, M. C. Semiempirical correlation between optical band gap values of oxides and the difference of electronegativity of the elements. its importance for a quantitative use of photocurrent spectroscopy in corrosion studies. J. Phys. Chem. B 1997, 101, 2519.
    [33] Poznyak, S. K.; Talapin, D. V.; Kulak, A. I. Structural, optical, and photoelectrochemical properties of nanocrystalline TiO_2?In2O3 composite solids and films prepared by sol?gel method. J. Phys. Chem. B 2001, 105, 4816
    [34] Linsebigler, A. L.; Lu, G..; Yates, J. T. Jr. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735.
    [1] Kraeutler, B.; Bard, A. J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J. Am. Chem. Soc. 1978, 100, 4317.
    [2] Baba, R.; Nakabayashi, S.; Fujishima, A.; Honda, K. Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders. J. Phys. Chem. 1985, 89, 1902.
    [3] Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861.
    [4] Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M. One-pot synthesis of Ag@TiO_2 core?shell nanoparticles and their layer-by-layer assembly. Langmuir 2000, 16, 2731.
    [5] Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor?metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO_2 films. J. Phys. Chem. B 2001,105, 11439.
    [6] Dawson, A.; Kamat, P. V. Semiconductor?metal nanocomposites. photoinduced fusion and photocatalysis of gold-capped TiO_2 (TiO_2/Gold) nanoparticles. J. Phys. Chem. B 2001, 105, 960.
    [7] Subramanian, V.; Wolf, E. E.; Kamat, P. V. Influence of metal/metal ion concentration on the photocatalytic activity of TiO_2?Au composite nanoparticles. Langmuir 2003, 19, 469.
    [8] Hirakawa, T.; Kamat, P. V. Charge separation and catalytic activity of Ag@TiO_2 core?shell composite clusters under UV?irradiation. J. Am. Chem. Soc. 2005, 127, 3928.
    [9] Chusuei, C. C.; Lai, X.; Luo, K.; Goodman, D. W. Modeling heterogeneous catalysts: metal clusters on planar oxide supports, Topics in Catal. 2001, 14, 1.
    [10] Zhang, X.; Zhang, F.; Chan, K. The synthesis of Pt-modified titanium dioxide thinfilms by microemulsion templating, their characterization and visible-light photocatalytic properties. Mater. Chem. Phys. 2006, 97, 384.
    [11] Li, J.; Zeng, H. C. Size Tuning, Functionalization, and Reactivation of Au in TiO_2 Nanoreactors. Angew. Chem. Int. Ed. 2005, 44, 4342.
    [12] Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y. Mesoporous Au/TiO_2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 2007, 129, 4538.
    [13] Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711.
    [14] Yu, J. C.; Yu, J.; Ho, W.; Zhang, L. Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation. Chem. Commun. 2001, 1942.
    [15] Yin, J. B.; Zhao, X. P. Selective Photocatalytic Decomposition of Nitrobenzene Using Surface Modified TiO_2 Nanoparticles, J. Phys. Chem. C 2008, 112, 8311.
    [16] Mao, Y.; Kanungo, M.; Hemraj-Benny, T.; Wong, S. S. Water Simulation Model with Explicit Three-Molecule Interactions. J. Phys. Chem. B. 2006, 110, 702.
    [17] Tian, G.; Fu, H.; Jing, L.; Xin, B.; Pan, K. Preparation and Characterization of Stable Biphase TiO_2 Photocatalyst with High Crystallinity, Large Surface Area, and Enhanced Photoactivity. J. Phys. Chem. C 2008, 112, 3083.
    [18] Paramasivam, I.; Macak, J. M.; Schmuki, P. Photocatalytic activity of TiO_2 nanotube layers loaded with Ag and Au nanoparticles, Electrochem. Commun. 2008, 10, 71.
    [19] Li, J.; Zeng, H. C. Preparation of Monodisperse Au/TiO_2 Nanocatalysts via Self-Assembly, Chem. Mater. 2006, 18, 4270.
    [20] Gerischer, H. A mechanism of electron hole pair separation in illuminated semiconductor particles. J. Phys. Chem. 1984, 88, 6096.
    [21] Wood, A.; Giersig, M.; Mulvaney, P. Fermi Level Equilibration in Quantum Dot?Metal Nanojunctions. J. Phys. Chem. B, 2001, 105, 8810.
    [22] Jakob, M.; Levanon, H.; Kamat, P. V. Charge Distribution between UV-Irradiated TiO_2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Lett.2003, 3, 353.
    [23] Ji, X. H.; Song, X. L.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129, 13939.
    [24] Cao, Y.; Zhang, X.; Yang, W.; Hui, D.; Bai, Y.; Li, T.; Yao, J. A Bicomponent TiO_2/SnO_2 Particulate Film for Photocatalysis, Chem. Mater. 2000, 12, 3445.
    [25] Yu, J. C.; Li, G. S.; Leung, C.; Zhang, Z. D. An ordered cubic Im3m mesoporous Cr–TiO_2 visible light photocatalyst. Chem. Commun. 2006, 2717.
    [26] Bokhimi, X.; Zanella, R. Crystallite Size and Morphology of the Phases in Au/TiO_2 and Au/Ce-TiO_2, Catalysts. J. Phys. Chem. C 2007, 111, 2525.
    [27] Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Yu, J. C.; Ho, W. K. The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO_2 Thin Films Prepared by Liquid Phase Deposition. J. Phys. Chem. B 2003, 107, 13871.
    [28] Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. XPS and FTIR Surface Characterization of TiO_2 Particles Used in Polymer Encapsulation, Langmuir 2001, 17, 2664.
    [29] Nichols, R. J.; Burgess, I.; Young, K. L.; Zamlynny, V.; Lipkowski, J. A quantitative evaluation of the adsorption of citrate on Au(1 1 1) using SNIFTIRS, J. Electroanal. Chem. 2004, 563, 33.
    [30] Monte, F. D.; Cheben, P.; Grover, C. P.; Mackenzie, J. D. Preparation and Optical Characterization of Thick-Film Zirconia and Titania Ormosils. J. Sol-Gel Sci. Technol. 1999, 15, 73.
    [31] Serpone, N.; Lawless, D.; Khairutdinov, R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO_2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor. J. Phys. Chem. 1995, 99, 16646.
    [32] Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Preparation and photoluminescence of highly ordered TiO_2 nanowire arrays, Appl. Phys. Lett. 2001, 78, 1125.
    [33] Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N?F?codoped TiO_2photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater. 2005, 17, 2596.
    [34] Saraf, L. V.; Patil, S. I.; Ogale, S. B.; Sainkar, S. R.; Kshirsager, S. T. Synthesis of nanophase TiO_2 by ion beam sputtering and Cold condensation technique. Int. J. Mod. Phys. B 1998, 12, 2635.
    [35] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1.
    [36] Jing, L. Q.; Sun, X. J.; Shang, J.; Cai, W. M.; Xu, Z. L.; Du, Y. G.; Fu, H. G. Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 2003, 79, 133.
    [37] Gerischer, H. A mechanism of electron hole pair separation in illuminated semiconductor particles. J. Phys. Chem. 1984, 88, 6096.
    [38] Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO_2/Gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943.
    [39] Hoffmann, M. R.; Martin, S. T.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69.
    [40] Yu, J. C.; Lin, J.; Kwok, R. W. M. Ti1-xZrxO_2 solid solutions for the photocatalytic degradation of acetone in Air, J. Phys. Chem. B 1998, 102, 5094.
    [41] Anpo, M.; Chiba, K.; Tomonari, M.; Coluccia, S.; Che, M.; Fox, M. A. Photocatalysis on native and platinum-loaded TiO_2 and ZnO catalysts-origin of different reactivities on wet and dry metal oxides, Bull. Chem. Soc. Jpn. 1991, 64, 543.
    [42] Cao, Y.; Yang, W.; Zhang, W.; Liu, G.; Yue, P. Improved photocatalytic activity of Sn4+ doped TiO_2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem. 2004, 28, 218.
    [1] Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2. J. Phys. Chem. B 2004, 108, 19384.
    [2] Gai, Y. Q.; Li, J. B.; Li, S. S.; Xia, J. B.; Wei, S. H. Design of Narrow-Gap TiO_2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity. Phys. Rev. Let. 2009, 102, 036402
    [3] Jiang, Z.; Yang, F.; Luo, N. J.; Chu, B. T. T.; Srun, D. Y., Shi, H. H., Xiao, T. C.; Edwards, P. P., Solvothermal synthesis of N-doped TiO_2 nanotubes for visible-light-responsive photocatalysis. Chem. Common. 2008, 6372.
    [4] Naoi, K.; Ohko, Y.; Tasuma. T. TiO_2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J. Am. Chem. Soc. 2004, 126, 3664.
    [5] Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669.
    [6] Chen, X.; Burda. C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO_2 nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018.
    [7] Liu, G.; Wu, T.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO_2 Dispersions. Environ. Sci. Technol. 1999, 33, 2081.
    [8] Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2. Catal. Today 2003, 84, 191.
    [9] Davydov, L.; Reddy, E.; France, P. Transition-metal-substituted Titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. J. Catal. 2001, 203, 157.
    [10] Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO_2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136.
    [11] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269.
    [12] Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908.
    [13] Sakthivel, S.; Kisch, H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. ChemPhysChem 2003, 4, 487.
    [14] Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO_2-xNx powders. J. Phys. Chem. B 2003, 107, 5483.
    [15] Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y.; Chen, X. Highly efficient formation of visible light tunable TiO_2-xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 2004, 108, 1230.
    [16] Lindgren, T.; Mwabora, J. M.; Avendano, E.; Jonsson, J.; Hoel, A.; Granqvist, C.; Lindquist, S. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 2003, 107, 5709.
    [17] Burda, C.; Lou, Y.; Chen, X.; Samia, A. C. S.; Stout, J.; Gole, J. L. Enhanced nitrogen doping in TiO_2 nanoparticles. Nano Lett. 2003, 3, 1049.
    [18] Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. Efficient degradation of toxic organic oollutants with Ni2O3/TiO_2-xBx under visible irradiation. J. Am. Chem. Soc. 2004, 126, 4782.
    [19] Lin, Z.; Orlov, A.; Lambert, R. M.; Payne, M. C. New insights into the origin of visible light photocatalytic activity of Nitrogen-doped and oxygen-deficient anatase TiO_2. J. Phys, Chem. B 2005, 109, 20948.
    [20] Hong, X.; Wang, Z.; Cai, W.; Lu, F,; Zhang, J.; Yang, Y.; Ma, N.; Liu, Y. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater. 2005, 17, 1548.
    [21] Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N?F?codoped TiO_2 photocatalysts. 1. synthesis by spray pyrolysis and surface characterization. Chem. Mater. 2005, 17, 2588.
    [22] Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N?F?codoped TiO_2 photocatalysts. 2. synthesis by spray pyrolysis and surface characterization. Chem. Mater. 2005, 17, 2596.
    [23] Sun, H.; Bai, Y.; Cheng, Y.; Jin, W.; Xu, N. Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO_2 photocatalysts. Ind. Eng. Chem. Res. 2006, 45, 4971.
    [24] Song, K. Y.; Park, M. K.; Kwon, Y. T. Preparation of transparent particulate MoO3/TiO_2 and WO3/TiO_2 films and their photocatalytic properties. Chem. Mater. 2001, 13, 2349.
    [25] Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. Photocatalytic behavior of WO3- loaded TiO_2 in an oxidation reaction. J. Catal. 2000, 191, 192.
    [26] Miyauchi, M.; Nakajima, A.; Hashimoto, K.; Watanabe, T. A highly hydrophilic thin film under 1μW/cm2 UV illumination. Adv. Mater. 2000, 12, 1923
    [27] Fu, X.; Clark, L.; Yang, Q. Enhanced photocatalytic performance of Titania-based binary metal oxides: TiO_2/SiO_2 and TiO_2/ZrO_2. Environ. Sci. Technol. 1996, 30, 647.
    [28] Hirai, T.; Suzuki, K.; Komasawa, I. Preparation and photocatalytic properties of composite CdS nanoparticles–titanium dioxide particles. J. Colloid Interface Sci. 2001, 244, 262.
    [29] Moser, J.; Gr?tzel, M.; Gallay, R. Helv. Inhibition of electronhole recombination in substitutionally doped colloidal semiconductor crystallites. Chim. Acta. 1987, 70, 1596.
    [30] Vinodgopal, K.; Kamat, P. V. Enhanced rates of photocatalytic degradation of an Azo Dye using SnO/TiO_2 coupled semiconductor thin films. Environ. Sci. Technol. 1995, 29, 841.
    [31] Levy, B.; Liu, W.; Gilbert, S. Directed photocurrents in nanostructured TiO_2/SnO_2 heterojunction diodes. J. Phys. Chem. B 1997, 101, 1810.
    [32] Cao, Y.; Zhang, X.; Yang, W.; Hui, D.; Bai, Y.; Li, T.; Yao, J. A bicomponent TiO_2/SnO_2 particulate film for photocatalysis. Chem. Mater. 2000, 12, 3445.
    [33] Liu, Z.; Sun, D. D.; Guo, P.; Leckie, J. O. An efficient bicomponent TiO_2/SnO_2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett., 2007, 7, 1081-1085
    [34] Yu, J. C.; Li, G. S.; Leung, C.; Zhang, Z. D. An ordered cubic Im3m mesoporous Cr–TiO_2 visible light photocatalyst. Chem. Commun. 2006, 2717.
    [35] Gyogy, E.; Pino, P. A.; Serra, P.; Morenza, J. L. Surface nitridation of titanium by pulsed Nd: YAG laser irridation. Appl. Surf. Sci. 2002, 186, 130.
    [36] Bernard, M.; Deneuville, A.; Thomas, O.; Gergaud, P.; Standstrom, P.; Birch, J. Raman spectra of TiN/AlN superlattices. Thin Solid Films 2002, 380, 252.
    [37] Cong, Y.; Zhang, J.; Chen, F.; Anpo, M.; Synthesis and characterization of nitrogen-doped TiO_2 nanophotocatalyst with high visible light activity J. Phys. Chem. C 2007, 111, 6976-6982
    [38] Valentin, C. D.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations J. Phys. Chem. B 2005, 109, 11414.
    [39] Tachikawa, T.; Takai, Y.; Tojo, S.; Fujitsuka, M.; Irie, H.; Hashimoto, K.; Majima, T. Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO_2 powders. J. Phys. Chem. B. 2006, 110, 13158.
    [40] Serpone, N.; Lawless, D.; Khairutdinov, R. Size effects on the photophysical properties of colloidal anatase TiO_2 particles: size quantization versus direct transitions in this indirect semiconductor. J. Phys. Chem. 1995, 99, 16646.
    [41] Chen, X.; Burda, C.; Photoelectron spectroscopic investigation of nitrogen-doped Titania nanoparticles. J. Phys. Chem. B 2004, 108, 15446-15449
    [42] Saha, N. C.; Tomkins, H. C. Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study. J. Appl. Phys. 1992, 72, 3072.
    [43] Navio, J. A.; Cerrillos, C.; Real, C. Photo-induced transformation, upon UV illumination in air, of hyponitrite species N2O_22- preadsorbed on TiO_2. Surface. Surf. Interface Anal. 1996, 24, 355.
    [44] Wang, X. C.; Yu, J. C.; Chen, Y. L.; Wu, L.; Fu, X. Z. ZrO_2-modified mesoporous nanocrystalline TiO_2-xNx as efficient visible light photocatalysts. Environ. Sci. Technol. 2006, 40, 2369.
    [45] Diwald, O.; Thompson, T. L.; Zubkov, T.; Goralski, E. G.; Walck, S. D.; Yates, J. T., Jr. Photochemical activity of nitrogen-doped rutile TiO_2(110) in visible light. J. Phys. Chem. B 2004, 108, 52.
    [46] Shinn, N. D.; Tsang, K. L. Strain-induced surface reactivity: low temperature Cr/W (110) nitridation. J. Vac. Sci. Technol. A 1991, 9, 1558.
    [47] Sugai, S.; Watanabe, H.; Kioka, T.; Miki, H.; Kawasaki, K. Chemisorption of NO on Pd(100), (111) and (110) surfaces studied by AES, UPS and XPS. Surf. Sci. 1991, 259, 109.
    [48] Rainer, D. R.; Vesecky, S. M.; Koranne, M.; Oh, W. S.; Goodman, D. W. The CO+NO reaction over Pd: A combined study using single-crystal, planar-model-supported, and high-surface-area Pd/Al2O3 catalysts. J. Catal. 1997, 167, 234.
    [49] Rodriguez, J. A.; Jirsak, T.; Dvorak, J.; Sambasivan, S.; Fischer, D. Reaction of NO_2 with Zn and ZnO: photoemission, XANES, and density functional studies on the formation of NO3. J. Phys. Chem. B 2000, 104, 319.
    [50] Gyorgy, E.; Perez Del Pino, A.; Serra, P.; Morenza, J. L. Depth profiling characterisation of the surface layer obtained by pulsed Nd: YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol. 2003, 173, 265.
    [51] Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-ray photoelectron spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, 1979.
    [52] Valentin, C. D.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of paramagnetic species in N-Doped TiO_2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B, 2005, 109, 11414.
    [53] Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Yu, J. C.; Ho, W. K. The Effect of calcination temperature on the surface microstructure and photocatalytic activity ofTiO_2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 2003, 107, 13871.
    [54] Xu, J.; Dai, W.; Lia, J.; Cao, Y.; Li, H.; He, H.; Fan, K. Simple fabrication of thermally stable apertured N-doped TiO_2 microtubes as a highly efficient photocatalyst under visible light irradiation. Catalysis Communications 2008, 9, 146.
    [55] Serpone, N.; Lawless, D.; Khairutdinov, R. Size effects on the photophysical properties of colloidal anatase TiO_2 particles: size quantization versus direct transitions in this indirect semiconductor. J. Phys. Chem. 1995, 99, 16646.
    [56] Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Preparation and photoluminescence of highly ordered TiO_2 nanowire arrays, Appl. Phys. Lett. 2001, 78, 1125.
    [57] Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N?F?codoped TiO_2 photocatalysts. 2.Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater. 2005, 17, 2596.
    [58] Gao, B.; Ma, Y.; Cao, Y.; Yang, W.; Yao, J. Great enhancement of photocatalytic activity of nitrogen-doped Titania by coupling with tungsten oxide. J. Phys. Chem. B 2006, 110, 14391.
    [59] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1.
    [60] Jing, L. Q.; Sun, X. J.; Shang, J.; Cai, W. M.; Xu, Z. L.; Du, Y. G.; Fu, H. G. Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 2003, 79, 133.
    [61] Gerischer, H. A mechanism of electron hole pair separation in illuminated semiconductor particles. J. Phys. Chem. 1984, 88, 6096
    [62] Shang, J.; Yao, W.; Zhu, Y.; Wu, N. Structure and photocatalytic performances of glass/SnO_2/TiO_2 interface composite film, Appl. Catal. A 2004, 257, 25.
    [63] Hattori, A.; Tokihisa, Y.; Tada, H.; Ito, S. Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO_2/SnO_2 bilayer-type catalyst, J.Electrochem. Soc. 2000, 147, 2279.
    [64] Hoffmann, M. R.; Martin, S. T.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis, Chem. Rev. 1995, 95, 69.
    [65] Yu, J. C.; Lin, J.; Kwok, R. W. M. Ti1-xZrxO_2 solid solutions for the photocatalytic degradation of acetone in air. J. Phys. Chem. B 1998, 102, 5094.
    [66] Anpo, M.; Chiba, K.; Tomonari, M.; Coluccia, S.; Che, M.; Fox, M. A. Photocatalysis on native and platinum-loaded TiO_2 and ZnO catalysts-origin of different reactivities on wet and dry metal oxides, Bull. Chem. Soc. Jpn. 1991, 64, 543.
    [67] Cao, Y.; Yang, W.; Zhang, W.; Liu, G.; Yue, P. Improved photocatalytic activity of Sn4+ doped TiO_2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem. 2004, 28, 218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700