用户名: 密码: 验证码:
TiO_2纳米材料及其薄膜的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因其特殊的性能和潜在的应用前景而成为当前科学研究的焦点之一。纳米材料的光学、电学和机械性能强烈依赖其形态和维度。如何操纵纳米粒子的形貌、晶体结构和尺寸并将纳米粒子按照人们的意愿有序的组织起来构成具有特定功能的纳米器件,是纳米科学研究的热点,也是纳米科学走向实际应用的关键。本论文以TiO2材料为研究对象,发展了TiO2纳米结构材料及其薄膜的制备方法,研究了材料的光催化性能。主要研究内容和结果如下:
     1.有序一维TiO2纳米结构阵列的构建。利用液相沉积方法(LPD)在导电玻璃表面一步直接生长出有序排列的单晶TiO2纳米棒和纳米线阵列薄膜。运用XRD、TEM、SEM、Raman等手段对薄膜的形貌和结构进行了表征。考察了各种沉积条件对薄膜形貌的影响。
     2. TiO2纳米晶的低温合成及其光催化性能研究。系统研究了TiO2纳米晶的低温生长习性,提出一种简单的方法于室温、常压、水溶液中合成了晶化程度高、形貌均一、单相TiO2纳米晶,实现了室温下对TiO2纳米晶形貌、晶相和尺寸的调控。合成的花状和棒状TiO2纳米晶展现出优异的光催化性能,其对甲基橙的光催化降解效率是商用光催化剂P25的两倍。
     3.气泡模板方法构建中空TiO2纳微米材料。利用一种新颖的气泡模板路线构建出微米尺寸、中空的TiO2材料。运用XRD、TEM、SEM等手段对产物的形貌和结构进行了表征。并提出了中空TiO2材料可能的形成机制。为中空TiO2纳微材料的构建提供了一条新颖的途径。
Nanostructured materials have become an active research field due to their unique properties different from bulk materials and potential applications. Optical,electronic and mechanical properties of nanostructure materials strongly depend on their morphology and dimensionality. Therefore, it is very significant to develop simple methods to synthesize highly active nanocrystals with controlled morphology, size and crystalline structure, and align nanocrystals to fabricate nanodevices with special functions. In this work, novel approaches to synthesize TiO2 nanostructure materials and films with various morphologies and dimensionalities were proposed, and their properties were also investigated. The main contents are as follows:
     1. Fabrication of aligned TiO2 nanorod and nanowire arrays. A systematic study on the method to fabricate one-dimensional TiO2 nanostructure arrays was performed. And aligned single-crystalline TiO2 nanorod and nanowire arrays were fabricated directly on conductive glasses coated with SnO2:F film by a simple liquid phase deposition (LPD) method. The one-dimensional nanostructure arrays were characterized by means of X-ray diffraction, scanning electron microscopy, transition electron microscopy and Raman spectrometry. And the effects of various experimental conditions on the morphology of the films were concluded.
     2. Room temperature synthesis of uniform TiO2 nanocrystals. A systematic study on the low-temperature growth behavior of TiO2 nanocrystals was performed. Uniform TiO2 nanocrystals with controlled morphology and crystalline form were synthesized at room temperature and under atmospheric pressure by a simple method. The as-prepared flowerlike and rodlike rutile TiO2 nanocrystals exhibit excellent photocatalytic performance, and their photocatalytic degradation effeciencies for methyl orange are almost twice that of the commercial photocatalyst P25.
     3. Fabrication of micrometer-scale hollow TiO2 materials via a bubble-template approach. Micrometer-scale hollow TiO2 materials have been synthesized by a bubble-template method. The as-prepared products were characterized by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. And a possible mechanism was proposed. The bubble-template strategy used in the synthetic process may represent a general approach to fabricate hollow micro- and nanostructures.
引文
[1] C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 2005, 105: 1025-?1102.
    [2] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238: 37-39.
    [3] A. L. Pruden, D. F. Ollis, Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water, J. Catal., 1983, 82: 404-417.
    [4] C. Y. Hsiao, C. L. Lee, D. F. Ollis, Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl2), and carbon teterchlororide (CCl4) with illuminated TiO2 photocatalyst, J. Catal., 1983, 82: 418-423.
    [5] B. O′Regan, M. Gratzel, A Low-Cost, High-Efficency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 1991, 353: 737-740.
    [6] J. K. Zhou, L. Lv, J. Yu, H. L. Li, P. Guo, H. Sun, X. S. Zhao, Synthesis of Self-Organized Polycrystalline F-doped TiO2 Hollow Microspheres and Their Photocatalytic Activity under Visible Light, J. Phys. Chem. C, 2008, 112: 5316-5321.
    [7] Y. Tao, C. Wu, D. W. Mazyck, Microwave-Assisted Preparation of TiO2/Activated Carbon Composite Photocatalyst for Removal of Methanol in Humid Air Streams, Ind. Eng. Chem. Res. 2006, 45: 5110-5116.
    [8] H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity, J. Am. Chem. Soc., 2007, 129: 4538-4539.
    [9] G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Synthesis and Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced Visible Light Response, Chem. Mater. 2007, 19: 4530-4537.
    [10] S. Chu, S. Inoue, K. Wada, D. Li, J. Suzuki, Fabrication and Photocatalytic Characterizations of Ordered Nanoporous X-Doped (X : N, C, S, Ru, Te, and Si) TiO2/Al2O3 Films on ITO/Glass, Langmuir, 2005, 21: 8035-8041.
    [11] Y. Kondo, H. Yoshikawa, K. Awaga, M. Murayama, T. Mori, K. Sunada, S. Bandow, S. Iijima, ?P?reparation, Photocatalytic Activities, and Dye-SensitizedSolar-Cell Performance of Submicron-Scale TiO2 Hollow Spheres, Langmuir, 2008, 24: 547-550.
    [12] Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth- and Sulfur-Codoped TiO2, J. Phys. Chem. C, 2008, 112: 6620-6626.
    [13] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 2008, 453: 638-642.
    [14] Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, H. Li, Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase, J. Phys. Chem. C, 2008, 112: 6258-6262.
    [15] N. Park, J. Lagemaat, A. J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, J. Phys. Chem. B, 2000, 104: 8989-8994.
    [16] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weisso, J. Salbeck, H. Spreitzer, M. Gra¨tzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395: 583-585.
    [17] W. H. Howie, F. Claeyssens, H. Miura, L. M. Peter, Characterization of Solid-State Dye-Sensitized Solar Cells Utilizing High Absorption Coefficient Metal-Free Organic Dyes, J. Am. Chem. Soc., 2008, 130: 1367-1375.
    [18] D. Zhang, T. Yoshida, K. Furuta, H. Minoura, Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 159–166.
    [19] J. Y. Kim, S. B. Choi, D. W. Kim, S. Lee, H. S. Jung, J. Lee, K. S. Hong, Surfactant-Assisted Shape Evolution of Thermally Synthesized TiO2 Nanocrystals and Their Applications to Efficient Photoelectrodes, Langmuir, 2008, 24: 4316-4319.
    [20] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat, Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture, J. Am. Chem. Soc., 2008, 130: 4007-4015.
    [21] Y. Wanga, M. Wub, W. F. Zhanga, Preparation and electrochemicalcharacterization of TiO2 nanowires as an electrode material for lithium-ion batteries, Electrochimica Acta, 2008, 53: 7863–7868.
    [22] J. Garcia-Canadas, L. M. Peter, K. G. Upul Wijayantha, Characterisation of electrochromic viologen-modified nanocrystalline TiO2 films by frequency-resolved optical transmission spectroscopy, Electrochem. Commun., 2003, 5: 199-202.
    [23] S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, G. A. Ozin, Electrochromic Performance of Viologen-Modified Periodic Mesoporous Nanocrystalline Anatase Electrodes, Nano Lett., 2004, 4: 1231-1235.
    [24] J. Garcia-Canadas, F. Fabregat-Santiago, J. Kapla, J. Bisquert, G. Garcia-Belmonte, I. Mora-Sero, M. O. M. Edwards, Dynamic behaviour of viologen-activated nanostructured TiO2: correlation between kinetics of charging and coloration, Electrochim. Acta, 2004, 49: 745-752.
    [25] D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, F. C. Walsh, Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes, J. Phys. Chem. B, 2005, 109: 19422-19427.
    [26] S. H. Lim, J. Luo, Z. Zhong, W. Ji, J. Lin, Room-Temperature Hydrogen Uptake by TiO2 Nanotubes, Inorg. Chem., 2005, 44: 4124-4126.
    [27] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, K. G. Ong, Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology, 2006, 17: 398.
    [28] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, C. A. Grimes, Hydrogen sensing using titania nanotubes, Sens. Actuators, B, 2003, 93: 338-344.
    [29] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes, Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure, Adv. Mater., 2003, 15: 624-627.
    [30] E. Sotter, X. Vilanova, E. Llobet, M. Stankova, X. Correig, Niobium-doped titania nanopowders for gas sensor applications, J. Optoelectron. Adv. Mater., 2005, 7: 1395-1398.
    [31] A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles,Mechanisms, and Selected Results, Chem. Rev., 1995, 95: 735-758.
    [32] J. K. Burdett, Electronic control of the geometry of rutile and related structures, Inorg. Chem., 1985, 24: 2244-2249.
    [33] J. K. Burdett, T. Hughbands, J. M. Gordon, J. W. Richardson, J. V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc., 1987, 109: 3639-3648.
    [34] A. Fahmi, C. Minot, B. Silvi, M. Causa, Theoretical analysis of the structures of titanium dioxide crystals, Phys. Rev. B, 1993, 47: 11717-11724.
    [35] C. D. Jaeger, A. J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems, J. Phys. Chem., 1979, 83, 3146-3151.
    [36] A. Chemseddine, T. Moritz, Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization, Eur. J. Inorg. Chem., 1999, 2: 235-245.
    [37] I. N. Kuznetsova, V. Blaskov, I. Stambolova, L. Znaidi, A. Kanaev, TiO2 pure phase brookite with preferred orientation, synthesized as a spin-coated film, Mater. Lett., 2005, 59: 3820-3823.
    [38] Y. Li, T. J. White, S. H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles, J. Solid State Chem., 2004, 177: 1372-1381.
    [39] P. Liu, J. Bandara, Y. Lin, D. Elgin, L. F. Allard, Y. P. Sun, Formation of Nanocrystalline Titanium Dioxide in Perfluorinated Ionomer Membrane, Langmuir, 2002, 18: 10398-10401.
    [40] K. M. Reddy, C. V. G. Reddy, S. V. Manorama, Preparation, Characterization, and Spectral Studies on Nanocrystalline Anatase TiO2, J. Solid State Chem., 2001, 158: 180-186.
    [41] T. Moritz, J. Reiss, K. Diesner, D. Su, A. Chemseddine, Nanostructured Crystalline TiO2 through Growth Control and Stabilization of Intermediate Structural Building Units, J. Phys. Chem. B, 1997, 101: 8052-8053.
    [42] A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, J. P. Jolivet, Synthesis ofbrookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media, J. Mater. Chem., 2001, 11: 1116-1119.
    [43] A. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J. P. Jolivet, Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, J. Mater. Chem., 2003, 13: 877-882.
    [44] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 4. Shape control, J. Colloid Interface Sci., 2003, 259: 53-61.
    [45] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. Formation process and size control, J. Colloid Interface Sci., 2003, 259: 43-52.
    [46] N. Uekawa, J. Kajiwara, K. Kakegawa, Y. Sasaki, Low Temperature Synthesis and Characterization of Porous Anatase TiO2 Nanoparticles, J. Colloid Interface Sci., 2002, 250: 285-290.
    [47] H. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem., 1998, 8, 2073-2076.
    [48] H. Zhang, J. F. Banfield, Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2, J. Phys. Chem. B, 2000, 104: 3481-3487.
    [49] H. Zhang, J. F. Banfield, Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania, Chem. Mater., 2002, 14: 4145-4154.
    [50] H. Zhang, J. F. Banfield, Size Dependence of the Kinetic Rate Constant for Phase Transformation in TiO2 Nanoparticles, Chem. Mater., 2005, 17: 3421-3425.
    [51] Y. Bessekhouad, D. Robert, J. V. Weber, Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions, J. Photochem. Photobiol. A, 2003, 157: 47-53.
    [52] G. Oskam, A. Nellore, R. L. Penn, P. C. Searson, The Growth Kinetics of TiO2Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio, J. Phys. Chem. B, 2003, 107: 1734-1738.
    [53] P. Liu, J. Bandara, Y. Lin, D. Elgin, L. F. Allard, Y. P. Sun, Formation of Nanocrystalline Titanium Dioxide in Perfluorinated Ionomer Membrane, Langmuir, 2002, 18: 10398-10401.
    [54] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gra¨tzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, J. Am. Ceram. Soc., 1997, 80: 3157-3171.
    [55] E. A. Barringer, H. K. Bowen, High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties, Langmuir, 1985, 1: 414-420.
    [56] J. H. Jean, T. A. Ring, Nucleation and growth of monosized titania powders from alcohol solution, Langmuir, 1986, 2: 251-255.
    [57] C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Preparation and characterization of quantum-size titanium dioxide, J. Phys. Chem., 1988, 92: 5196-5201.
    [58] J. L. Look, C. F. Zukoski, Colloidal Stability and Titania Precipitate Morphology: Influence of Short-Range Repulsions, J. Am. Ceram. Soc., 1995, 78: 21-32.
    [59] D. Vorkapic, T. Matsoukas, Effect of Temperature and Alcohols in the Preparation of Titania Nanoparticles from Alkoxides, J. Am. Ceram. Soc., 1998, 81: 2815-2820.
    [60] J. Livage, M. Henry, and C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem., 1988, 18[4]: 259-341.
    [61] T. Sugimoto, X. Zhou, Synthesis of Uniform Anatase TiO2 Nanoparticles by the Gel–Sol Method: 2. Adsorption of OH? Ions to Ti(OH)4 Gel and TiO2 Particles, J. Colloid Interface Sci., 2002, 252: 347-353.
    [62] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel–Sol Method: 1. Solution Chemistry of Ti(OH)n(4?n)+ Complexes, J. Colloid Interface Sci., 2002, 252: 339-346.
    [63] H. Zhang, M. Finnegan, J. F. Banfield, Preparing Single-Phase Nanocrystalline Anatase from Amorphous Titania with Particle Sizes Tailored by Temperature, Nano Lett., 2001, 1: 81-85.
    [64] L. Znaidi, R. Seraphimova, J. F. Bocquet, C. Colbeau-Justin, C. Pommier, A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts, Mater. Res. Bull., 2001, 36: 811-825.
    [65] K. D. Kim, H. T. Kim, Synthesis of TiO2 nanoparticles by hydrolysis of TEOT and decrease of particle size using a two-stage mixed method, Powder Technol., 2001, 119: 164-172.
    [66] K. D. Kim, H. T. Kim, Synthesis of titanium dioxide nanoparticles using a continuous reaction method, Colloids Surf., A, 2002, 207: 263-269.
    [67] M. Niederberger, M. H. Bartl, G. D. Stucky, Benzyl Alcohol and Titanium Tetrachloride A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles, Chem. Mater., 2002, 14: 4364-4370.
    [68] H. Parala, A. Devi, R. Bhakta, R. A. Fischer, Synthesis of nano-scale TiO2 particles by a nonhydrolytic approach, J. Mater. Chem., 2002, 12: 1625-1627.
    [69] J. Tang, F. Redl, Y. Zhu, T. Siegrist, L. E. Brus, M. L. Steigerwald, An Organometallic Synthesis of TiO2 Nanoparticles, Nano Lett., 2005, 5: 543-548.
    [70] P. Arnal, R. J. P. Corriu, D. Leclercq, P. H. Mutin, A. Vioux, Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol–gel methods, J. Mater. Chem., 1996, 6: 1925-1932.
    [71] P. Arnal, R. J. P. Corriu, D. Leclercq, P. H. Mutin, A. Vioux, A Solution Chemistry Study of Nonhydrolytic Sol?Gel Routes to Titania, Chem. Mater., 1997, 9: 694-698.
    [72] J. N. Hay, H. M. J. Raval, Preparation of Inorganic Oxides via a Non-Hydrolytic Sol-Gel Route, Sol-Gel Sci. Technol., 1998, 13: 109-112.
    [73] J. N. Hay, H. M. Raval, Synthesis of Organic?Inorganic Hybrids via the Non-hydrolytic Sol?Gel Process, Chem. Mater., 2001, 13: 3396-4303.
    [74] V. Lafond, P. H. Mutin, A. Vioux, Control of the Texture of Titania?SilicaMixed Oxides Prepared by Nonhydrolytic Sol?Gel, Chem. Mater., 2004, 16: 5380-5386.
    [75] T. J. Trentler, T. E. Denler, J. F. Bertone, A. Agrawal, V. L. Colvin, Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions, J. Am. Chem. Soc., 1999, 121: 1613-1614.
    [76] Y. Jun, M. F. Casula, J. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals, J. Am. Chem. Soc., 2003, 125: 15981-15985.
    [77] M. Andersson, L. Oesterlund, S. Ljungstroem, A. Palmqvist, Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol, J. Phys. Chem. B, 2002, 106: 10674-10679.
    [78] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, W. I. Lee, Preparation of Size-Controlled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films, Chem. Mater., 2003, 15: 3326-3331.
    [79] F. Cot, A. Larbot, G. Nabias, L. Cot, Preparation and characterization of colloidal solution derived crystallized titania powder, J. Eur. Ceram. Soc., 1998, 18: 2175-2181.
    [80] J. Yang, S. Mei, J. M. F. Ferreira, Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Peptization and Peptizing Agents on the Crystalline Phases and Phase Transitions, J. Am. Ceram. Soc., 2000, 83:1361-1368.
    [81] J. Yang, S. Mei, J. M. F. Ferreira, Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Tetraalkyl Ammonium Hydroxides on Particle Characteristics, J. Am. Ceram. Soc., 2001, 84: 1696-1702.
    [82] J. Yang, S. Mei, J. M. F. Ferreira, Hydrothermal synthesis of well-dispersed TiO2 nano-crystals, J. Mater. Res., 2002, 17: 2197-2200.
    [83] J. Yang, S. Mei, J. M. F. Ferreira, In situ preparation of weakly flocculated aqueous anatase suspensions by a hydrothermal technique, J. Colloid Interface Sci., 2003, 260: 82-86.
    [84] J. Yang, S. Mei, J. M. F. Ferreira, Hydrothermal processing of nanocrystalline anatase films from tetraethylammonium hydroxide peptized titania sols, J. Eur. Ceram. Soc., 2003, 24: 335-339.
    [85] J. Yang, S. Mei, J. M. F. Ferreira, Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols, Mater. Sci. Eng. C, 2001, 15: 183-185.
    [86] Q. Zhang, L. Gao, Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO2, Langmuir, 2003, 19: 967-971.
    [87] X. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobicity of TiO2 nanorod films, Angew. Chem., Int. Ed., 2005, 44: 5115-5118.
    [88] Q. Huang, L. Gao, A Simple Route for the Synthesis of Rutile TiO2 Nanorods, Chem. Lett., 2003, 32: 638-639.
    [89] S. Yang, L. Gao, A Facile and One-pot Synthesis of High Aspect Ratio Anatase Nanorods Based on Aqueous Solution, Chem. Lett., 2005, 34: 972-973.
    [90] S. Yang, L. Gao, Fabrication and Characterization of Nanostructurally Flowerlike Aggregates of TiO2 via a Surfactant-free Solution Route: Effect of Various Reaction Media, Chem. Lett., 2005, 34: 1044-1046.
    [91] S. Yang, L. Gao, Low-temperature Synthesis of Crystalline TiO2 Nanorods: Mass Production Assisted by Surfactant, Chem. Lett., 2005, 34: 964-966.
    [92] A. R. Armstrong, G. Armstrong, J. Canales, R. Garc?′a, P. G. Bruce, Change in the shape of copper nanoparticles in ordered phases, Adv. Mater., 1995, 7: 862-864.
    [93] A. R. Armstrong, G. Armstrong, J. Canales, R. Garc?′a, P. G. Bruce, TiO2-B Nanowires, Angew. Chem., Int. Ed., 2004, 43: 2286-2288.
    [94] R. Yoshida, Y. Suzuki, S. Yoshikawa, Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, J. Solid State Chem., 2005, 178: 2179-2185.
    [95] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett., 2002, 365: 300-304.
    [96] J. N. Nian, H. S. Teng, Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor, J. Phys. Chem. B, 2006, 110: 4193-4198.
    [97] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir, 1998, 14: 3160-3163.
    [98] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania Nanotubes Prepared by Chemical Processing, Adv. Mater., 1999, 11: 1307-1311.
    [99] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem., 2004, 14: 3370-3377.
    [100] D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, F. C. Walsh, Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes, J. Phys. Chem. B, 2005, 109: 19422-19427.
    [101] D. V. Bavykin, S. N. Gordeev, A. V. Moskalenko, A. A. Lapkin, F. C. Walsh, Apparent Two-Dimensional Behavior of TiO2 Nanotubes Revealed by Light Absorption and Luminescence, J. Phys. Chem. B, 2005, 109: 8565-8569.
    [102] G. Gundiah, S. Mukhopadhyay, U. G. Tumkurkar, A. Govindaraj, U. Maitra, C. N. R. Rao, Hydrogel route to nanotubes of metal oxides and sulfates, J. Mater. Chem., 2003, 13: 2118-2122.
    [103] A. Kukovecz, M. Hodos, Z. Konya, I. Kiricsi, Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles, Chem. Phys. Lett., 2005, 411: 445-449.
    [104] Y. Lan, X. Gao, H. Zhu, Z. Zheng, T. Yan, F. Wu, S. P. Ringer, D. Song, Titanate Nanotubes and Nanorods Prepared from Rutile Powder, Adv. Funct. Mater., 2005, 15: 1310-1318.
    [105] S. H. Lim, J. Luo, Z. Zhong, W. Ji, J. Lin, Room-Temperature Hydrogen Uptake by TiO2 Nanotubes, Inorg. Chem., 2005, 44: 4124-4126.
    [106] R. Ma, K. Fukuda, T. Sasaki, M. Osada, Y. Bando, Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations, J. Phys. Chem. B, 2005,109: 6210-6214.
    [107] D. S. Seo, J. K. Lee, H. Kim, Preparation of nanotube-shaped TiO2 powder, J. Cryst. Growth, 2001, 229: 428-432.
    [108] Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, H. Xu, Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes, J. Am. Chem. Soc., 2003, 125: 12384-12385.
    [109] T. Kubo, A. Nakahira, Local Structure of TiO2-Derived Nanotubes Prepared by the Hydrothermal Process, J. Phys. Chem. C, 2008, 112: 1658-1662.
    [110] D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications, Adv. Mater., 2006, 18: 2807-2824.
    [111] Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue, Microstructure and formation mechanism of titanium dioxide nanotubes, Chem. Phys. Lett., 2002, 365: 427-431.
    [112] B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett., 2003, 82: 281-283.
    [113] X. L. Li, Q. Peng, J. X. Yi, X. Wang, Y. D. Li, Near Monodisperse TiO2 Nanoparticles and Nanorods, Chem. Eur. J., 2006, 12: 2383-2391.
    [114] J. Xu, J. P. Ge, Y. D. Li, Solvothermal Synthesis of Monodisperse PbSe Nanocrystals, J. Phys. Chem. B, 2006, 110: 2497-2501.
    [115] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 2005, 437: 121-123.
    [116] B. Wen, C. Liu, Y. Liu, Bamboo-Shaped Ag-Doped TiO2 Nanowires with Heterojunctions, Inorg. Chem., 2005, 44: 6503-6505.
    [117] B. Wen, C. Liu, Y. Liu, Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires, New J. Chem., 2005, 29: 969-971.
    [118] B. Wen, C. Liu, Y. Liu, Depositional Characteristics of Metal Coating on Single-Crystal TiO2 Nanowires, J. Phys. Chem. B, 2005, 109: 12372-12375.
    [119] C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, H. J. Seo, Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant, J. Cryst. Growth,2003, 257: 309-315.
    [120] C. S. Kim, B. K. Moon, J. H. Park, S. T. Chung, S. M. Son, Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route, J. Cryst. Growth, 2003, 254: 405-410.
    [121] S. W. Yang, L. Gao, Fabrication and shape-evolution of nanostructured TiO2 via a sol–solvothermal process based on benzene–water interfaces, Mater. Chem. Phys., 2006, 99: 437-440.
    [122] S. S. Hong, M. S. Lee, S. S. Park, G. D. Lee, Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol, Catal.Today, 2003, 87: 99-105.
    [123] K. D. Kim, S. H. Kim, H. T. Kim, Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles, Colloids Surf., A, 2005, 254: 99-105.
    [124] Y. Li, N. H. Lee, D. S. Hwang, J. S. Song, E. G. Lee, S. J. Kim, Synthesis and Characterization of Nano Titania Powder with High Photoactivity for Gas-Phase Photo-oxidation of Benzene from TiOCl2 Aqueous Solution at Low Temperatures, Langmuir, 2004, 20: 10838-10844.
    [125] K. T. Lim, H. S. Hwang, W. Ryoo, K. P. Johnston, Synthesis of TiO2 Nanoparticles Utilizing Hydrated Reverse Micelles in CO2, Langmuir, 2004, 20: 2466-2471.
    [126] K. T. Lim, H. S. Hwang, S. S. Hong, C. Park, W. Ryoo, K. P. Stud. Johnston, Synthesis of Ultrafine TiO2 Particles from Hydrolysis of Ti(OiPr)4 with PEO-b-PFOMA Reverse Micelles in CO2, Surf. Sci. Catal., 2004, 153: 569-572.
    [127] J. Lin, Y. Lin, P. Liu, M. J. Meziani, L. F. Allard, Y. P. Sun, Hot-Fluid Annealing for Crystalline Titanium Dioxide Nanoparticles in Stable Suspension, J. Am. Chem. Soc., 2002, 124: 11514-11518.
    [128] J. C. Yu, J. Yu, W. Ho, L. Zhang, Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun., 2001: 1942-1943.
    [129] D. Zhang, L. Qi, J. Ma, H. Cheng, Formation of crystalline nanosized titania inreverse micelles at room temperature, J. Mater. Chem., 2002, 12: 3677-3680.
    [130] S. Seifried, M. Winterer, H. Hahn, Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis Chem., Vap. Deposition, 2000, 6: 239-244.
    [131] S. K. Pradhan, P. J. Reucroft, F. Yang, A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition, J. Cryst. Growth., 2003, 256: 83-88.
    [132] T. Ishigaki, S. M. Oh, D. W. Park, Titanium Dioxide Nano-Particles through Thermal Plasma Oxidation of Titanium Nitride Powders, Trans. Mater. Res. Soc. Jpn., 2004, 29: 3415-3418.
    [133] Y. L. Li, T. Ishigaki, Controlled One-Step Synthesis of Nanocrystalline Anatase and Rutile TiO2 Powders by In-Flight Thermal Plasma Oxidation, J. Phys. Chem. B, 2004, 108: 15536-15542.
    [134] S. M. Oh, T. Ishigaki, Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma, Thin Solid Films, 2004, 457: 186-191.
    [135] M. K. Akhtar, S. Vemury, S. E. Pratsins, The role of electrolytes during aerosol synthesis of TiO2, Nanostructured Materials, 1994, 4: 537-544.
    [136] M. K. Akhtar, S. E. Pratsins, Dopants in Vapor-Phase Synthesis of Titania Powders, J. Am. Ceram. Soc., 1992, 75: 3408-3416.
    [137] X. H. Wang, J. G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, T. Ishigaki, Pyrogenic Iron(III)-Doped TiO2 Nanopowders Synthesized in RF Thermal Plasma: Phase Formation, Defect Structure, Band Gap, and Magnetic Properties, J. Am. Chem. Soc., 2005, 127: 10982-10990.
    [138] J. Rubio, J. L. Oteo, M. Villegas, Characterization and sintering behaviour of submicrometre titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide, J. Mater. Sci., 1997, 32: 643-652.
    [139] J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng, I. C. Chen, Thermal evaporation growth and the luminescence property of TiO2 nanowires, J. Cryst. Growth., 2005, 281: 384-390.
    [140] B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang, D. P. Yu, Field-emission properties of TiO2 nanowire arrays, J. Phys. D, 2005, 38: 1152-1154.
    [141] V. Jokanovic, A. M. Spasic, D. Uskokovic, Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis, J. Colloid Interface Sci., 2004, 278: 342-352.
    [142] P. E. Meskin, V. K. Ivanov, A. E. Barantchikov, B. R. Churagulov, Y. D. Tretyakov, Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders, Ultrason. Sonochem., 2006, 13: 47-53.
    [143] H. Xia, Q. Wang, Ultrasonic Irradiation: A Novel Approach To Prepare Conductive Polyaniline/Nanocrystalline Titanium Oxide Composites, Chem. Mater., 2002, 14: 2158-2165.
    [144] J. C. Yu, L. Zhang, J. Yu, Direct Sonochemical Preparation and Characterization of Highly Active Mesoporous TiO2 with a Bicrystalline Framework, Chem. Mater., 2002, 14: 4647-4653.
    [145] J. C. Yu, L. Zhang, J. Yu, Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration, New J. Chem., 2002, 26: 416-420.
    [146] J. C. Yu, J. Yu, L. Zhang, W. Ho, Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders, J. Photochem. Photobiol., A, 2002, 148: 263-271.
    [147] J. C. Yu, L. Zhang, Q. Li, K. W. Kwong, A. W. Xu, J. Lin, Sonochemical Preparation of Nanoporous Composites of Titanium Oxide and Size-Tunable Strontium Titanate Crystals, Langmuir, 2003, 19: 7673-7675.
    [148] J. C. Yu, J. Yu, W. Ho, L. Zhang, Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun., 2001, 1942-1943.
    [149] W. Huang, X. Tang, Y. Wang, Y. Koltypin, A. Gedanken, Selective synthesis of anatase and rutile via ultrasound irradiation, Chem. Commun., 2000, 1415-1416.
    [150] A. B. Corradi, F. Bondioli, B. Focher, A. M. Ferrari, C. Grippo, E. Mariani, C. Villa, Conventional and Microwave-Hydrothermal Synthesis of TiO2 Nanopowders, J. Am. Ceram. Soc., 2005, 88: 2639-2641.
    [151] E. Gressel-Michel, D. Chaumont, D. Stuerga, From a microwave flash-synthesized TiO2 colloidal suspension to TiO2 thin films, J. Colloid Interface Sci., 2005, 285: 674-679.
    [152] S. Uchida, M. Tomiha, N. Masaki, A. Miyazawa, H. Takizawa, Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation, Sol. Energy Mater. Sol. Cells, 2004, 81: 135-139.
    [153] G. Ma, X. Zhao, J. Zhu, Microwave Hydrothermal Synthesis of Rutile TiO2 Nanorods, Int. J. Mod. Phys. B, 2005, 19(15/17): 2763-2768.
    [154] X. Wu, Q. Z. Jiang, Z. F. Ma, M. Fu, W. F. Shangguan, Synthesis of titania nanotubes by microwave irradiation, Solid State Commun., 2005, 136: 513-517.
    [155] T. Yamamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S. Yanagida, Microwave-Driven Polyol Method for Preparation of TiO2 Nanocrystallites, Chem. Lett., 2002: 964-965.
    [156] K. Ding, Z. Miao, Z. Liu, Z. Zhang, B. Han, G. An, S. Miao, Y. Xie, Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process, J. Am. Chem. Soc., 2007, 129: 6362-6363.
    [157] T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires, Science, 1993, 261: 1316-1319.
    [158] T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates, Science, 2000, 290: 2126-2129.
    [159] L. Vila, P. Vincent, Growth and Field-Emission Properties of Vertically Aligned Cobalt Nanowire Arrays, Nano. Lett., 2004, 4: 521-524.
    [160] M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum Nanowires by Electrodeposition, Science, 2000, 290: 2120-2123.
    [161] C. A. Huber, T. E. Huber, M. Sadoqi, Nanowire Array Composites, Science, 1994, 263: 800-802.
    [162] J. C. Bao, C. Y. Tie, Z. Xu, Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior, Adv. Mater., 2001, 13: 1631-1633.
    [163] Y. T. Pang, G. W. Meng, L. D. Zhang, Arrays of Ordered Pb Nanowires and Their Optical Properties for Laminated Polarizers, Adv. Funct. Mater., 2002, 12: 719-722.
    [164] Y. Wang, C. Ye, L. Zhang, A Simple Method for Synthesizing Copper Nanotube Arrays, Chem. Lett., 2004, 33: 166-168.
    [165] C. G. Jin, G. W. Jiang, W. L. Cai, Fabrication of large-area single crystal bismuth nanowire arrays, J. Mater. Chem., 2003, 13: 1743-1746.
    [166] H. Zhang, D. R. Yang, Y. J. Ji, Selenium Nanotubes Synthesized by a Novel Solution Phase Approach, J. Phys. Chem. B, 2004, 108: 1179-1182.
    [167] B. Z. Tian, S. N. Che, Z. Liu, Novel approaches to synthesize self-supported ultrathin carbon nanowire arrays templated by MCM-41, Chem.. Commun., 2003, 21: 2726-2727.
    [168] D. H. Qin, L. Gao, H. L. Li, Fine magnetic properties obtained in FeCo alloy nanowire arrays, Chem. Phys. Lett., 2002, 358: 484-488.
    [169] L. E. Greene, M. Law, P. D. Yang, Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, Angew. Chem. Int. Edit., 2003, 42: 3031-3034.
    [170] K. Nielsch, R. B. Wehrspohn, J. Barthel et al., Hexagonally ordered 100 nm period nickel nanowire arrays, Appl. Phys. Lett., 2001, 79: 1360-1363.
    [171] H. Zeng, R. Skomski, L. Menon et al., Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays, Phys. Rev. B, 2002, 65: 134426-134433.
    [172] C. J. Brumlik, V. P. Menon, C. R. Martin, Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques, J. Mater. Res., 1994, 9: 1174-1183.
    [173] Y. T. Pang, G. W. Meng, L. D. Zhang, Silver nanowire array infrared polarizers, Nanotechnology, 2003, 14: 20-26.
    [174] T. Gao, G. W. Meng, L. D. Zhang et al., Template synthesis of single-crystal Cu nanowire arrays by electrodeposition, Appl. Phys. A, 2001, 73: 251-254.
    [175] Y. Wang, C. Ye, L. Zhang et al., A Simple Method for Synthesizing Copper Nanotube Arrays, Chem. Lett., 2004, 33: 166-168.
    [176] K. Liu, C. L. Chien, P. C. Searson, Structural and magneto-transport properties of electrodeposited bismuth nanowires, Appl. Phys. Lett., 1998, 73: 1436-1439.
    [177] Y. Zhang, G. Li, L. Zhang et al., Antimony Nanowire Arrays Fabricated by Pulsed Electrodeposition in Anodic Alumina Membranes, Adv. Mater., 2002, 14: 1227-1230.
    [178] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater., 2003, 15(5): 464-466.
    [179] L. Vayssieres, M. Graetzel, Highly Ordered SnO2 Nanorod Arrays from Controlled Aqueous Growth, Angew. Chem. Int. Ed., 2004, 43: 3666-3670.
    [180] L. Vayssieres, N. Beermann, S. Lindquist, A. Hagfeldt, Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides, Chem. Mater., 2001, 13( 2): 233-235.
    [181] X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, Z. L. Wang, Growth of Uniformly Aligned ZnO Nanowire Heterojunction Arrays on GaN, AlN, and Al0.5Ga0.5N Substrates, J. Am. Chem. Soc., 2005, 127: 7920-7923.
    [182] Z. L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, 2006, 312: 242-246.
    [183] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, S. X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays, Appl. Phys. Lett., 2001,78(8): 1125-1127.
    [184] B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chem. Mater., 1997, 9: 857-862.
    [185] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Electrochemically Induced Sol-G?el Preparation of Single-Crystalline TiO2 Nanowires, Nano Lett., 2002, 2(7): 717-720.
    [186] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates, Adv. Mater., 2004, 16(22): 2052-2057.
    [187] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes,Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett., 2006, 6(2): 215-218.
    [188] J. H. Park, S. Kim, A. J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Lett., 2006, 6(1): 24-28.
    [189] J. Wu, Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide, Journal of Crystal Growth, 2004, 269: 347-355.
    [190] X. Peng, A. Chen, Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone, J. Mater. Chem., 2004, 14: 2542-2548.
    [191] J. Wu, C. Yu, Aligned TiO2 Nanorods and Nanowalls, J. Phys. Chem. B, 2004, 108(11): 3377-3399.
    [192]刘守新,刘鸿,光催化及光电催化基础与应用,化学工业出版社,2006.
    [193] D. Lee, et al., Control of size, morphology and phase of nano TiO2 particles using CO2 laser irradiation in a flame, Journal of Aerossol Science, 2000, 31: 632-633.
    [194] T. Ohno, K. Fujihara, Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron(Ⅲ) ions as electron acceptor, Journal of Photochemistry and Photobiology A: Chemistry, 1998, 118: 41-44.
    [195] C. Hu, Y. Z. Wang, H. X. Tang, Preparation and characterization of surface bond-conjugated TiO2/SiO2 and Photocatalysis for azo dyes, Appl. Catal. B: Environ., 2001, 30(3/4): 277-285.
    [196] K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder, Bull. Chem. Soc. Jpn., 1985, 58: 2015-2022.
    [197] Y. Sakata, T. Yamamoto, T. Okazaki et al., Generation of Visible Light Response on the Photocatalyst of a Copper Ion Containing TiO2, Chem. Lett., 1998, 12: 1253-1254.
    [198] M. I. Letter, J. A. Nawio, Photocatalytic properties of iron-doped titaniasemiconductors, J. Photochem. Photobiol. A, 1996, 98: 171-181.
    [199] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293: 269-272.
    [200] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 2002, 297: 2243-2246.
    [201] H. Fujii, M. Ohtaki, K. Eguchi, H. Arai, Photocatalytic activities of CdS crystallites embedded in TiO2 gel as a stable semiconducting matrix, J. Mater. Sci. Lett., 1997, 16: 1086-1088.
    [202] D. Liu, P. V. Kamat, Photoelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films, J. Phys. Chem., 1993, 97(41): 10769-10773.
    [203] L. shi, C. Li, H. Gu, D. Fang, Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles, Mater. Chem. Phys., 2000, 62: 62-67.
    [204] Y. R. Do, W. Lee, K. Dwight, A. Wold, The effect of WO3 on the Photocatalytic Activity of TiO2, J. Solid State Chem., 1994, 108: 198-201.
    [205] A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev., 1989, 89: 1861-1873.
    [206] R. Vogel, P. Hoyal, H. Weller,Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors, J. Phys. Chem., 1994, 98: 3183-3188.
    [207] J. Desilvestro, M. Gratzel, L. Kaven, J. Moser, Highly efficient sensitization of titanium dioxide, J. Am. Chem. Soc., 1985, 107(10): 2988-2990.
    [208] S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. K. Mohammad, K. Nazeeruddin, M. Gr?tzel, Control of dark current in photoelectrochemical (TiO2/I-I3–) and dye-sensitized solar cells, Chem. Commun., 2005: 4351– 4353.
    [209] M. K. Nazeeruddin, A. Kay, 1. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium( 11) Charge-TransferSensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes, J. Am. Chem. Soc., 1993, 115: 6382-6390.
    [210] S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, Preparation of Nb2O5 coated TiO2 nanoporous electrode and their application in dye-sensitized solar cells, Chem. Mater., 2001, 13(12): 4629-4634.
    [211] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc., 2003, 125(2): 475-482.
    [212] Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, Core-shell nanoporous electrode for dye-sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core, J. Phys. Chem. B, 2003, 107(9): 1977-1981.
    [213] S. Chappel, S. G. Chen, A. Zaban, TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells, Langmuir, 2002, 18(8): 3336-3342.
    [214] H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang, Y. Matano, T. Shishido, S. Ngamsinlapasathian, S. Yoshikawa, Comparison of electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb, Ge, Zr-added TiO2 composite electrodes, Langmuir, 2006, 22(26): 11405-11411.
    [215] P. Wang, L. D. Wang, B. B. Ma, B. Li, Y. Qiu, TiO2 surface modification and characterization with nanosized PbS in dye-sensitized solar cells, J. Phys. Chem. B, 2006, 110(29): 14406-14409.
    [216] Z. S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency, Chem. Mater., 2006, 18(12): 2912-2916.
    [217] K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells, Langmuir, 2004, 2(10): 4205-4210.
    [218] M. Law, L. Greene, J. Johnson, Richard Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nature materials, 2005, 4: 455-459.
    [219] Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev., 2004, 248: 1381-1389.
    [220] S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells, Chem. Commun., 2005, 15: 2011-2013.
    [221] Z. S. Wang, F. Y. Li, C. H. Huang, Photocurrent enhancement of hemicyanine dyes containing RSO3? group through treating with hydrochloric acid, J. Phys. Chem. B, 2001, 105(38): 9210-9217.
    [222] Z. S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films, Langmuir, 2005, 21(10): 4272-4276.
    [223] S. Ferrere, B. A. Gregg, Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells, J. Phys. Chem. B, 2001, 105(32): 7602-7605.
    [224] B. A. Gregg, S. G. Chen, S. Ferrere, Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in nanoporous TiO2, J. Phys. Chem. B, 2003, 107(13): 3019-3029.
    [225] T. L. Ma, M. Akiyama, E. Abe, I. Imai, High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode, Nano Lett., 2005, 5(12): 2543-2547.
    [1] D. V. Talapin, E. V. Shevchenko, C. B. Murray, A. Kornowski, S. F?rster, H. Weller,CdSe and CdSe/CdS Nanorod Solids, J. Am. Chem. Soc., 2004, 126 (40): 12984–12988.
    [2] J. Q. Xi, J. K. Kim, E. F. Schubert,Silica Nanorod-Array Films with Very Low Refractive Indices, Nano Lett., 2005, 5 (7): 1385–1387.
    [3] A. M. Morales, C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279: 208-211.
    [4] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Control of thickness and orientation of solution-grown silica nanowires, Science, 2000, 287: 1471-1473.
    [5] Y. Cui, C. M. Lieber, Functional nanoscale electronic devices assembled using silica nanowire builsing blocks, Science, 2001, 291: 851-853.
    [6] J. Hu, T. W. Odom, C. M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res., 1999, 32(5): 435-445.
    [7] R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Steinhoegl, F. Kreupl, W. Hoenlein, W. Pompe, High-Current Nanotube Transistors, Nano Lett., 2004, 4 (5): 831–834.
    [8] V. V. Deshpande, H. Y. Chiu, H. W. Postma, C. Mikó, L. Forró, M. Bockrath, Carbon Nanotube Linear Bearing Nanoswitches, Nano Lett., 2006, 6 (6): 1092–1095.
    [9] Y. Lei, C. Xiong, H. Guo, J. Yao, L. Dong, X. Su, Controlled Viscoelastic Carbon Nanotube Fluids, J. Am. Chem. Soc., 2008, 130 (11): 3256–3257.
    [10] D. Kuang, M. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells, ACS Nano, 2008, 2 (6): 1113–1116.
    [11] N. R. Tacconi, W. Chanmanee, K. Rajeshwar, J. Rochford, E. Galoppini, Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2009, 113 (7): 2996–3006.
    [12] Y. Yang, X. Wang, L. Li, Synthesis and Photovoltaic Application of High Aspect-Ratio TiO2 Nanotube Arrays by Anodization, Journal of the American Ceramic Society, 2008, 91(9): 3086-3089.
    [13] Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami, A. Fujishima, Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol, J. Phys. Chem. C, 2008, 112 (1): 253–259.
    [14] Z. Zhang, Y. Yuan, G. Shi, Y. Fang, L. Liang, H. Ding, L. Jin, Photoelectrocatalytic Activity of Highly Ordered TiO2 Nanotube Arrays Electrode for Azo Dye Degradation, Environ. Sci. Technol., 2007, 41 (17): 6259–6263.
    [15] J. H. Park, S. Kim, A. J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Lett., 2006, 6(1): 24-28.
    [16] L. Jiang, W. Zhang, Electrodeposition of TiO2 Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen Peroxide Sensing, Electroanalysis, 2009, 21(8): 988-993.
    [17] B. O′Regan, M. Gratzel, A Low-Cost, High-Efficency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 1991, 353: 737-740.
    [18] A. Hagfeldtt, M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem, Rev., 1995, 95: 49-68.
    [19] N. Kopidakis, E. A. Schiff, N. G. Park, J. Lagemaat, A. J. Frank, Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2, J. Phys. Chem. B., 2000, 104:3930–3936.
    [20] M. Law, L. Greene, J. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nature Materials, 2005, 4: 455-459.
    [21] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays: Transport, Trapping, and Transfer of Electrons, J. Am. Chem. Soc., 2008, 130: 13364–13372.
    [22] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, S. X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays, Applied Physics. Letters, 2001, 78(8): 1125-1127.
    [23] B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chem. Mater., 1997, 9: 857-862.
    [24] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang,Electrochemically Induced Sol-?Gel Preparation of Single-Crystalline TiO2 Nanowires, Nano Lett., 2002, 2(7): 717-720.
    [25] J. Wu ,Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide, Journal of Crystal Growth, 2004, 269: 347–355.
    [26] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett., 2006, 6(2): 215-218.
    [27] J. Wu, C. Yu,Aligned TiO2 Nanorods and Nanowalls,J. Phys. Chem. B, 2004, 108(11): 3377-3399.
    [28] H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles, Chem. Mater., 1995, 7: 663-671.
    [29] M. Gotic, M. Ivanda, S. Popovic, S. Music, A. Sekulic, A. Turkovic, K. Furic, Raman Investigation of Nanosized TiO2, Journal of Raman Spectroscopy, 1997, 28: 555-558.
    [30] Q. Huang, L. Gao, A Simple Route for the Synthesis of Rutile TiO2 Nanorods, Chemistry Letters, 2003, 32(7): 638-639.
    [31] Q. Zhang, L. Gao, Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO2, Langmuir, 2003, 19: 967-971.
    [32] D. Wang, J. Liu, Q. Huo, Z. Nie, W. Lu, R. E. Williford, Y. Jiang, Surface-Mediated Growth of Transparent, Oriented, and Well-Defined Nanocrystalline Anatase Titania Films, J. Am. Chem. Soc., 2006, 128: 13670-13671.
    [33] Y. Masuda, K. Kato, Liquid-Phase Patterning and Microstructure of Anatase TiO2 Films on SnO2:F Substrates Using Superhydrophilic Surface, Chem. Mater., 2008, 20: 1057–1063.
    [1] S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, Nanostructured Rutile TiO2 for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water, J. Am. Chem. Soc., 2008, 130(5): 1568-1569.
    [2] S. Sakthivel, H. Kisch, Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Angew. Chem., Int. Ed., 2003, 42(40): 4908-4911.
    [3] S. K. Mohapatra, N. Kondamudi, S. Banerjee, M. Misra, Functionalization of Self-Organized TiO2 Nanotubes with Pd Nanoparticles for Photocatalytic Decomposition of Dyes under Solar Light Illumination, Langmuir, 2008, 24(19): 11276-11281.
    [4] B. O’Regan, M. Gra¨tzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353: 737-740.
    [5] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the Oriented Attachment Mechanism, J. Am. Chem. Soc., 2004, 126(45): 14943-14949.
    [6] K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat, C. A. Grimes, Highly Efficient Solar Cells using TiO2 Nanotube Arrays Sensitized with a Donor-Antenna Dye, Nano Lett., 2008, 8(6): 1654-1659.
    [7] P. Wang, T. Xie, L. Peng, H. Li, T. Wu, S. Pang, D. Wang, Water-Assisted Synthesis of Anatase TiO2 Nanocrystals: Mechanism and Sensing Properties to Oxygen at Room Temperature, J. Phys. Chem. C, 2008, 112(17): 6648-6652.
    [8] G. Wang, Q. Wang, W. Lu, J. Li, Photoelectrochemical Study on Charge Transfer Properties of TiO2?B Nanowires with an Application as Humidity Sensors, J. Phys. Chem. B, 2006, 110(43): 22029-22034.
    [9] M. Biancardo, R. Argazzi, C. A. Bignozzi, Solid-State Photochromic Device Based on Nanocrystalline TiO2 Functionalized with Electron Donor?Acceptor Species, Inorg. Chem., 2005, 44(26): 9619-9621.
    [10] Y. Wanga, M. Wub, W. F. Zhanga, Preparation and electrochemical characterization ofTiO2 nanowires as an electrode material for lithium-ion batteries, Electrochimica Acta, 2008, 53(27): 7863-7868.
    [11] M. Yan, F. Chen, J. Zhang, M. Anpo, Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties, J. Phys. Chem. B, 2005, 109(18): 8673-8678.
    [12] C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 2005, 105(4): 1025-1102.
    [13] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. Formation process and size control, J. Colloid Interface Sci., 2003, 259: 43-52.
    [14] H. Zhang, J. F. Banfield, Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania, Chem. Mater., 2002, 14: 4145-4154.
    [15] H. Zhang, J. F. Banfield, Size Dependence of the Kinetic Rate Constant for Phase Transformation in TiO2 Nanoparticles, Chem. Mater., 2005, 17: 3421-3425.
    [16] Q. Zhang, L. Gao, Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO2, Langmuir, 2003, 19(3): 967-971.
    [17] B. Wen, C. Liu, Y. Liu, Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires, New Journal of Chemistry, 2005, 29: 969-971.
    [18] Y. Wu, H. Liu, B. Xu, Solvothermal synthesis of TiO2: anatase nanocrystals and rutile nanofibres from TiCl4 in acetone, Appl. Organometal. Chem., 2007, 21(3): 146-149.
    [19] J. Wu, C. Yu, Aligned TiO2 Nanorods and Nanowalls, J. Phys. Chem. B, 2004, 108(11): 3377-3379.
    [20] J. Wu, H. C. Shiha, W. Wub, Y. Tsengc, I. Chenc, Thermal evaporation growth and the luminescence property of TiO2 nanowires, Journal of Crystal Growth, 2005, 281: 384-390.
    [21] J. M. Wu, H. C. Shih, W. T. Wu, Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation, Chem. Phys. Lett., 2005, 413: 490-494.
    [22] J. Wu, T. Zhang, Large-Scale Preparation of Ordered Titania Nanorods with EnhancedPhotocatalytic Activity, Langmuir, 2005, 21(15): 6995-7002.
    [23] J. M. Wu, T. W. Zhang, Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure, J. Photochem. Photobiol., A, 2004, 162: 171-177.
    [24] D. Bhattacharyya, N. K. Sahoo, S. Thakur, N. C. Das, Spectroscopic ellipsometry of TiO2 layers prepared by ion-assisted electron-beam evaporation, Thin Solid Films, 2000, 360: 96-102.
    [25] C. R. Bickmore, K. F. Waldner, R. Baranwal, T. Hinklin, D. R. Treadwell, R. M. Laine, Ultrafine titania by flame spray pyrolysis of a titanatrane complex, Journal of the European Ceramic Society, 1998, 18(4):287-297.
    [26] A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J. Jolivet, Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media, J. Mater. Chem., 2001, 11: 1116-1121.
    [27] M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide, Chem. Mater.. 2002, 14(5): 1974-1980.
    [28] A. Navrotsky,Energetics of nanoparticle oxides: interplay between surface energy and polymorphism, Geochem. Trans., 2003, 4(6): 34–37.
    [29] E. Farfan-Arribas, R. J. Madix, Characterization of the Acid?Base Properties of the TiO2(110) Surface by Adsorption of Amines, J. Phys. Chem. B, 2003, 107: 3225-3233.
    [30] K. N. P. Kumar, K. Keizer, A. J. Burggraaf, Textural evolution and phase transformation in titania membranes: Part 1.—Unsupported membranes, J. Mater. Chem., 1993, 3: 1141-1149.
    [31] Y. S. Lin, C. H. Chang, R. Gopalan, Improvement of Thermal Stability of Porous Nanostructured Ceramic Membranes, Ind. Eng. Chem. Res., 1994, 33: 860-870.
    [32] J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem., 1988, 18: 259-341.
    [1] E. Stathatos, D. Tsiourvas, P. Lianos, Titanium Dioxide Films Made from Reverse Micelles and Their Use for the Photocatalytic Degradation of Adsorbed Dyes, Colloids Surf., A: Physicochem. Eng. Aspects, 1999, 149: 49-56.
    [2] X. Jiang, T. Wang, Y. W. Wang, Preparation of TiO2 Nanoparticles on the Surface of SiO2 in Binary Liquids, Colloids Surf., A: Physicochem. Eng. Aspects, 2004, 234: 9-15.
    [3] J. Tang, Y. Wu, E. W. McFarland et al., Synthesis and Photocatalytic Properties of Highly Crystalline and Ordered Mesoporous TiO2 Thin Films, Chem. Commun., 2004, 14: 1670-1671.
    [4] B. O’Regan, M. Gr?tzel, A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films, Nature, 1991, 353: 737-740.
    [5] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros et al., Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells, Nano Lett., 2002, 2(11): 1259-1261.
    [6] K. M. Gopal, S. Karthik, P. Maggie et al., Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett., 2006, 6(2): 215-218.
    [7] Y. Zhu, J. Shi, Z. Zhang et al., Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide, Anal. Chem., 2002, 74(1): 120-124.
    [8] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, Mechanism in Nb Doped Titania Oxygen Gas Sensor, Sens. Actuators B: Chem., 1998, 46(3): 194-201.
    [9] K. Iuchi, Y. Ohko, T. Tatsuma et al., Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination, Chem. Mater., 2004, 16(7): 1165-1167.
    [10] M. Wagemaker, R. V. D. Krol, A. P. M. Kentgens et al., Two Phase Morphology Limits Lithium Diffusion in TiO2 (Anatase): A 7Li MAS NMR Study, J. Am. Chem. Soc., 2001, 123(46): 11454-11461.
    [11] J. Jin, G. K. Soon, Y. Taekyung et al., Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli, J. Phys. Chem. B, 2005, 109(32): 15297-15302.
    [12] P. D. Cozzoli, K. Andreas, W. Horst, Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods, J. Am. Chem. Soc., 2003, 125(47): 14539-14548.
    [13] P. D. Cozzoli, A. Kornowski, H. Weller, Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods, J. Am. Chem. Soc., 2003, 125: 14539-14548.
    [14] G. Caputo, C. Nobile, T. Kipp, L. Blasi, V. Grillo, E. Carlino, L. Manna, R. Cingolani, P. D. Cozzoli, A. Athanassiou, Reversible Wettability Changes in Colloidal TiO2 Nanorod Thin-Film Coatings under Selective UV Laser Irradiation, J. Phys. Chem. C, 2008, 112: 701-714.
    [15] G. Wang, Q. Wang, W. Lu, J. Li, Photoelectrochemical Study on Charge Transfer Properties of TiO2-B Nanowires with an Application as Humidity Sensors, J. Phys. Chem. B, 2006, 110: 22029-22034.
    [16] W. A. Daoud, G. K. H. Pang, Direct Synthesis of Nanowires with Anatase and TiO2-B Structures at near Ambient Conditions, J. Phys. Chem. B, 2006, 110: 25746-25750.
    [17] T. Kubo, A. Nakahira, Local Structure of TiO2-Derived Nanotubes Prepared by the Hydrothermal Process, J. Phys. Chem. C, 2008, 112: 1658-1662.
    [18] K. S. Brammer, S. Oh, J. O. Gallagher, S. Jin, Enhanced Cellular Mobility Guided by TiO2 Nanotube Surfaces, Nano Lett., 2008, 8 (3): 786–793.
    [19] K. Kanie, T. Sugimoto, Shape Control of Anatase TiO2 Nanoparticles by Amino Acids in a Gel–Sol System, Chem. Commun., 2004, 14: 1584-1585.
    [20] F. Caruso, R. A. Caruso, H. Mohwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science, 1998, 282, 1111-1114.
    [21] P. Jiang, J. F. Bertone, V. L. Colvin, A Lost-Wax Approach to Monodisperse Colloids and Their Crystals, Science, 2001, 291: 453-457.
    [22] S. Kidambi, J. H. Dai, M. L. Bruening, Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers, J. Am. Chem.Soc., 2004, 126(9): 2658-2659.
    [23] Y. Wang, L. Cai, Y. Xia, Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles, Adv. Mater., 2005, 17(4): 473-477.
    [24] Y. Wang, Y. Xia, Bottom-Up and Top-Down Approaches to the Synthesis ofMonodispersed Spherical Colloids of Low Melting-Point Metals, Nano Lett., 2004, 4(10): 2047-2050.
    [25] X. Xu, S. A. Asher, Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals, J. Am. Chem. Soc., 2004, 126(25): 7940-7945.
    [26] Z. Yang, Z. Niu, Y. Lu, Z. Hu, C. C. Han, Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles, Angew. Chem. Int. Ed., 2003, 42(17): 1943-1945.
    [27] Y. Li, J. Shi, Z. Hua, H. Chen, M. Ruan, D. Yan, Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability, Nano Lett., 2003, 3(5): 609-612.
    [28] I.Tissot, J. P. Reymond, F. Lefebvre, E. Bourgeat-lami, SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles, Chem. Mater., 2002, 14(3): 1325-1331.
    [29] Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker, C. J. Brinker, Aerosol-assisted self-assembly of mesostructured spherical nanoparticles, Nature, 1999, 398: 223-225.
    [30] B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Battes, D. E. Discher, D. A. Hammer, Polymersomes: Tough Vesicles Made from Diblock Copolymers, Science, 1999, 284:1143-1146.
    [31] Q. Zhou, S. Wang, X. Fan, R. C. Advincula, Living Anionic Surface-Initiated Polymerization (LASIP) of a Polymer on Silica Nanoparticles, Langmuir, 2002, 18(8): 3324-3331.
    [32] Q. Peng, Y. J. Dong, Y. D. Li, ZnSe Semiconductor Hollow Microspheres, Angew.Chem.Int. Ed., 2003, 42(26): 3027-3030.
    [33] Z. Jun, L. D. Sun, C. S. Liao, C. H. Yan, A simple route towards tubular ZnO, Chem. Commun., 2002, 3: 262-263.
    [34] H. L. Choi, N. Enomoto, N. Ishizawa, Z. Nakagawa, X-ray diffraction data of Ti2O2(C2O4)(OH)2·H2O, Powder Diffr., 1994, 9(3): 187-188.
    [35] A. Streitwieser, H. Heathcock, Introduction to Organic Chemistry, New York: Macmillan Publishing Co., 1981: 251-253.
    [36] M. Aschi, F. Cacace, G. Petris, F. Pepi, Gas-Phase Proton Affinity of Nitric Acid andIts Esters. A Mass Spectrometric and ab Initio Study on the Existence and the Relative Stability of Two Isomers of Protonated Ethyl Nitrate, J. Phys. Chem., 1996, 100(41): 16522-16529.
    [37] J. D. Roberts, M. C. Caserio. Basic Principles of Organic Chemistry, California: W. A. Benjamin Publishing Co., 1977: 607-612.
    [38] A. Streitwieser, H. Heathcock, Introduction to Organic Chemistry, New York: Macmillan Publishing Co., 1981: 256-259.
    [39] J. Livage, M. Henry, C. Sanchez, Sol-Gel Chemistry of Transition Metal Oxides, Prog. Solid State Chem., 1988, 18(4): 259-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700