用户名: 密码: 验证码:
汽车低速轮胎试验机侧偏侧倾运动液压伺服系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研制的汽车低速轮胎动态特性试验机是测量汽车轮胎在低速状态下各种性能参数的实验设备。该设备主要由执行机构、液压回路与电子控制器组成,通过上述部件构成闭环控制系统来实现对轮胎进行垂直加载和侧偏、侧倾加载动作。本文主要针对低速轮胎试验中的控制精度、响应速度以及克服非线性和干扰等问题对控制策略所进行了研究。
     本文对控制轮胎试验机侧偏侧倾运动的电液伺服系统进行了研究,得出了其在典型信号输入下的性能,对低速轮胎试验机的设计、制造和调试具有指导意义。推导出了阀控非对称液压缸的传递函数,应用古典控制理论建立了轮胎试验机侧偏系统和侧倾系统的线性化模型,并应用现代控制理论建立了系统的非线性化数学模型。根据两个系统的实际情况,运用SIMULINK软件包中的模块库对线性和非线性模型分别进行了仿真分析,并且对仿真结果与实验结果进行了比较分析。通过仿真发现:线性模型过渡时间短、没有超调量,响应曲线明显优于非线性模型;如果液压缸一腔压力不能使活塞与阀芯保持同步,就会出现冲击现象,输入频率越高,这种现象就越严重;阀控非对称缸在三角波信号频率较大时会出现压力低与零压的现象。
     根据以上分析作者应用Visual Basic语言设计了试验机的数字控制器,实际的测试结果证明了建模的正确性,并且取得了满意的控制效果。
The low speed motor tire testing machine studied in this thesis is equipment which can obtain performance parameter of motor tire in low speed condition. This equipment consist of actuator, hydraulic circuit and electro-controller, that make up a closed-loop system to achieve vertical, lateral deviation and banking loading action. Considering control precision, response speed and overcome disturbance and non-linearity, the control strategy was studied significantly in this thesis.
     The lateral deviating and banking electro-hydraulic servo system was studied in this thesis, obtain the characteristics under typical input signal, which is useful to design, manufacture and debug of testing machine. The transfer function of symmetry valve control asymmetry cylinder was deduced, the linear model of system was build up under classical control theory, and the non-linear model of system was build up under modern control theory. According to practical situation of tow system, the linear model and the non-linear model was studied separately using SIMULINK software, and did the comparing analysis with the simulating result, simulating result represented that: the linear model transition time was short, had no overshoot, the response curve was better than non-linear one; If the pressure of the cylinder can not make spool and plunger synchronism, that will create impaction, that will increase with frequency of input signal rise; The valve control asymmetry cylinder will arise low pressure and zero-pressure phenomenon with triangular signal.
     According to following analysis, the author designed the numerical controller of the testing machine with Visual Basic program language, the practical testing result justified the system's model was correct, and acquired the satisfied control effect.
引文
[1]李运华,史维样,林廷沂.近代液压伺服系统控制策略的现状与发展.液压与气动,1995(1):3-6
    [2]李壮云,葛宜远等.液压元件与系统.北京:电子工业出版社,1999
    [3]王占林.近代液压控制.北京:机械工业出版社,1997张人德,赵钧良.减振降噪阻尼材料及其应用.上海金属,2002,24(2):18-23
    [4]李洪人.液压控制系统.北京:国防工业出版社,1981
    [5]吕宏庆,苏毅,杨建勇.电液伺服系统中的非线性及其影响分析.机床与液压,2002(1):116-118
    [6]Atherton.Nonlinear control engineering-describing function analysis and design.Van Nostrand Reinhold,London.1975
    [7]顾瑞龙.控制理论与电液控制系统.北京:机械工业出版社,1984
    [8]刘长年.液压伺服系统的分析与设计.北京:科学出版社,1985
    [9]卢长耿,李金良.液压控制系统的分析与设计.北京:煤炭工业出版社,1991
    [10]王军政.电液伺服阀控马达速度闭环数字控制系统得应用研究.北京理工大学学报,2002,22(2):184-187
    [11]王春行.液压伺服控制系统[M].北京:机械工业出版社,1989
    [12]应怀樵.现代振动与噪声控制.北京:航空工业出版社,2005
    [13]易孟林,朱钒,邹占江.电液加载系统中的伺服阀.液压气动与密封,1997(1):22-25
    [14]向春梅,张家深,马芳梅.电液伺服阀动态特性的研究.热力发电,1996(6):5-12
    [15]叶恒,傅周东.电液伺服阀阀系数的研究.液压与气动,2003(12):1214
    [16]Viersma TJ.Analysis,Synthesis and Design of Hydraulic servo systems and Piplines.Amsterdan:Elsevier Scientific Publishing Company,1980
    [17]李福尚,魏建华,吴根茂等.电液位置伺服系统的复合控制.组合机床与自动化加工技术,1996(7):911
    [18]列树道,杨光平.基于电液力伺服阀的最优控制方法的研究.机床与液压,2003(5):78-79
    [19]刘长年.液压伺服系统优化设计理论.北京:冶金工业出版社,1989
    [20]丁国锋,岳平生,王孙安等.基于精确线性化的液压伺服系统滑模控制.机床与液压,1996(3):10-12
    [21]李洪人,王栋梁,李春萍.非对称缸电液伺服系统的静态特性分析.机械工程学报,2003(2):18-22
    [22]王益群,王燕山.电液力控制研究的进展.液压与气动,2002(7):1-4
    [23]谢卓伟,黄献龙.阀控非对称主动式伺服加载系统的数学模型.华南理工大学学报,2000(5):86-90
    [24]Isidarl A.Nonlinear Control Systems:An Introduction.Lecture Notes in Control and Information Sciences.71,Springer,Berlin,1985
    [25]李运华,王孙安,林廷析等.液压伺服系统的非线性控制.机床与液压,1994(1):21-26
    [26]王栋梁,李洪人.阀控液压缸伺服系统的键图分析.济南大学学报,2002,12:355-358
    [27]Florin Ionescu.Some Aspects Mathematical Modeling and Behavior of Hydraulic Elements and Systems.Nonlinear Analysis.Theory,Methods&Aplications,1997,30(3):1447-1460
    [28]江小霞,卢长耿,钟荣龙.液压控制系统的动态测试系统.液压与气动,2002(11):29-31
    [29]Guo Hongbo,Li Hongren.Study on Characteristics of The Single Rod Hydraulic Cylinder Controlled by Asymmetric Valve,Proc.oflSFP,Wuhan,China,lAPWPC,2003:477-482
    [30]Cheng D.Global Linearization of Nonlinear Systems Via Feedback.IEEE Trans.Ant.Control AC-30,1985
    [31]王野牧,王洁,陈先惠等.液压伺服闭环控制系统的SIMULINK仿真实现.沈阳工业大学学报,2000(5):370-372
    [32]Andrew Alleyne} Rui Liu.A simplified approach to force control for electro-hydraulic systems.Control Engineering Practice,2000(8):1347-1356
    [33]李大明,王野牧.液压位置、力伺服系统的SIMULINK仿真方法.沈阳工业大学学报,2004(4):419-421
    [34]王沫然.Simulink4建模及动态仿真.北京:电子工业出版社,2002
    [35]黄晓东,聂继方.电液伺服阀特性计算机辅助测试系统.机床与液压,2003(5):187-189
    [36]袁晓东.液压缸位置控制算法探讨.液压气动与密封,2003(10):7-8
    [37]薛定宇.反馈控制系统设计与分析一MATLAH语言应用.北京:清华大学出版社,2000
    [38]宋志安,乔志刚,王永安等.基于MATLAB的四通伺服滑阀理论分析方法..山东科技大学学报,2003(9):62-65
    [39]Saadat H.Computer aids in control system using.New York:McGraw Hill,1993
    [40]施阳.MATLAB语言精要及动态仿真工具SIMULINK.西安:西北工业大学出版社,1999
    [41]苏东海,张宏,李巍.比例流量阀控制非对称液压缸同步的仿真分析.机床与液压,2003C4):164-166
    [42]P.E.Dupont,B.Armstrong and C.Canudas dde Wit.A survey of analysis tools and compensation methods for control of machines with friction,Automatics,Vol.30,No.7,pp:10831138,1994
    [43]Watton J.A digital compensator design for electro-hydraulic single-Rod cylinder positioncontrol systems.Journal of Dynamic Systems,Measurements,and Control.Transactions of the ASME,1990(112):40-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700