用户名: 密码: 验证码:
复叠式蓄热型空气源热泵热水器动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气源热泵热水器通过消耗一小部分高品位的电能,提升空气中的低品位热能为高品位能。空气源热泵热水器由于环保、节能、安全、低碳而得到越来越多的重视。
     相变蓄热材料(Phase Change Material,简称PCM)是一种密度大、体积小,相变潜热大,热量存储能力强的物质。本课题研究的对象是复叠式蓄热型空气源热泵热水器,结合相变蓄热技术,采用环保制冷剂,可以预期将成为下一代节能制冷空调新产品。研究通过实验和模拟的方法,探讨热泵系统在蓄热过程和放热过程的热量传递及水箱温度动态变化特性,探索复叠式蓄热型空气源热泵热水器动态传热和效率耦合问题。
     论文介绍复叠式蓄热型空气源热泵系统工作原理,对系统进行理论分析,给出热泵系统计算模型,选取相变蓄热温度,选择适合系统的相变蓄热材料。从理论上提出了冬季系统采用复叠运行、夏季采用单级运行的系统方案。
     在环境干球/湿球温度7/6℃、15/14℃、20/15℃、38/23℃对复叠式蓄热型空气源热泵热水器进行了实验研究,得到了大量的系统运行特性试验数据,为该系统的进一步改进提供了基础数据。实验分析了复叠运行条件下的环境干球/湿球温度7/6℃、15/14℃、20/15℃、38/23℃时蓄热过程中系统各部件热量传递路径及动态变化、两级系统之间的平均传热温差、瞬态COP值、储水箱各温度测点分布,以及系统放热过程水箱水温动态特性。根据系统的总COP值,提出了对应相同的冷凝温度存在最佳室外气温切换点以实现系统COP最大值,实验结果表明,水温55℃时最佳节能室外气温在7℃左右。实验数据表明,相同的环境工况下,对于不同的冷凝温度值,总有唯一确定的最佳节能冷凝温度值。
     最后,通过MATLAB建模对环境工况7℃温度蓄热过程进行模拟,模拟结果与实验结果对比,表明所提出模型较好的反映了系统的运行特性,为样机的优化控制提供依据。
Air Source Heat Pump Water Heater (ASHPWH) is kind of the system that air energy is absorbed at evaporator and pumped to storage tank via a Rankine cycle, and then the coil pipe/condenser releases condersing heat of the refrigerant to the water side. Because its save、environmeatal protection、energy-saving and low-carbon,ASHPWH is widely used by more and more people.
     In recent years, the use of thermal energy storage system with PCM has gained consideral attention, because PCM has high heat storage density and a narrow range of phase change temperature. Combined the cascade heat pump system technology with the thermal energy storage, cascade air source heat pump water heater with PCM system is showed on this paper. The new system uses R134a and R404a as the refrigerant , and then it could be new trend on energy-saving in the air-conditioner industry. Transient temperature variation and heat transfer characteristics approach has been developed for the analysis of thermal storage process and thermal release process according the experiment and the simulation method.
     Firstly, the theoretically analysis and study is performed, including the principle of operation、the caculation model of the cascade system、the appropriate phase change temperature of PCM、and the appropriate PCM . And then, a method that the cascade heat pump unit functions in single - stage cycle on summer and cascade cycle on winter is developed.
     In this thesis, an experimental setup for cascade air source heat pump water heater with PCM is improved , and then the systematic testing and analysis of the performances of the heat pump system under different working conditions—7/6℃、15/14℃、20/15℃、38/23℃(dry bulb temperature/wet bulb temperature)are conducted. A large quantity of experimental data has been obained, which provides the fondation data for further improvement research of this heat pump system.
     In the running process, how the heat transfer transiently from low temperature class to high temperture class, and then to the water and the PCM heat exchanger is dicussed. It is also showed that transient COP and the mean temperature difference from low temperture class to high-stage cycle. Both in thermal storage process and thermal release process, dynamic temperature of the water tank in different position is showed. According the experiment , it comes out that when the water average temperature is 55℃, which its outdoor temperature optimizing control conditions and maximizing energy– saving is almostly 7℃. Considering the same outdoor temperature, it also has only one condenser temperature maximizing energy– saving.
     Numerical simulation about thermal storage process of the system on the outdoor temperature 7/6℃is also carried out by MATLAB software .Comparing experimental results with theoretical ones, it is demonstrated that the proposed model can be used to describe the running characteristic of such an equipment in the thermal storage process, providing some improvements on the basis of the simulation platform.
引文
[1]赵庆波,单葆国.世界能源需求现状及展望[J].中国能源, 2002, (02): 49-55
    [2]蒋能照.空调用热泵技术及应用[D].机械工业出版社,1999
    [3] Arif Hepbasli,Yildizv Kalinci. A review of heat pump water heating systems[J]. Renewable and Sustainable Energy Reviews, 2008
    [4] Stefan S.Bertsch,Eckhard A.Groll.Two-stage air-source heat pump for residential heating and cooling applications in northern U.S.climates[J].Int J. Refrigeration, 2008
    [5] Petter Neksa. CO2-heat pump water heater : characteristics ,system design and experimental Results[J].Int J.Refrig, 1998, 21 (3) : 172-179
    [6] Masahiro Kobayashi et al .Cold Areas CO2 heat pump heating and water heater system for cold areas[R] .9th IEA Heat Pump Conference, Sweden, 2008
    [7] Satoru Okamoto. A heat pump system with a latent heat storage utilizing seawater installed in an aquarium[J]. Energy and Building, 2006(38): 121-128
    [8] Ozer Kara et al, Exergetic assessment of direct-expansion solar-assisted heat pump systems: Review and modeling[J]. Renewable and Sustainable Energy Reviews, 2008(12):1383-1401
    [9] G.L.Morrison, T.Anderson, M.Behnia. Seasonal performance rating of heat pump water heaters. Solar Energy, 2004(76): 147-152
    [10] Minsung Kim,Min Soo Kim,Jae Dong Chung.Transient thermal behavior of a water heater system driven by a heat pump[J]. Int J.Refrigeration, 2004, 27(4): 415~ 421
    [11] Christian J. L.Hermes, Cláudio Melo. A first-principles simulation model for the start-up and cycling transients of household refrigerators[J]. Int J.Refrigeration, 2008(31): 1341-1357
    [12] Yang Yao, Yiqiang Jiang, Shiming Deng, Zuiliang Ma. A study on the performance of the airside heat exchanger under frosting in an air source heat pumpwater heater/chiller unit [J]. International Journal of Heat and Mass Transfer, 2004(47): 3745~3756
    [13] Xian-Min Guo, Yi-Guang Chen, Wei-Hua Wang, Chun-Zheng Chen. Experimental study on frost growth and dynamic performance of air source heat pump system[J].Applied Thermal Engineering,2008
    [14] Liu Zhiqiang, Li Xiaolin, Wang Hanqing, Peng Wangming. Performance comparison of air source heat pump with R407Cand R22 under frosting and defrosting[J].Energy Conversion and Management.2008(49):232~239
    [15]张海峰,王勤,陈光明.相变储热型热泵热水器的设计及试验研究[J].制冷学报, 2005 , 26(3) : 22-25
    [16] J.Zhang,R.Z.Wang,J.W.Wu. System optimization and experimental research on air source heat pump water heater.Applied Thermal Engeering,2007(27):1029-1035
    [17]苏生等.空气源热泵热水器的优化设计选择[J].流体机械, 2006, 34(10): 79~8
    [18]秦振春.R410A空气源热泵工作过程仿真及实验研究[D].保存地:南京师范大学, 2007
    [19]刘金平等.基于动态仿真的空气源热泵热水器全年综合性能分析[J].给水排水, 2007, 33(11): 188-192
    [20]崔海亭,杨锋.蓄热技术及其应用[M].化学工业出版社,北京, 2004
    [21]郭茶秀,魏新利.热能存储技术与应用[M],化学工业出版社,北京, 2005
    [22]王永川.相变储热热泵热水器及其关键技术研究[D].保存地:浙江大学, 2006
    [23] Fuqiao Wang et al. The novel use of phase change materials in refrigeration plant[J]. Applied Thermal Engineering, 2007(27): 2911-2918
    [24] Ana Lazaro et al. PCM-air heat exchanger for free-cooling applications in buidings: Empirical model and application to design[J]. Energy Conversion and Management 2009(50): 444-449
    [25] G.Hed, R.Bellander. Mathmatical modelling of PCM air heat exchanger[J]. Energy and Building, 2006(38): 82-89
    [26] Prashant Verma, Varun, S.K.Singal. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material[J]. Renewaable and Sustainable Energy Reviews, 2008(12): 999-1031
    [27]韩宗伟等.严寒地区太阳能—土壤源热泵相变蓄热供暖系统[J].太阳能学报, 2006, 27(12): 1214-1218
    [28]王侃宏等.蓄热技术在太阳能—地源热泵中的应用及模拟[J].河北工程大学学报, 2008, 25(1): 63-67
    [29]江辉民等.蓄热水箱的设计与实验分析[J].建筑热能通风空调, 2006, 25(2): 74-78
    [30]黄金,朱冬生,王先菊.复合相变储能材料储能密度及热导率分析[J].武汉理工大学学报, 2009, 31(17): 34-38
    [31]杨硕,朱冬生,吴淑英等. Al2O3-H2O纳米流体相变蓄冷特性研究[J].制冷学报, 2010, 31(1): 23-26
    [32]孔祥旭.冷却系统瞬态换热仿真分析与冷却性能计算[D],保存地:哈尔滨工程大学, 2007,6
    [33]丁国良,张春路.制冷空调装置仿真与优化[M].科学出版社, 2001
    [34] D.J.Roeder,R.L.Reid, A TRNSYS/GROCS simulation of the Tech house ground-coupled series solar-assisted heat pump system.Transaction of the SME[J]. Journal of Solar Energy Engineering, 1983(105): 446-453
    [35] J. Chi, D. Didion. A simulation model of the transient performance of a heat pump[J]. International Journal of Refrigeration, 1982, 5(3): 176-184
    [36] Tomoji Nagota, Yoshiyuki Shimoda, Minoru Mizuno. Verification of the energy-saving effect of the district heating and cooling system-Simulation of an electric-driven heat pump system[J]. Energy and Building, 2008(40):732-741
    [37]刘利华,陈光明等.空气源热泵的稳态仿真及性能比较[J].暖通空调, 2005, 35(3): 18-23
    [38]杨玉忠.复叠式热泵系统的理论分析和实验研究[D].保存地:天津大学, 2004,12
    [39] NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP):Version7.0
    [40]樊栓狮,梁德青,杨向阳等.储能材料与技术[M].化学工业出版社,北京, 2004
    [41]张正国,王学泽,方晓明.石蜡/膨胀石墨复合相变材料的结构与热性能[J].华南理工大学学报(自然科学版), 2006, 34(3):1-5
    [42]傅明星,张兴群.双级复叠式空气源热泵冷热水机组的应用研究[J].流体机械, 2008, 36(10): 82-85
    [43]邱键.热泵热水器蓄热水箱设计与实验研究[D].保存地:华南理工大学, 2009,5
    [44]刘金平,张治涛,刘雪峰.空气源热泵热水器储水箱动态性能试验研究[J].太阳能学报, 2007, 28(5): 472-4765
    [45]杨世铭,陶文铨.传热学[M].高等教育出版社,北京: 2006
    [46]汪洪军.土壤源热泵系统运行特性与动态仿真研究[D],保存地:天津大学, 2004
    [47]吴晓寒.地源热泵与太阳能集热器联合供暖系统研究及仿真分析[D],保存地:吉林大学, 2008
    [48]吴薇.空气源—水源复合热泵循环系统的性能研究[D],保存地:东南大学, 2005
    [49]丁国良,张春路,赵力.制冷空调新工质—热物理性质的计算方法与实用图表[M].上海交通大学出版社,上海, 2003
    [50]肖信. Origin8.0实用教程:科技作图与数据分析[M].中国电力出版社,北京, 2009
    [51]陈则韶,戚学贵,程文龙等.压缩机制冷空调装置动态仿真研究[J].低温工程, 2000, 118(6): 35-39
    [52]丁国良,张春路.制冷空调装置智能仿真[M].北京:科学出版社, 2002
    [53]张川等.电子膨胀阀制冷剂流量系数经验模型的试验研究[J].机械工程学报, 2005, 41(11):63-69
    [54]陈亮等.考虑壅塞特性的电子膨胀阀流量特性模型[J].上海交通大学学报, 2010, 44(1):111~115
    [55] Ciro Aprea, Rita Mastrullo. Experimental evaluation of electronic and thermostatic expansion valves performances using R22 and R407C[J]. Applied Thermal Engineering 2002(22): 205-218
    [56]仲华,陈芝久.电子膨胀阀动态特性的辨识[J].上海交通大学学报, 1999, 33(8): 942~944
    [57] P.H.Cross. The use of plate heat exchanger for energy economy[J], Chemical energy, 1982, 37(8): 87~90
    [58] Chittur Chandraseharan Lakshmanan, Dynamic simulation of plate heat exchangers[J], Int J of Heat Mass Transfer, 1990,33(5): 995-1002
    [59]秦振春. R410A空气源热泵工作过程仿真及实验研究[D],保存地:南京师范大学, 2007
    [60] Vjacheslav N, Rozhent sev A, Wang Chichuan. Rationally based model for evaluating the optimal ref rigerant mass charge in ref rigerating machines [J]. Energy Conversion and Management , 2001 (42) : 2083 -2095
    [61] Choi J M, Kim Y C. The effects of improper refrigerant charge on the performance of a heat pump with an electronic expansion valve and capillary tube [J]. Energy, 2002 (27) : 391 - 404.
    [62]张良俊吴静怡王如竹.充注量对小型热泵热水器性能影响的实验及分析[J].上海交通大学学报, 2006, 40(8): 1307-1311
    [63]朱慧.土壤源热泵系统计算机仿真及实验分析[D].保存地:南京理工大学, 2007, 7
    [64]王芳等.太阳热泵蓄热系统蓄热过程的数值模拟[J].太阳能学报, 2007, 28(4): 411-415
    [65]孔祥,徐流美,吴清. MATLAB 7.0基础教程[M].清华大学出版社,北京, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700