用户名: 密码: 验证码:
扬子地块西南缘中元古代—三叠纪沉积盆地演化及地层的元素地球化学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬子地块西南缘,属华南板块南部,跨扬子陆块和南华活动带两个大地构造单元。地理范围包括贵州全境、云南东部、广西北部、湖南西部及四川与重庆南部。这一区域不仅沉积岩广布,沉积相较全,沉积格架(地层格架)较完整,不同寻常的事件沉积发育,古生物丰富多彩,而且是低温热液矿床的矿产密集区。因此,这一区域是进行沉积盆地分析和研究沉积地层中元素背景的理想场所,对其进行研究具有重要的理论和实际意义。
     论文分析论述了研究区沉积盆地的充填特征、沉积盆地的发展演化及盆地地层中的元素含量在纵向上和横向上的变化规律。在此基础上,论述了沉积盆地与元素背景之间的关系。
     本文创新的突出点是:①初步标定了三叠纪各沉积层序及体系域的界面年龄,从而建立了高分辨率的三叠纪时、空地层格架。三叠纪层序发育的特点与盆地的构造沉降和海平面升降变化密切相关,当构造沉降加速和海平面上升时,形成的层序呈退积型组合关系;构造沉降平缓和海平面下降时,形成的层序呈进积型组合关系。②中三叠世早期的火山事件,是由于印支板块与华南板块的碰撞引起的,并根据火山凝灰岩的年龄值,推定中下三叠统的界线年龄约为247Ma。③对三叠纪右江沉积盆地沉降史作了定量分析,结合沉积特征,认为华南板块南缘是在晚二叠世最末期开始由离散边缘转为汇聚边缘的,右江盆地的性质已随之从裂谷盆地转化为前陆盆地。在前陆盆地的中期阶段(中三叠世安尼早期一晚三叠世卡尼早期)有盆缘隆起的形成,随着时间的推移,盆地沉降中心自南往北推进,而盆缘隆起则由北往南位移。④探讨了沉积盆地充填特征及盆地演化与元素地球化学的关系。
     通过这次研究得出如下主要认识:
     1.研究区的沉积特征:区内沉积分为陆源硅质碎屑沉积体系与碳酸盐沉积体系两部分。其中三叠纪陆源硅质碎屑浊积岩的特点突出,沉积厚度大,主要有四次浊积岩充填,并且是逐渐向碳酸盐台地方向超覆前进的,物源主要来自云开古陆和越北古陆。碳酸盐沉积分为浅水与深水两种沉积类型,其中浅水碳酸盐沉积相模式分为碳酸盐缓坡和镶边碳酸盐台地。台地边缘礁、滩相共存,台地内部还具有台盆相沉积。深水碳酸盐沉积主要由沿坡向下的重力流沉积和悬浮沉积组成,二者常相互穿插共生。
     2.研究区事件沉积特征:寒武纪早期的缺氧事件,为一套黑色岩系,含有镍、钼、钒等多金属层,它是在泛大陆解体、海平面上升、热水喷流、火山活动、上涌洋流等多种因素作用形成的;五峰期的缺氧事件,以黑色、含碳质和笔石为特征,主要由冰川消融,导致海平面上升引起;P/T界线之间的灾变事件,造成了生物大绝灭,并形成了界线粘土层,它是由以火山事件为主,伴有球外撞击事件及海平面的变化造成的;中三叠世早期的火山事件,形成了薄而稳定的特殊沉积—火山凝灰岩,它是由于印支板块与华南板块的碰撞引起的,
     3.研究区的岩石地层格架:研究区南华—三叠纪地层具有明显的旋回性特点,被划分为31个沉积层序,并建立了岩石地层格架。
     4.研究区沉积盆地的发展演化:研究区基底的沉积盆地总体是在拉张背景下形成的,由中元古代的陆间裂谷盆地演变至新元古代早期的陆缘裂陷盆地。盖层的盆地演化大致分为两个旋回,第一个旋回为南华一志留纪;第二个旋回为泥盆—三叠纪。每个旋回的大地构造背景都由早期的拉张变到晚期的挤压。从南华
SW Margin of the Yangtze Block, belonged to South part of the South China Plate, spans two geotectonic units of Yangtze Landmass and South China active zone. Its geographic scope includes whole Guizhou province, Eastern Yunnan, Northern Guangxi, Western Hunan, Southern Sichuan, and Southern Chongqing. In this area, the main characteristics is not only the large-scale distribution of sedimentary rocks, many kinds of sedimentary facies, relative integrity of sedimentary framework, development of event deposits,a mass of paleobiology, but also the enrichment of low temperature deposits. So it is the excellent area for studing sedimentary basin and elemental background, and this study has more significance in theory and practice.The dissertation discusses the filled characteristics and evolution of sedimentary basin and temporal and spatial changes of elemental contents in studied area. Based on the research the relationships between sedimentary basin and elemental background have been summarized in detail.The overhangs of innovation in the paper are : (1)Through the particular research on the Triassic strata with abundant fossils, the sedimentary sequence and the boundary age of systems tracts are determined . So the temporal and spatial framework with high resolution for the Triassic strata has been established. The characteristics of the Triassic sequences is closely related to the tectonic subsidence of the basin and changes of sea level. When the tectonic subsidence accelerated and sea level rose the retrograding sequences occurred and prograding sequence when the tectonic subsidence slows and sea level drops. (2) The volcanic event in early Mid-Triassic, caused by the collision of Indo-China plate and South China plate.The age of lower/mid Triassic boundary is about 247 Ma based on the volcanic tuff.(3) Through the quantitative analysis of subsident histories to the Youjiang basin in Triassic and sedimentary characteristics, it can be put forword that the South margin of South Chian plate showed the conversion from the divergent margin to convergent margin in latest Late Permian and from the rift basin to foreland basin about Youjiang basin. In the mid-stage evolution of foreland basin (middle to late Triassic) there is the basin margin uplift. Subsidence center of the basin moved from the south to north and basin margin uplift moves from north to south from early stage to late stage.Through detailed study, this paper drawed such main conclusions as follows:1. Sedimentary characteristics: two different depositional systems are divided including the terrigenous siliciclastic and carbonate systems. In Triassic, the terrigenous siliciclastic sediments is characteristic of turbidite with large-sized thickness and observed packing times by four. The turbidite overlaped gradually toward the carbonate platform. Their source derived from the Yunkai and Yuebai ancient lands. The carbonate deposits can be classified to two types of shallow water and deep water. Sedimentary facies models of shallow water carbonate are divided into carbonate ramp and rimmed carbonate platform. The reef and beach facies of platform margin are in coexistence. Platform and basin facies can be found in the interal part. Deep water carbonates include two types of gravity current deposit and suspension deposit which took place on the sloping orientations and interluded each
    other.2. Event sedimentary characteristics: The black rock series, enriched nichel, molybdenum and vanadium etc, had been devoloped in Early Cambrian representing for an anoxic event. It is possiblely responsible for the Pangea break-up, sea level rise, hydrothermal exhalation, volcanic activity, upwelling ocean current and so on. The anoxic event in Wufengian is characterized by black color, carbon-rich and graptolite, which is caused by the glacier melting and sea level rise. The disaster event in Permian/Triassic resulted in a large scale extinction of biology and formed clay layer. This event is caused by volcanic activity, impact of out earth and changes of sea level. The volcanic event in early Mid-Triassic, caused by the collision of Indo-China plate and South China plate, formed the special deposits-thin and stable volcanic tuff.3. Lithostratigraphic framework: 31 sedimentary sequences of the South-Chinaic to Triassic strata with the characteristic of obvious cycle can be identified, then the lithostratigraphic framework has been established.4. Evolution of the sedimentary basin: The sedimentary basins of basement in studid area, in the whole, are formed in the tensional background evolving from the intercontinential rift basin in Mid-Proterozoic to continental margin rift basin in New-Proterozoic. The evolution of caprock includes two cycles. The first cycle is from South-Chinaian to Silurian and the second cycle from Devonian to Triassic. In each cycle the tectonic background changed from tension in early period to compression in later period. From South-Chinaian to Silurian the studied area undergone the evolution of rift basin to passive margin basin, and to foreland basin. From Devonian to Triassic the evolution is from rift basin to forelandbasin.5. Geochernical characteristics:(l)Major elements. On the whole, there are more differences of major-element contents between basement and caprock. For example, in the basement, the contents of MgO and CaO are lower and TiC>2 and P2O5 are close, whereas another oxide contents are higher than those in the caprock. It is possible that more carbonates occurred in the caprocks where the contents of SiO2,TiO2,Al2O3, E FeO,Na2O and K2O are relatively higher in South-Chinaian and Silurian, which is responsible for preponderant detrital rocks. Limestones occurred in Carboniferous and Permian characterized by higher CaO content. The lower parts of Datangpo Formation, of South-Chinaian and Wayao Form, of Triassic display MnO contents up 15% , but the four strata as South-Chinaian, Sinian, Cambrian and Silurian are characteristic of higher P2O5 contents. In the basement, The measured samples have similar major-element compositions but there are slight differences in the Qingbaikouian and Jixianian: SiO2, TiO2 and Fe2O3 contents are close, while A12O3, Na2O and K2O contents are higher in the Qingbaikouian with increased trend and FeO> MnO, MgO, CaO and P2O5 contents are of declined trend.(2) Trace elements. The trace elements showing the certain laws in the basement, caprock and crust are as follows: in the basement, the Ga and Nb contents are slightly higher, Mo, Ba, Hf, Sr and Zr contents are significantly higher in Qingbaikouian and other elements contents are lower than those in Jixianian. The Sr contents of Carboniferous disply the highest values of 496.6 lppm, but the contents of
    Sc, Cr, Co, Zn, Ga, Rb, Cs, W, Au, Tl, Pb and Th of Silurian are the highest with the lowest Hg content. In Sinian, Mo, Ag, Sb and Ba show the highest contents, while the lowest concentrations are Co, Ni and Sr with contents of 4.06,19.14 and 43.73 in ppm. The highest V, Cu, Nb and Ta contents occurred in Perimian when the Sb conten was the lowest value by 0.18ppm. The deep-water caprock are characterized by lower contents of Sr, Mo and Ag than the shallower-water one. In gernal, the trace-element contents of crust are higher than those of the sedimentary strata, but their enrichment degreens are not high. Comparatively, such these elements as Mo, Ag, Sb and Ba have higher concentrations and enrichment coefficient is up 2, however, Co, Sr,Ta and Hg are deficient. On the base of the above-mentioned, the lowest values of trace-element contents occurred in Carboniferous and the highest in Jixianian. In comparision with the basement, the caprock has slightly higher contents of Ni, Mo, Ag, Au, Hg and U and obviously higher contents of Sr.(3)Rare earth elements. The basement has similar REE distribution patterns showing negative Eu anomaly, but the total REE content by 225ppm in Qingbaikouian is higher than one by 196ppm in Jixianian. There are higher total REE contents relative to the North Margin of Yangtze Platform. The caprock, however, has REE enrichment of 217ppm in South-Chinaian and the sub-enrichment of 216ppm in Silurian. The total REE display lowest contents with value of 45ppm in Carboniferous. Except for Sinian, there are obviously negative Eu anomaly and slightly negative Ce anomaly.6. The relationships between sedimentary basin and geochemistry (l)Depositional systems and geochemistry. ?In the terrigenous siliciclastic systems, trace-element contents are commonly higher in the tidal-flate and shelf facies and are the lowest in the beach facies, but REE has silimary characteristics, are higher in the tidal-flate and shelf facies. In the tidal-flate, shelf and basin facies , there are higher Th/U ratios and lower Th/Sc and La/Sc ratios, however, the facts are contrary in the beach facies. (2)In the carbonate systems, geochemical characteristics of the trace elements, REE and the ratios of Th/U, Th/Sc and La/Sc are as follows: From slope to basin to restricted platform to open platform to semi- restricted platform facies, these values display the high to lowe changes. Therefore, different contents of the trace-element and REE occurred in the different facies, that is to say, the contents of terrigenous siliciclastic deposits are higher than that of carbonates.(2)Events and geochemistry. (Din Early Cambrian representing for an oceanic anoxic events, the REE is characterized by markedly high contents the and positive Eu anomaly. Anoxic stratum has higher V, Mo, Ba, Pb and U contents and Th/Sc values as well as lower Th/U values than the overlying and overlain strata.(g)In the anoxic sediments of Wufengian in Late Ordovician, the contents of major elements such as SiO2, A12O3 and TiO2 are higher, while trace elements of Li, Co, Sr, Zr, Hf and Th have lower enrichment, in especial, the V, Mo, Ag, Sb, Au and U contents are significantly higher than the overlying and overlain strata. REE characteristics indicate the anoxic sediments have higher total REE contents than the overlain stratum and lower than the overlying stratum.? In the P/T boundary, REE contents under the boundary are higher in common than up the boundary. Most trace elements
    indicate higher contents under the boundary of shallow water or up the boundary of deep water. ?In the volcanic events in Middle Triassic, SiO2, A12O3, MgO and K2O display higher contents representing the origin of acid volcanic ash compared with the compositions of acid magmatite. The total REE contents range from 161ppm to 415ppm with the LREE concentrations, extensively negative Eu anomaly. With respect to trace elements, Rh, Th and U of higher contents occurred and Th content is higher than Ta. Above-mentioned characteristics imply the deposits in the volcanic events result from the calc-alkaline volcanic ash.(3)Sedimentary sequence and geochemisty. The REE, Th and Sc contents and Th/U, Th/Sc and La/Sc values in the systems tract have a negative correlation with the sea level changes. In the whole sequence by the transition from lowstand systems tract(LST) to transgressive systems tract(TST) ,and to highstand systems tract(HST), the values fluctuate from high to low, and to high, which indicates that they are declined during rise of the relative sea level, but the contrary phenomenon occurred during sea level drop.(4)Evolution of sedimentary basin and geochemistry. In course of basin evolution, various elements contents will vary in every stage. As example, major trace-element contents are highest in the intercontinental rift basin of Middle Proterozic, the highest REE contents display in the marginal rift basin of Early New-Proterozoic. The REE contents are gradually increased with the transition from rift basin to passive marginal basin in tensional backgrounds, and to forland basin in extrude backgrouds, and the major trace elements have the silimar changes.
引文
鲍振襄.1995.湖南西北部黑色岩系中的贵金属矿化及找矿.黄金地质,3:28~33.
    鲍振襄.1997.湘西北黑色岩系中贵金属矿化地质特征及成矿控制因素.有色金属矿产与勘查,(2):88~94
    鲍振襄.2002.上扬子台区下寒武统黑色岩系中的钒矿床.云南地质,21(2):175~182.
    鲍志东,朱进泉,江茂生,等.1998.海平面升降中的元素地球化学相应—以塔中地区奥陶纪为例.沉积学报,16(4):32~36.
    柴之芳、马淑兰、毛雪英等.1986.浙江长兴二叠—三叠系界线剖面的元素地球化学特征.地质学报,44(2):159~160.
    陈洪德,曾允孚.1990.右江沉积盆地的性质及演化讨论.岩相古地理.1:28~37.
    陈宏明,吴祥和,张瑛,等.1994.中国南方石炭纪岩相古地理与成矿作用.北京:地质出版社.
    陈开远,何胡军.2002.潜江凹陷潜江组古盐湖沉积层序的地球化学特征.盐湖研究,4:
    陈旭,肖承协,陈洪冶.1987.华南五峰期笔石动物群的分异及缺氧环境.古生物学报,26(3):326~344.
    程裕淇等.1994.中国区域地质概论.北京:地质出版社
    地质部综合物探大队.1971.我国区域重力场及其基本特征.物探与化探,(1)
    滇黔桂重点片综合解释组.1995.华南地区物探化探遥感成果编图黔桂滇重点片综合解释成果报告(1:100万)
    杜德勋,罗建宁,陈明,等.1999.巴颜咯拉三叠纪沉积盆地岩石地球化学特征与物源区构
    造背景的探讨——以阿坝—若尔盖、小金—马尔康及雅江盆地为例.岩相古地理,19(2):1~20.
    方维萱、胡瑞忠、苏文超等.2002.贵州镇远地区钾镁煌斑岩类的侵位时代.科学通报,47(4):307~312
    方一亭,边立曾,俞剑华等.1993.晚奥陶世五峰期扬子板块沉积模式.沉积学报,11(3):712~12..
    冯洪真,俞剑华,方一亭等.1993.五峰期上扬子海古盐度分析.地层学杂志,17(3):179~185.
    高计元,孙枢,许靖华等.1988.碳氧同位素与前寒武纪和寒武纪边界事件.地球化学,3:257~266.
    高山,张本仁,骆庭川,等.1990.秦岭造山带及其邻区大陆地壳的结构与成分研究.武汉:中国地质大学出版社.
    高山.1999.关于大陆地壳化学组成研究中某些问题的讨论.地球科学—中国地质大学学报,24(3):228~233.
    高振刚、徐道一、张勤文.1987.四川广元上寺二叠—三叠系界线内微球粒的发现与研究.地质论评,23(3).
    高振敏,罗太义,李胜荣.1997.黑色岩系中贵金属的成因:来自固定铵的佐证.地质地球化学,1:18~23.
    耿良玉.1986.论上扬子区五峰页岩的陆表海成因.见中国古生物学会第十三、十四届学术年会论文集.安徽科学技术出版社:103~114.
    苟汉成.1985.滇黔桂地区中、上三叠统浊积岩形成的构造背景及物源区的初步探讨.沉积学报,3(4):95~107
    顾雪祥,刘建明,Oskar Schulz,等.扬子地块南缘元古代浊积岩源区风化特征和源岩性质 的沉积地球化学记录.成都理工大学学报(自然科学版),30(3):221~235.
    广西地质矿产局.1985.广西壮族自治区区域地质志.北京:地质出版社.
    贵州省地质矿产局.1987.贵州省区域地质志.北京:地质出版社.
    国家自然科学基金委员会地球科学部.2002.21世纪初地球科学战略重点.北京:中国科学技术出版社,159.
    韩世庆.1987.贵州及云南东南海相沉积区的油气前景..贵州地质,(2)
    郝黎明,邵龙义.2000.基于层序地层格架的有机相研究进展[J].地质科技情报,19(4):60~64.
    何胡军.2003.浅析湖平面变化与地球化学特征的关系—以潜江凹陷为例.新疆石油学院学报,
    何锦文.1985.浙江长兴煤山二叠—三叠系界线混生层中微球粒的发现及其意义.地层学杂志,9(4):293~297.
    何卫红,汪啸风,卜建军.2002.晚奥陶世五峰期扬子海盆海平面变化旋回与古水体深度.沉积学报,20(3):367~375.
    何卫红,汪啸风,卜建军.2003.扬子海盆中部晚奥陶世五峰期海平面变化.地球学报,24(1):55~60。
    贺自爱.1986.黔、桂中三叠世浊流沉积的形成环境.石油与天然气地质,7(3):207~21
    湖南省地质矿产局.1988.湖南省区域地质志.北京:地质出版社.
    胡受权.1998.泌阳断陷下第三系核三段上段陆相层序各体系域岩石地球化学旋回性特征[J].地质地球化学,26(2):45~52.
    胡受权.1999.陆相层序界面的岩石地球化学标志探讨[J].石油学报,20(1):24~38.
    黄思静.1994.上扬子二叠—三叠系初海相碳酸盐的碳同位素组成与生物绝灭事件.地球化学,23(1):60~68.
    霍恩(Horne).厦门大学海洋化学教研室译.1976.海洋化学(水的结构与水圈的化学).科学出版社.
    贾炳文,谷东起.1998.晋中冀西太原组中段火山事件层岩矿地化特征及其意义.沉积学报,16(3):85~91.
    蒋武.贵州紫云地区下中三叠统牙形刺及其油气意义.见:贵州地层古生物文集(第一辑).贵阳:贵州人民出版社.
    姜月华,岳文浙,业志铮.1994.华南下古生界缺氧事件与黑色页岩及有关矿产.有色金属矿产与勘探,3(5):272~278.
    李昌年.1992.火成岩微量元素岩石学.武汉:中国地质大学出版社.
    李春荣,陈开远.2002.潜江凹陷盐湖层序地层岩石地球化学古环境研究.海洋石油,3:25~29.
    李利平,田军,张克信,等.2002.东昆仑造山带下中三叠统沉积岩地球化学特征.同济大学学报,30(8):938~943.
    李明道,赵征.1996.贵州省三丹地区中、晚寒武世岩石地层格架.贵州地质,13(2):135~138.
    李胜荣,高振敏.1995.湘黔地区牛蹄塘组黑色岩系稀土特征—兼论海相热水沉积岩稀土模式.矿物学报,15(2):225~229.
    李胜荣,高振敏.1996.华南下寒武统黑色岩系中的热水成因硅质岩.矿物学报,16(4):416~422.
    李胜荣,高振敏.1996.湘黔地区下寒武统黑色岩系热演化条件.地质地球化学,4:30~34.
    李胜荣等.2000.
    黎彤、袁怀雨、吴胜昔等.1999.中国大陆壳体的区域元素丰度.大地构造与成矿学,101~107
    黎彤.1994.中国陆壳及其沉积层和上陆壳的化学元素丰度.地球化学,23(2):140~145.
    李玉成.1998.华南二叠系长兴阶层型剖面碳酸盐岩碳、氧同位素地层.地层学杂志,22(1):36~41.
    李振清,周洪瑞.2001.山东淄博地区上寒武统沉积地球化学特征及其层序地层学意义.现代地质,15(4):377~382.
    李志明,龚淑云,陈建强等.1997.中国南方奥陶—志留纪沉积层序与构造运动的关系.地球科学—中国地质大学学报,22(5):526~530.
    刘宝珺,许效松,潘杏南,等.1993.中国南方大陆沉积地壳演化与成矿.北京:科学出版社,79~86
    刘朝荣,俞碧清.1992.广西丹池盆地地球化学场演化与成矿.桂林冶金地质学院学报.12(1):67~77.
    刘洛夫,康永尚.准噶尔盆地侏罗系层序地层格架中的烃源岩评价.沉积学报,2002,20(4):687~694.
    鲁洪波,江在兴.1997.高分辨率层序地层学在资源系列评价中的运用[J].石油大学学报(自然科学版),21(5):9~12.
    卢重明.1986.扬子准地台西南缘的活化与右江地槽的形成.贵州地质,3(1):9~27
    吕洪波,章雨旭,夏邦栋,等.2003.南盘江盆地中三叠统复理石中的同沉积挤压构造—一类新的沉积构造的归类、命名和构造意义探讨.地质论评,49(5):449~456.
    吕洪波,章雨旭,肖加飞.2004.贵州贞丰中三叠统关岭组中Chirotherium—原始爬行类足迹研究.地质学报,78(4):468~474.
    马振东,陈颖军.2000.华南扬子与华夏陆块古—中元古代基底地壳微量元素地球化学示踪探讨.地球化学,29(6):525~531.
    毛景文,张光弟,杜道安等.2001.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定—兼论华南寒武系底部黑色页岩多金属成矿作用.地质学报,75(2):234~243.
    梅冥相,高金汉,孟庆芬.等.2002.南盘江盆地早-中三叠世层序地层格架及相对海平面变化研究.现代地质,16(2):137~146.
    牟传龙,吴应林,谭钦银.1990.南盘江盆地中三叠统浊积岩及其物源和大地构造背景.成都地质学院学报,17(4):90~96.
    穆恩之.1954.论五峰页岩.古生物学报,2(2):153~170.
    浦心纯,周浩达,王熙林等.1994.中国南方寒武纪岩相古地理与成矿作用.北京:地质出版社.
    秦典夕,颜承锡,熊剑飞.1993.黔中三叠纪牙形类生物地层研究的新进展.贵州地质,10(2):120~130.
    秦建华,吴应林,颜仰基等.1996.南盘江盆地海西—印支期沉积构造演化.地质学报,70(2):99~106.
    邱家骥.1985.岩浆岩岩石学.北京:地质出版社.
    秦继明.1996.黑色岩系中的多元素金属矿床.四川地质科技情报,2:9~14.
    任纪舜、王作勋、陈柄蔚等.1999.从全球看中国大地构造—中国及邻区大地构造图简要说明.北京:地质出版社
    戎嘉余,陈旭等.1987.华南晚奥陶世的动物群分异及生物相、岩相分布模式.古生物学报,26(5):507~535.
    四川省地质矿产局.1990.四川省区域地质志.北京:地质出版社.
    田景春,陈洪德,彭军,等.2000.川滇黔桂地区下、中三叠统层序划分、对比及层序格架.沉积学报,18(2):198~204.
    涂光炽等.1993.华南元古宙基地演化和成矿作用.北京:科学出版社
    万方,尹海光,许效松等.2003.华南加里东运动演化过程中烃源岩的成生.矿物岩石,23(2):82~86.
    王传尚,汪啸风,陈孝红等.2003.奥陶纪末期层序地层学研究.地球科学,28(1):6~10.
    王大锐、王新平、孙晓婷.2001.广西西北部二叠—三叠系界线碳、氧同位素组成异常及其意义.地质论评,47(3):225~228.
    王立亭.1996.黔西南地区三叠纪地层格架.贵州地质,13(2):97~134.
    王立亭,陆彦邦,赵时久,等.1994.中国南方二叠纪岩相古地理与成矿作用.北京:地质出版社.
    王懋基.1994.黑水-泉州地学断面的重磁解释.地球物理学报,37(3):321~329
    王新平、郝维成、杨守仁.1997.广西东罗二叠—三叠系界线Ni-Ir异常与蜓类的绝灭.科学通报,42(12):1307~1308.
    王雪华,马骥.1989.贵州贞丰发现中三叠世早期恐龙遗迹.中国区域地质,2:186~189.
    王砚耕,尹恭正,郑淑芳等.1984.贵州上前寒武系及震旦系—寒武系界线.贵州人民出版社,62页.
    王砚耕、王立亭、张明发等.1995.南盘江地区浅层地壳结构与金矿分布模式.贵州地质,12(2):507~535.
    王一刚.1986.黔南桂西早三叠世大陆斜坡碳酸盐重力流沉积.沉积学报,4(2):91~100.
    王志浩,钟端.1990.滇东、黔西和桂北不同相区的三叠纪牙形刺生物地层.地层学杂志,14(1):15~35.
    王中刚,于学元,赵振华等.1989.稀土元素地球化学.北京:科学出版社.
    魏家庸.,卢重明,徐怀艾,等.1991.沉积岩区1:5万区域地质填图方法指南.武汉:中国地质大学出版社.
    魏家庸.1993.贵州省贵阳地区的三叠纪地层格架.中国区域地质,2:97~106.
    吴朝东,杨承远,陈其英.1999.湘西黑色岩系地球化学特征和成因意义.岩石矿物学杂志,18(1):26~39.
    吴朝东.2000.湘西震旦—寒武交替时期古海洋环境的恢复.地学前缘,7:45~57.
    吴朝东,申延平.2001.湘西黑色岩系铂族元素地球化学特征及富集因素.自然科学进展,11(5)507~513.
    吴根耀.2001.滇桂交界区印支期前陆褶皱冲断带.地质科学,36(1):64~71
    吴江,李思田.1992.广西中三叠统浊流流向及坡向.广西地质,5(4):15~24
    吴瑞棠.1986.事件地层学——一个新的挑战.地质论评,32(4):405~411
    吴应林,朱洪发,朱忠发等.1994.中国南方三叠纪岩相古地理与成矿作用.北京:地质出版社.
    夏文臣,周杰,雷建喜,等.1995.滇黔桂晚海西-中印支伸展裂谷海盆地的演化.地质学报,69(2):97~112
    夏文杰,杜森官,徐新煌,等.1994.中国南方震旦纪岩相古地理与成矿作用.北京:地质出版社.
    肖传桃,姜衍文,朱忠德.1996.湖北宜昌地区奥陶纪层序地层及扬子地区五峰组沉积环境的讨论.2(3):339~346.
    许靖华,孙枢,李继亮.1987.是华南造山带而不是华南地台.中国科学B辑,(10):1107~ 1115.
    许靖华,何起祥,吴应林等.1983.我国西南早中三叠世间“绿豆岩”等时面上下的碳、氧稳定同位素地球化学.中国地质科学院成都地质矿产研究所所刊,4:1~12.
    严正.1989.四川上寺二叠—三叠系界线剖面碳同位素异常事件(第三届全国天地生相互关系学术讨论会论文集).中国科学技术出版社,82~86.
    杨建业,任德贻,邵龙义.2000.沉积有机相在陆相层序地层格架中的分布特征—以土哈盆地台北凹陷及准噶尔盆地南缘中侏罗世煤系为例.沉积学报,2000,18(4):585~589.
    杨丽贞.1997.广西东南及西南部中生代火山活动旋回划分.广西地质,10(2):9~12.
    杨瑞东.1998.贵州早、中三叠世台地—盆地相过渡区层序地层及沉积地球化学特征.高校地质学报,4(1):95~102.
    杨瑞东,赵元龙,郭庆军.1999.贵州早寒武世早期黑色页岩中藻类及环境意义.古生物学报,38卷增刊:145~149.
    杨瑞东,陈孟莪.2002.黔中寒武系底部生物化石新发现.自然科学进展,12(2)208~211.
    杨瑞东,张立华,姜立君等.2003.澄江生物群分子在贵州遵义牛蹄塘组发现.地质学报,77(2):145~150.
    杨守仁,初庆春.1992.黔西南三叠系永宁镇组牙形石研究—兼论下中三叠统界线.北京大学学报,28(6):722~732.
    杨守仁,刘疆,张明发.1995.贵州西南部“法郎组”牙形石及其时代.地层学杂志,19(3):161~170.
    杨守仁,郝维城,江大勇.2002.贵州省六枝县“法郎组”的牙形石及其时代意义.地质论评,48(6):586~592.
    杨兴莲,赵元龙.2000.贵州遵义下寒武统牛蹄塘组生物群中的海绵化石.贵州工业大学学报,29(6):30~36.
    杨遵仪、吴顺宝、殷鸿福.1991.华南二叠—三叠纪过渡期地质事件.地质出版社.
    叶连俊,孙枢.1980.沉积盆地分类.石油学报,1(3):1~6.
    殷鸿福、黄思骥、张克信.1989.华南二叠纪—三叠纪之交的火山活动及其对生物绝灭的影响.地质学报,2:169~181.
    殷鸿福,杨遵仪,童金南.2000.国际三叠系研究现状.地层学杂志,24(2):109~113.
    殷鸿福,童金南.2002.关于中国的海相三叠系建阶及下三叠统分阶界线.地质论评,490~497.
    于炳松.1995.密集段的地球化学标志.矿物学报,15(2):205~209.
    于炳松,裘愉卓.1998.扬子地块西南部沉积地球化学演化与成矿作用.北京:地震出版社.
    于炳松,裘愉卓.1998.贵州地区新元古代—三叠纪沉积岩中稀土元素地球化学特征与地壳演化.现代地质,12(2):173~179.
    于炳松,乐昌硕.1998.沉积岩物质成分所蕴含的地球深部信息.地学前缘,5(3):105~112.
    於崇文,沈镛立,岑况,等.1987.广东一六地区区域地球化学研究.北京:地质出版社
    云南省地质矿产局.1990.云南省区域地质志.北京:地质出版社.
    曾允孚,刘文均,陈洪德,等.1992.右江复合盆地的沉积特征及其构造演化.广西地质,5(4):1~14.
    曾允孚,张锦泉,刘文均,等.1994.中国南方泥盆纪岩相古地理与成矿作用.北京:地质出版社.
    曾允孚,刘文均,陈洪德,等.1995.华南右江复合盆地的沉积构造演化.地质学报,69(2)113~124
    张爱云,武大茂,郭利娜等.1987.海相黑色页岩建造地球化学与成矿意义.北京:科学出版 社,1~219
    张爱云.1989.黑色页岩型钒矿提钒的主导矿物.地球科学,14(4):391~397.
    张本仁,李泽九,骆庭川,等.1987.豫西卢氏—灵宝地区区域地球化学研究.北京:地质出版社
    张本仁等.1990.秦巴地区区域地球化学论文集.武汉:中国地质大学出版社
    张本仁等.1994.秦巴岩石圈构造及成矿规律地球化学研究.武汉:中国地质大学出版社
    张建国.1997.运用层序地层学研究生油岩[J].世界石油工业,4(1):18~21.
    张锦泉,蒋廷操.1994.右江三叠纪弧后盆地沉积特征及盆地演化。广西地质,7(2):1~14
    张克信等.1989.华南二叠—三叠纪之交的灾变群及其对生物大绝灭的效应.中国科学技术出版社,82~86.
    张士三.1988.沉积岩层中镁铝含量比的研究及其应用.矿物岩石地球化学通讯,2:12~13.
    赵俊青,纪有亮,张善文.2003.地球化学在高分辨率层序界面识别中的运用[J].石油与天然气地质,24(3):264~273.
    赵元龙,M.Steiner,杨瑞东等.1999.贵州遵义下寒武统牛蹄塘组早期后生生物群的发现及重要意义.古生物学报,38卷增刊:132~146.
    赵振华.1997.微量元素地球化学原理.北京:科学出版社,65.
    中国含油气区构造特征编委会.1989.中国含油气区构造特征.北京:石油工业出版社,320.
    周明魁,王汝植,李志明等.1993.中国南方奥陶—志留纪岩相古地理与成矿作用.地质出版社.
    周磊等.1989.二叠—三叠系界线事件—中国三个地层剖面的地球化学研究(译自<地球与行星科学杂志>1988年90卷第4期).地质地球化学,4:38~45.
    周希云.1990.贵州奥陶—三叠系牙形石变色指标(CAI)及油气评价.贵州地质,7(4):361~372.
    周瑶琪、柴之芳、毛雪瑛等.1989.中国南方二叠—三叠系界线及其附近粘土层稀土元素地球化学研究.大地构造与成矿说,13(2):188~196.
    周瑶琪、柴之芳、毛雪瑛等.1991.混合成因模式—中国二叠—三叠系界线地层元素地球化学及其起示.地质论评,37(1):51~63.
    朱立军.1995.贵州绿豆岩中粘土矿物特征及其成因探讨.矿物学报,15(1):75~81.
    朱夏主编.1983.中国中新生代盆地构造和演化.北京:科学出版社,230.
    朱忠发,王光新.1986.上扬子地台及其邻区早、中三叠世间绿豆岩沉积前后古地理.石油与天燃气地质,7(4):344~355.
    Asaro F, Alvarez L W, Michel H V.1982.Geochemical anomaljes neay the Eocene/Oligocene and Permian/Triassic boundaries.Geological Society of America, Special Paoer 190:517~528.
    Baud A,Magaritx M,Holser W T.1989.Permian-Triassic of Tethys:Carbon isotope studies.Geol Rundschau,72(2):649~677.
    Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Geol, 45:97~113.
    Bohacs K M. 1993. Source quality variations tied to sequence development in Monterey and associated formations, Southwestern California[A]. Katz B J, Pratt L M. Lake Basins Through Space and Time[C]. AAPG Studies in Geology 37:177~204.
    Bohacs K M et al. 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework[A]. In Gierlowski E H et al. Lake Basins Through Space and Time[C]. AAPG Studies in Geology, 46: 3~34.
    Bohacs K, Suter J. 1997. Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples[J]. AAPG Bulletin,81(6): 1612—1639.
    Bond G C, Kominz M A. 1984. Costruction of tectonic subsidence curves for the early Paleozoic miogeoline, southern Canadian Rochy mountains: Implications for subsidence mechanisms, age of breakup, and crustal thinning, GSAB, 95: 155—173.
    Bowring S A,Erwin D H,Jin Y G et al.l998.U/pb zircon geochronology and Tempo of the end-Permian mass extinction.Science,280(15):1039~1045.
    Boynton W V. 1984. Geochemistry of the rare earth elements:meteorite studies.In:Henderson P.(ed),Rare earth element geochemistry. Elservier,pp.63~ 114.
    Carroll A R, Bohacs K M. 2001. Lake-types controls on petroleum source rock potential in nonmarine basins. AAPG Bulletin, 86(6): 1033~ 1053.
    Chen Nansheng et al. 1990. Lower Cambrian black rock series and associated stratiform deposits in southern China. Chinese journal of Geochemistry, 9(3): 244—255.
    Clark D L,Wang Chengyuan,Orth C I.Gilmoce JS.1986.Conodont survival and low iridium abundance across the Permian-Triassic boundary in Soueh China.Science,233:984~986.
    Cloetingh S, Sassi W, Horvath F, et al. 1993. Basin analysis and dynamics of sedimentary basin evolution[J]. Sediment Geol, 86: l~201.
    Cloetingh S, Fernandez M, Munoz J A, et al. 1997. Structural controls on sedimentary basin evolution: introduction[J]. Tectonophysics, 282: 10—18.
    Compbell C V. 1967. Lamins, Laminaset, bed and bedset. Sedimentology, 8: 7—26.
    Condie K C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples shales. Chem Geol, 104: 1 —37.
    Coveny R M and Nansheng C.1991. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculation on possible analogues in the United States. Mineralium Deposita. 26(2): 83—88.
    Cowie J W. 1985. Stratigraphy and the International Commission. Episodes, 8(2):86.
    Creaney S, Passey Q R. 1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bulletin, 77(3): 386—401.
    Crocket J H et al. 1973. Gold, palladium and iridium in marine sediments. Geochemical Comochimica Acta, 37(12): 2547.
    Dickins J M. 1983. Permian-Triassic Change sinlife. Mem Ass Australas, Palaeontols, 1:297— 303
    Dickinson W, Anderson R N, Biddle K T,et al. 1997. The Dynamics of Sedimentary Basin. USGC, Washington D.C.: National Academy of Sciences, 43.
    Doglioni C, Goldhammer R K. 1988.Compaction-induced subsidence in margin of a carbonate platform. Basin Research, 1: 237—246.
    Fan Delian. 1983. Polyelements in the lower Cambrian black shale series in southern China. In: The Sinificance of trace elements in solving petrogenetic problems and controversies. Theophrastus Publications S A Greece, 447—474.
    Fan Delian, Yang Ruiying and Huang Zhongxiang. 1984. The lower Cambrian black shale series and the iridium anomaly in southern China. In: Developments in geoscience, Science Press, Beijing China. 215—224.
    Frazier D E. 1974. Depositional episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf basin, Bureau of Economic Geological Circular 74-1, University of Texas at Austin, P 28.
    Galloway W E. 1989. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded deposional units. Bull.Amer. Assoc. Petrol. Geologists, 73: 125~142.
    Gao S, Zhang B R, Luo T C, et al. 1992. Chemical composition of continental crust in the Qinling orogenic belt and its adjacent North China and Yangtze cratons. Geochim Cosmochim Acta, 56: 3933~3950.
    Gao S, Luo T C, Zhang B R ,et al. 1998. Chemical composition of continental crust as revealed by studies in East China. Geochim Cosmochim Acta, 62:1959~1975.
    Groment L P, Dymek R F, Haskin L A and Korotev R L. 1984. The "North American Shale Composite":its compilation, major and traceelement characteristics.Geochim.Cosmochim.Acta,48:2469~2482.
    Gross T A, 1994. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation. 西北欧层序地层学会议论文摘要。
    Haq B.U., Hardbol J., Vail P.R. 1987. The chronology of fluctuating sea level since the Triassic. Science, 235:1156-1167
    Haq B.U., Hardbol J., Vail P.R.. 1988. Mesozoic and Cenozoic chronostratigraphy cycles of sea-level change. In: C.K.et al.eds. Sea-level changes: an integrated approach. SEPM,Spec.pub, 42:71-108
    Hamilton D S, Tadros N Z. 1994. Utility of coal seams as genetic stratigraphic sequence boundaries in nonmarine basins: an example from the Gunnedah Basin, Australia. AAPG Bulletin, 78(2): 267~286.
    Haskin M A and Haskin L A. 1966. Rare earth in European shals:a redeterminetion. Science, 154:507~509.
    Hondye Y et al. 1986. Detennination of platinum and iridium in marine waters, sediments, and organizing. Analytical Chemistry, 58(3): 616.
    Jervey M T. 1988. Quantitative geological modeling of siliciclastic rock sequence and their seimic expressions. In Wilgus et al ed. Sea level changes: An integrated approach. Society of Economic Paleontologists and Mineralogist Special Publication, (42): 47~69.
    John W S, Sarg J F, Peters K E. 2001. A new geochemical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia: reply[J]. AAPG Bulletin, 86(6).
    Johnson J G, Klapper G, Sandberg C A. 1985. Devonian eustatic fluctuations in Euroamerica. Bull.Geol.Soc.America, 99: 567~587.
    Magaritx M,Bar R,Band Aet al. 1998.The carbon isotope shift at the Permian-Triassic boundary in the southern Alps is gradual.Nature,331:337~339.
    Mail A D. 1990. Principles of sedimentary basin analysis. New York: Springer-Verlag, Second edition: 414~424, 569~579.
    Mann U, Stein R. 1997. Organic facies variations, source rock potential, and sea level chang in Cretaceous black shales of the Quebrada Ocal, upper Magdalena valley, Colombia[J]. AAPG Bulletin, 81(4): 556~576.
    Martin M W, Lehrmann D J, Bowring S A, Enos P, Ramezani J, Wei Jia-yong, and Zhang Ji-yan, 2001. Timing of Lower Triassic carbonate bank buildup and biotic recovery following the end-Permian extinction across the Nanpanjiang Basin, South China. Geological Society of America, Abstracts with programs. 33:A-201.
    Mclennan S M.1989.Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes. In:Lipin B R and Mckay G A(eds). Geochemistry and mineralogy of rare earth elements. Rev Mineral, 21:169~200.
    Mclennan S M and Taylor S R .1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. The J.of Geol, 99: 1 ~21
    McDonough W F and Sun S S, 1985. Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implication for the sub-continental lithosphere, Geochim.Cosmochim.Acta,49:2051 -2067.
    McDonough W F and Sun S S, 1995. The composition of the Earth , Chemical Geology. 120:223-253.
    Montgomery P, Enos P, Lehrmann D J, Wei Jia-yong, 2002. High-Resolution Magnetostratigraphic Correlation of Triassic Carbonate Platforms, Nanpanjiang Basin, South China, Indicates Differential Platform Subsidence. 2002 AAPG Annual Meeting, Houston, Texas, Official Program.
    Mascle A, Puigdefabregas C, Luterbacher H P, et al. 1999. Cenozoic Foreland Basin of Western Europe. Geological Society, London, Special publication London: Geological Society Publishing House.
    Nance W B and Taylor S R. 1976. Rare earth element patterns and crustal evolution-I: Australian postArchean sedimentary rocks. Geochim et.Cosmochim. Acta, 40: 1539- 1551
    Nance W B and Taylor S R. 1977. Rare earth element patterns and crustal evolution- Ⅱ: Archean sedimentary rocks from Kalgoorlie, Australia. Geochim et.Cosmochim. Acta, 41: 225~231
    Peters K E et al. 2000. A new geochmical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia. AAPG Bulletin, 84(1): 12~44.
    Posamentier H W, Allen G P, James D P, et al. 1992. Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance. AAPG Bull, 76(11): 1687—1769.
    Quinlan G, Walsh J, Sassi W et al. 1993. Relationship between deeper lithospheric processes and near-surface tectonics of basin[J]. Tectonophysics, 226: 217~225.
    Rittmann A. 1970. Note to contribution by V. Gottini on the "Serial character of the vocanic rocks of Pantelleria". Bull Volcanol, 33.
    Roser B P, Korscm R J. 1986. Determination of tectonic setting of sandtone-mudstone suites using SiO_2 content and K_2O/Na_2O ratio. The Journal of Geol, 94(5):635
    Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys, 33:267~309.
    Shaw D M, Dickin A P, Li H, et al. 1994. Crustal geochemistry in the Wawa-Foleyer region,Ontario. Can J Earth Sci, 31:1104 ~ 1121.
    Sloss L L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 74: 93—114.
    Steckler M S, Watts A B. 1978. Subsidence of the Atlantic-type continental margin off New York . Earth and Plancetary Science Letters, Elsevier Scientific Publishing Company, 41:1 — 13.
    Steffen D, Corin G E. 1993. Sedimentology of organic matter in upper Tihonian-Beriasian deep-sea carbonates of southern France: evidence of eustatic control[A]. Katz B J, Pratt L M. Lake Basins Through Space and Time. AAPG Studies in Geology 37: 49~66.
    Sun Y Y et al.l984.Developments in geoscience(ed Tu Guangzhi)contributio to 27~(th) International Geological Congress.Moscow.Academic Sinica.Science Press,235~245.
    Tobias H D, Payenberg , Miall A D. 2001. A new geochemical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia: discuss[J]. AAPG Bulletin, 86(6).
    Taylor S R and Mclennan S M. 1985.The continental crustal: its composition and evolution. Black well Scientific Publication
    Tayloe S R, McLennan S M. The geochemical evolution of the continental crustRev Geophys, 33: 241-265.
    Vail P R. 1987. Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: Seismic stratigraphy interpretation procedure, in Bally A W ed, Atlas of seismic stratigraphy. AAPG Studies in Geology, 1 (27): 1 —10.
    Vail P R, Mitchum R.M, Thompson S. 1977. Seismic stratigraphy and global changes of sea level: in Payton C E ed.. Seismic stratigraphy-application to hydrocarbon exploration. AAPG Mem. 26.
    Van Wagoner J C and Mitchum R M. 1989. High-frequency sequence and their stacking patterns. Abstract: 28~(th) International Geological Congress, Washington D C, July 9-19: 3—284.
    Van Wagoner J.C., Mitchum R.M., Campion K.M. and Rahmanian V.D. 1992. Siliciclastic sequence stratiraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies. AAPG Methods in exploration series, 7
    Vilotte J P, Melosh J, Sassi W, et al. 1993. Lithosphere rheology and sedimentary basin[J]. Tectonophysics, 226: 89~95.
    Wang K,Geldsetzer H H J,Krouse H R.1994. Permian-Triassic extinction:Organic Δ~(13)C evidence from British, Columbia,Canada. Geology, 22:580~584.
    Wheeler H E. 1964. Baselevel, lithosphere surface and time-stratigraphy. Bull. Geol. Soc. America, 75: 599—610.
    Wignall P B ,Maynard J R. 1993. The sequence stratigraphy of transgressive black shales[A]. Katz B J, Pratt L M. Lake Basins Through Space and Time. AAPG Studies in Geology 37: 35~48.
    Wilsion J L. 1975. Carbonate Facies in Geological History. Spring-Verlag Berlin.
    Zaback D A, Pratt L M. 1993.,Paeocenographic interpretation of variation in the sulfur isotopic compositions and Mn/Fe ratios in the Miocene formation, Santa Maria Basin, California[A]. Katz B J, Pratt L M. Lake Basins Through Space and Time. AAPG Studies in Geology 37: 205—220.
    Zoback M D, Stephenson R A, Cloetingh S.et al. 1993. Stresses in the lithosphere and sedimentary basin formation[J]. Tectonophysics , 226: 1 — 13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700