用户名: 密码: 验证码:
龙门山断裂带断层岩在水热条件下的摩擦滑动特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索断层岩石在断层带不同温度和压力条件下其摩擦强度和摩擦滑动稳定性对于断层活动性的影响,我们采集了龙门山断裂带地震发生区段出露的自然断层泥样品和后山断裂带韧性剪切带中的富含层状硅酸盐矿物的糜棱岩样品进行了水热条件下的摩擦滑动实验研究。我们根据自然断层泥样品的XRD分析结果选取了五种具有不同矿物组合及含量的自然断层泥样品并在50MPa的初始围压和25oC到150oC的温度条件下进行了摩擦滑动实验。在断层深部糜棱岩样品的实验中有效正压力分别为200MPa和300MPa,实验温度条件为100oC-600oC。上述自然断层泥和断层糜棱岩的实验条件分别被用来模拟断层浅部和深部的温压环境。为了获得表征样品摩擦滑动稳定性的速度依赖性参数(a-b),我们在0.0488-6.1μm/s的速率范围内对样品的摩擦滑动进行了剪切滑移速率的切换。
     在自然断层泥样品的实验中,我们发现大多数的断层泥样品的摩擦强度系数随着粘土含量的增加而表现出减小的趋势。但是含有机质的平溪黑色断层泥的摩擦强度显著低于根据其摩擦强度随粘土含量的变化趋势所得出的预测强度值,而这种异常低的摩擦强度值是由于其9wt.%的有机质所造成的。在摩擦滑动的稳定性方面,我们发现温度对于含有机质断层泥和富碳酸盐矿物断层泥的摩擦滑动行为有着显著影响。在低温条件下平溪黑色断层泥(含有机质)表现出速度强化的摩擦滑动行为,而当温度增加到150oC时,表现出速度弱化的摩擦滑动行为,其典型特征是在滑移过程中发生显示不稳定的振荡。富碳酸盐矿物的断层泥样品(碳酸盐矿物含量高于50wt.%)的速度依赖性参数同时受到温度和剪切速率的影响,在较高的温度下表现出较小的速率依赖性(a-b)。其中,PX-2样品(碳酸盐矿物含量约79wt.%)的(a-b)在150oC和较小的剪切速率下减小到零附近。
     糜棱岩的实验结果发现在200oC-500oC的温度范围内,摩擦强度系数随着温度的增加而显著增大。糜棱岩样品的摩擦滑动稳定性在100oC-600oC的温度范围内表现出随温度的升高由速度强化转变为速度弱化,然后又转变为速度强化的趋势。与此同时糜棱岩断层泥的速度依赖性(a-b)也表现出显著的压力敏感性,正压力的升高(300MPa)可以显著的增大糜棱岩的速度依赖性参数(a-b),从而提高糜棱岩摩擦滑动的稳定性。糜棱岩表现出的速度弱化向速度强化摩擦行为的转变可能是由于断层剪切带中的压溶愈合和扩容弱化机制的共同作用所造成。
     在速率和状态的摩擦本构关系框架内,我们对于断层浅部断层泥样品和断层深部糜棱岩样品的摩擦特性对自然断层活动性的影响进行了讨论。在150oC的温度范围内,断层的快速滑移成核可以发生在含有机质的断层泥之上。当断层岩石中含有大量的碳酸盐矿物时在较高的温度条件下(>150oC)在该断层之上会发生触发性的地震滑移事件。含有机质以及富碳酸盐矿物断层泥的摩擦滑动行为随温度的变化为我们提供了一个解答海洋板块俯冲带浅部的无震蠕滑区域向深部发震区域的转变的可能线索。在模拟断层深部的温压条件下,糜棱岩样品的实验结果显示在200MPa的正压力条件下,糜棱岩发生不稳定滑移的温度范围约为250oC-550oC,而在600oC则出现了由速率控制的速度弱化向速度强化的转化。但是当正压力增大到300MPa时,断层糜棱岩发生不稳定滑移的温度范围缩小到260oC-320oC(其对应的可能的地震成核深度范围约为15-19km),而在400oC则出现了由速率控制的速度弱化向速度强化的转化。但是在100oC-600oC的温度范围内,当断层糜棱岩在稳态蠕滑过程中遇到较大的加载扰动时也会发生触发性的粘滑失稳事件。
To investigate the frictional sliding behavior of typical fault rocks as related todynamics of faulting under different temperature and pressure conditions, wecollected natural gouge samples from fault exposures ruptured during the2008Wenchuan Mw7.9earthquake and phyllosilicate-rich mylonite from a ductile thrustzone of the Gengda-Wenmao fault, respectively, and conducted frictional slidingexperiments under hydrothermal conditions. According to the XRD results of naturalgouge samples, five samples of different mineralogical assemblies are chosen forexperiments with initial confining pressure of50MPa and at different temperaturesfrom25°C to150°C. For the fault mylonite, we applied experiments under highertemperature in the range of100°C-600°C and effective normal stress of200MPa and300MPa to represent the deeper portion conditions (elevated temperature and pressure)of fault zone. In order to obtain velocity dependence of friction, shearing rates arestepped up and down in the range of0.0488μm/s-6.1μm/s.
     In the experiments of natural gouge samples, we found that the frictioncoefficient of most samples shows a decreasing trend with increasing clay content.But the Pingxi black gouge sample (PX-3) shows a much lower value than theprediction by the general trend, indicating further strength reduction due to the~9%organic matter included. We also found a significant effect of temperature on thefrictional sliding stability of organic-matter-bearing and carbonate-rich gouges. Whentemperature increases to150°C, the Pingxi black gouge (with organic matter) exhibitsunstable oscillation that indicates velocity-weakening frictional sliding behavior, incontrast to the velocity-strengthening behavior at lower temperatures. The velocitydependence of carbonate-rich samples with more than50wt.%carbonates is alsosensitive to temperature and shearing rates, and all samples have smaller velocitydependence of friction (a-b) at higher temperatures. The (a-b) value of the PX-2sample (with~80%carbonates) even decreases to the velocity neutral point at150°Cand slow shearing rates.
     At higher temperature and pressure conditions, the frictional coefficient ofmylonite exhibits systematic increase with increasing temperature (100°C-600°C).The frictional behavior of mylonite shows a transition from initialvelocity-strengthening behavior to velocity-weakening behavior at about300°C, and then transitions back to velocity-strengthening behavior as temperature is elevated.The velocity dependence of mylonite also shows strong pressure sensitivity. When theeffective normal stress is increased to300MPa, the stable frictional behavior issignificantly enhanced with larger (a-b) compared to that under the lower pressurecondition. The transition from velocity weakening to velocity strengthening frictionalbehavior may be controlled by competition between pressure-solution healing anddilation weakening processes in the mylonite gouge.
     In the framework of rate and state friction constitutive law, the effects offrictional properties of natural gouge and mylonite on faulting dynamics are discussed.We found that fast slip nucleation is possible for faults associated with theorganic-matter-bearing gouge at150°C, whereas triggered seismic slips are possiblein faults that contain the carbonate-rich samples which have a small (a-b) value at150°C. The temperature-dependent sliding behavior of carbonate-dominant andorganic-matter-bearing gouges probably provides a new clue to the problem oftransition from the shallow aseismic zone to the seismic zone on the subductioninterfaces of oceanic plates. From experimental results of mylonite, at200MPaeffective normal stress unstable slip events may nucleate in mylonite gouge under250oC-550oC temperature conditions, and transitional behavior is found at600oCwhich is rate dependent. At300MPa effective normal stress, the temperaturecondition for the nucleation of unstable slip events is constrained to260oC-320oC(corresponding to15-19km depth of Longmenshan fault zone), and rate dependent,transitional behavior is also found at400oC. For velocity-strengthening cases under100oC-600oC temperature conditions, a large loading disturbance from neighbouringarea may cause triggered slip events at the corresponding depth.
引文
Atkinson, B.K.,1982. Subcritical crack propagation in rocks: theory, experimentalresults and applications. Journal of Structural Geology4,41-56.
    Atkinson, B.K.,1984. Subcritical crack growth in geological materials. Journal ofGeophysical Research: Solid Earth89,4077-4114.
    Bailey, A.I., Courtney-Pratt, J.S.,1955. The Area of Real Contact and the ShearStrength of Monomolecular Layers of a Boundary Lubricant. Proceedings of theRoyal Society of London. Series A. Mathematical and Physical Sciences227,500-515.
    Beeler, N.,2007. Laboratory-observed faulting in intrinsically and apparently weakmaterials: Strength, seismic coupling, dilatancy, and pore-fluid pressure. Theseismogenic zone of subduction thrust faults: New York, ColumbiaUniversity Press.
    Beeler, N.M., Tullis, T.E.,1997. The roles of time and displacement invelocity-dependent volumetric strain of fault zones. J. Geophys. Res.102,22595-22609.
    Bergamaschi, B.A., Tsamakis, E., Keil, R.G., Eglinton, T.I., Montlu on, D.B., Hedges,J.I.,1997. The effect of grain size and surface area on organic matter, lignin andcarbohydrate concentration, and molecular compositions in Peru Marginsediments. Geochimica et Cosmochimica Acta61,1247-1260.
    Bird, P.,1984. Hydration-phase diagrams and friction of montmorillonite underlaboratory and geologic conditions, with implications for shale compaction,slope stability, and strength of fault gouge. Tectonophysics107,235-260.
    Blanpied, M., Lockner, D., Byerlee, J.,1991. Fault stability inferred from granitesliding experiments at hydrothermal conditions. Geophysical Research Letters18,609-612.
    Blanpied, M.L., Lockner, D.A., Byerlee, J.D.,1995. Frictional slip of granite athydrothermal conditions. J. Geophys. Res.100,13045-13064.
    Blanpied, M.L., Marone, C.J., Lockner, D.A., Byerlee, J.D., King, D.P.,1998.Quantitative measure of the variation in fault rheology due to fluid-rockinteractions. Journal of Geophysical Research: Solid Earth103,9691-9712.
    Boatwright, J., Cocco, M.,1996. Frictional constraints on crustal faulting. J. Geophys.Res.101,13895-13909.
    Bos, B., Spiers, C.J.,2002. Frictional-viscous flow of phyllosilicate-bearing fault rock:Microphysical model and implications for crustal strength profiles. J. Geophys.Res.107(B2),2028.
    Boulton, C., Carpenter, B.M., Toy, V., Marone, C.,2012. Physical properties ofsurface outcrop cataclastic fault rocks, Alpine Fault, New Zealand. Geochem.Geophys. Geosyst.13, Q01018.
    Brace, W.F., Byerlee, J.D.,1966. Stick-Slip as a Mechanism for Earthquakes. Science153,990-992.
    Brechet, Y., Estrin, Y.,1994. The effect of strain rate sensitivity on dynamic frictionof metals. Scripta Metallurgica et Materialia30(11),1449-1454.
    Brown, K., Kopf, A., Underwood, M., Weinberger, J.,2003. Compositional and fluidpressure controls on the state of stress on the Nankai subduction thrust: A weakplate boundary. Earth and Planetary Science Letters214,589-603.
    Brooks J.1981. Organic maturation studies and fossil fuel exploration [M]. London:Academic Press.
    Butler, C.A., Holdsworth, R.E., Strachan, R.A.,1995. Evidence for Caledoniansinistral strike-slip motion and associated fault zone weakening, Outer HebridesFault Zone, NW Scotland. Journal of the Geological Society152,743-746.
    Byerlee, J.,1990. Friction, overpressure and fault normal compression. Geophys. Res.Lett.17,2109-2112.
    Carpenter, B.M., Marone, C., Saffer, D.M.,2009. Frictional behavior of materials inthe3D SAFOD volume. Geophys. Res. Lett.36, L05302.
    Carpenter, B.M., Marone, C., Saffer, D.M.,2011. Weakness of the San Andreas Faultrevealed by samples from the active fault zone. Nature Geoscience4,251–254.
    Chen, J., Yang, X., Ma, S., Spiers, C.J.,2013. Mass removal and clay mineraldehydration/rehydration in carbonate-rich surface exposures of the2008Wenchuan Earthquake fault: geochemical evidence and implications for faultzone evolution and coseismic slip. Journal of Geophysical Research: Solid Earth,118(2),474-496.
    Chenu, C., Plante, A.F.,2006. Clay-sized organo-mineral complexes in a cultivationchronosequence: revisiting the concept of the ‘primary organo-mineral complex’Complexes organo-minéraux <2μm au sein d'une chronoséquence de mise enculture de sols:une réévaluation du concept de “complexe organo-minéralprimare”. European Journal of Soil Science57,596-607.
    Chester, F.M.,1994. Effects of temperature on friction: Constitutive equations andexperiments with quartz gouge. J. Geophys. Res.99,7247-7261.
    Chester, F.M., Higgs, N.G.,1992. Multimechanism Friction Constitutive Model forUltrafine Quartz Gouge at Hypocentral Conditions. J. Geophys. Res.97,1859-1870.
    Chester, J.S., Chester, F.M., Kronenberg, A.K.,2005. Fracture surface energy of thePunchbowl fault, San Andreas system. nature437,133-136.
    Collettini, C., Barchi, M.R.,2004. A comparison of structural data and seismic imagesfor low-angle normal faults in the Northern Apennines (Central Italy):constraints on activity. Geological Society, London, Special Publications224,95-112.
    Collettini, C., Holdsworth, R.E.,2004. Fault zone weakening and character of slipalong low-angle normal faults: insights from the Zuccale fault, Elba, Italy.Journal of the Geological Society161,1039-1051.
    Collettini, C., Niemeijer, A., Viti, C., Marone, C.,2009. Fault zone fabric and faultweakness. Nature462,907-910.
    Cowan, D.S.,1999. Do faults preserve a record of seismic slip? A field geologist'sopinion. Journal of Structural Geology21,995-1001.
    Cox, S.J.D.,1990. Velocity-dependent friction in a large direct shear experiment ongabbro. Geological Society, London, Special Publications54,63-70.
    Crawford, B., Faulkner, D., Rutter, E.,2008. Strength, porosity, and permeabilitydevelopment during hydrostatic and shear loading of synthetic quartz-clay faultgouge. J. Geophys. Res113, B03207.
    Dean, W.E.,1974. Determination of carbonate and organic matter in calcareoussediments and sedimentary rocks by loss on ignition; comparison with othermethods. Journal of Sedimentary Research44,242-248.
    den Hartog, S.A.M., Niemeijer, A.R., Spiers, C.J.,2012. New constraints onmegathrust slip stability under subduction zone P–T conditions. Earth andPlanetary Science Letters353–354,240-252.
    Dieterich, J.H.,1972. Time-dependent friction in rocks. Journal of GeophysicalResearch77,3690-3697.
    Dieterich, J.H.,1979. Modeling of Rock Friction1. Experimental Results andConstitutive Equations. J. Geophys. Res.84,2161-2168.
    Dieterich, J.H.,1981. Constitutive properties of faults with simulated gouge,Mechanical Behavior of Crustal Rocks. AGU, Washington, DC, pp.103-120.
    Dieterich, J.H.,1992a. Earthquake nucleation on faults with rate-and state-dependentstrength. Tectonophysics211,115-134.
    Dieterich, J.H., Linker, M.F.,1992b. Fault stability under conditions of variablenormal stress. Geophysical Research Letters19,1691-1694.
    Dieterich, J.H., Kilgore, B.D.,1994. Direct observation of frictional contacts: Newinsights for state-dependent properties. Pure and Applied Geophysics143,283-302.
    Dong Ji-zhou, W. P. Vorkink, M. L. Lee.1993. Origin of long-chainalkylcyclohexanes and alkylbenzenes in a coal-bed wax. Geochimica etCosmochimica Acta,57,837-849.
    Engelder, J.T., Logan, J.M., Handin, J.,1975. The sliding characteristics of sandstoneon quartz fault-gouge. Pure and Applied Geophysics113,69-86.
    Engelder, J.T., Scholz, C.H.,1976. The role of asperity indentation and ploughing inrock friction—II: Influence of relative hardness and normal load. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts13,155-163.
    Evans, B.,1984. The effect of temperature and impurity content on indentationhardness of quartz. Journal of Geophysical Research: Solid Earth89,4213-4222.
    Evans, B., Goetze, C.,1979. The temperature variation of hardness of olivine and itsimplication for polycrystalline yield stress. Journal of Geophysical Research:Solid Earth84,5505-5524.
    Faulkner, D.R., Rutter, E.H.,2000. Comparisons of water and argon permeability innatural clay-bearing fault gouge under high pressure at20°C. J. Geophys. Res.105,16415-16426.
    Faulkner, D.R., Rutter, E.H.,2001. Can the maintenance of overpressured fluids inlarge strike-slip fault zones explain their apparent weakness? Geology29,503-506.
    Faulkner, D.R., Rutter, E.H.,2003. The effect of temperature, the nature of the porefluid, and subyield differential stress on the permeability of phyllosilicate-richfault gouge. J. Geophys. Res.108,2227.
    Frye, K.M., Marone, C.,2002. Effect of humidity on granular friction at roomtemperature. Journal of Geophysical Research: Solid Earth107(B11),2309.
    Giese, R.F.,1978. The electrostatic interlayer forces of layer structure minerals. Claysand Clay Minerals26,51-57.
    Green Ii, H.W., Burnley, P.C.,1989. A new self-organizing mechanism fordeep-focus earthquakes. Nature341,733-737.
    Griggs, D.,1967. Hydrolytic Weakening of Quartz and Other Silicates. GeophysicalJournal International14,19-31.
    Groshong, R.H.,1988. Low-temperature deformation mechanisms and theirinterpretation. Geological Society of America Bulletin100,1329-1360.
    Hagymassy Jr, J., Brunauer, S., Mikhail, R.S.,1969. Pore structure analysis by watervapor adsorption: I. t-Curves for water vapor. Journal of Colloid and InterfaceScience29,485-491.
    Han, R.,2011. Granular nanoparticles lubricate faults during seismic slip. Geology39,599-602.
    He, C., Ma, S., Huang, J.,1998. Transition between stable sliding and stick-slip due tovariation in slip rate under variable normal stress condition. GeophysicalResearch Letters25,3235-3238.
    He, C., Wang, Z., Yao, W.,2007. Frictional sliding of gabbro gouge underhydrothermal conditions. Tectonophysics445,353-362.
    He, C., Yao, W., Wang, Z., Zhou, Y.,2006. Strength and stability of frictional slidingof gabbro gouge at elevated temperatures. Tectonophysics427,217-229.
    He, C., L. Luo, Q. Hao and Y. Zhou,2013.Velocity-weakening Behavior ofPlagioclase and Pyroxene Gouges and Stabilizing Effect of Small-amounts ofQuartz under Hydrothermal Conditions, submitted to J. Geophys. Res.
    Hedges, J.I., Keil, R.G.,1995. Sedimentary organic matter preservation: anassessment and speculative synthesis. Marine Chemistry49,81-115.
    Holdsworth, R.E., Stewart, M., Imber, J., Strachan, R.A.,2001. The structure andrheological evolution of reactivated continental fault zones: a review and casestudy. Geological Society, London, Special Publications184,115-137.
    Horn, H. M. and Deere D. U.1962. Frictional characteristics of minerals.Geotechnique,7(4),319-335.
    Ikari, M.J., Marone, C., Saffer, D.M.,2011a. On the relation between fault strengthand frictional stability. Geology39,83-86.
    Ikari, M.J., Niemeijer, A.R., Marone, C.,2011b. The role of fault zone fabric andlithification state on frictional strength, constitutive behavior, and deformationmicrostructure. J. Geophys. Res116, B08404.
    Ikari, M.J., Saffer, D.M., Marone, C.,2007. Effect of hydration state on the frictionalproperties of montmorillonite-based fault gouge. J. Geophys. Res.112, B06423.
    Ikari, M.J., Saffer, D.M., Marone, C.,2009. Frictional and hydrologic properties ofclay-rich fault gouge. J. Geophys. Res.114, B05409.
    Imber, J.,1998. Deformation and fluid–rock interaction along the reactivated OuterHebrides Fault Zone, Scotland. PhD thesis.
    Imber, J., Holdsworth, R.E., Butler, C.A., Lloyd, G.E.,1997. Fault-zone weakeningprocesses along the reactivated Outer Hebrides Fault Zone, Scotland. Journal ofthe Geological Society154,105-109.
    Imber, J., Holdsworth, R.E., Butler, C.A., Strachan, R.A.,2001. A reappraisal of theSibson-Scholz fault zone model: The nature of the frictional to viscous(“brittle-ductile”) transition along a long-lived, crustal-scale fault, OuterHebrides, Scotland. Tectonics20,601-624.
    Israelachvili, J.N., Mcguiggan, P.M., Homola, A.M.,1988. Dynamic Properties ofMolecularly Thin Liquid Films. Science240,189-191.
    Jefferies, S.P., Holdsworth, R.E., Shimamoto, T., Takagi, H., Lloyd, G.E., Spiers, C.J.,2006a. Origin and mechanical significance of foliated cataclastic rocks in thecores of crustal-scale faults: Examples from the Median Tectonic Line, Japan.Journal of Geophysical Research: Solid Earth111, B12303.
    Jefferies, S.P., Holdsworth, R.E., Wibberley, C.A.J., Shimamoto, T., Spiers, C.J.,Niemeijer, A.R., Lloyd, G.E.,2006b. The nature and importance of phyllonitedevelopment in crustal-scale fault cores: an example from the Median TectonicLine, Japan. Journal of Structural Geology28,220-235.
    Jia, D., Li, Y., Lin, A., Wang, M., Chen, W., Wu, X., Ren, Z., Zhao, Y., Luo, L.,2010.Structural model of2008Mw7.9Wenchuan earthquake in the rejuvenatedLongmen Shan thrust belt, China. Tectonophysics491,174-184.
    Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C., Hedges, J.I.,1994. Mineralogicaland textural controls on the organic composition of coastal marine sediments:Hydrodynamic separation using SPLITT-fractionation. Geochimica etCosmochimica Acta58,879-893.
    Kranz, R.L.,1983. Microcracks in rocks: A review. Tectonophysics100,449-480.
    Kuo, L.-W., Song, S.-R., Yeh, E.-C., Chen, H.-F.,2009. Clay mineral anomalies inthe fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophys.Res. Lett.36, L18306.
    Li, X.Z., Wu, S.L.,1960. Preliminary study of the manganese ore type, depositprocess and ore-prospecting criteria in Pingxi, Sichuang province. SichuanGeology Bureau, FN:22879.
    Li, C.Y., Wei, Z.Y., Ye, J.Q., Han, Y.B., Zheng, W.J.,2010. Amounts and styles ofcoseismic deformation along the northern segment of surface rupture, of the2008Wenchuan Mw7.9earthquake, China. Tectonophysics491,35-58.
    Liu-Zeng, J., Zhang, Z., Wen, L., Tapponnier, P., Sun, J., Xing, X., Hu, G., Xu, Q.,Zeng, L., Ding, L., Ji, C., Hudnut, K.W., van der Woerd, J.,2009. Co-seismicruptures of the12May2008, Ms8.0Wenchuan earthquake, Sichuan: East–westcrustal shortening on oblique, parallel thrusts along the eastern edge of Tibet.Earth and Planetary Science Letters286,355-370.
    Liu, Y., Rice, J.R.,2009. Slow slip predictions based on granite and gabbro frictiondata compared to GPS measurements in northern Cascadia. Journal ofGeophysical Research: Solid Earth114, B09407.
    Lockner, D.A.,1998. A generalized law for brittle deformation of Westerly granite.Journal of Geophysical Research: Solid Earth103,5107-5123.
    Lockner, D.A., Morrow, C., Moore, D., Hickman, S.,2011. Low strength of deep SanAndreas fault gouge from SAFOD core. Nature472,82-85.
    Lockner, D.A., Summers, R., Byerlee, J.D.,1986. Effects of temperature and slidingrate on frictional strength of granite. Pure and Applied Geophysics124,445-469.
    Logan JM, Friedman M, Higgs N, Dengo C,Shimamoto T.1979. Experimentalstudies of simulated gouge and their application to studies of natural fault zones.In Analyses of Actual Fault Zones in Bedrock. US Geol. Surv.Open File Rep.1239,305–343.
    Logan, J.M., Rauenzahn, K.A.,1987. Frictional dependence of gouge mixtures ofquartz and montmorillonite on velocity, composition and fabric. Tectonophysics144,87-108.
    Lupini, J., Skinner, A., Vaughan, P.,1981. The drained residual strength of cohesivesoils. Geotechnique31(2),181-123.
    Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J.,Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., Wu, H.-Y.,2006. Slipzone and energetics of a large earthquake from the Taiwan Chelungpu-faultDrilling Project. Nature444,473-476.
    Mares, V.M., Kronenberg, A.,1993. Experimental deformation of muscovite. Journalof Structural Geology15,1061-1075.
    Mariani, E., Brodie, K.H., Rutter, E.H.,2006. Experimental deformation of muscoviteshear zones at high temperatures under hydrothermal conditions and the strengthof phyllosilicate-bearing faults in nature. Journal of Structural Geology28,1569-1587.
    Marone, C.,1998. The effect of loading rate on static friction and the rate of faulthealing during the earthquake cycle. Nature,391,69-72.
    Marone, C., Kilgore, B.,1993. Scaling of the critical slip distance for seismic faultingwith shear strain in fault zones. Nature362,618-621.
    Marone, C., Raleigh, C.B., Scholz, C.H.,1990. Frictional behavior and constitutivemodeling of simulated fault gouge. Journal of Geophysical Research: Solid Earth95,7007-7025.
    Masuda, T., Hiraga, T., Ikei, H., Kanda, H., Kugimiya, Y., Akizuki, M.,2000. Plasticdeformation of quartz at room temperature: A Vickers Nano-Indentation Test.Geophysical Research Letters27,2773-2776.
    Mayer, L.M.,1999. Extent of coverage of mineral surfaces by organic matter inmarine sediments. Geochimica et Cosmochimica Acta63,207-215.
    Meredith, P.G., Atkinson, B.K.,1985. Fracture toughness and subcritical crackgrowth during high-temperature tensile deformation of Westerly granite andBlack gabbro. Physics of the Earth and Planetary Interiors39,33-51.
    Mizoguchi, K., Takahashi, M., Tanikawa, W., Masuda, K., Song, S.-R., Soh, W.,2008. Frictional strength of fault gouge in Taiwan Chelungpu fault obtained fromTCDP Hole B. Tectonophysics460,198-205.
    Moore, D., Byerlee, J.,1989. Textural development of clayey and quartzofeldspathicfault gouges relative to their sliding behavior. Physics and Chemistry of TheEarth17,1-9.
    Moore, D., Summers, R., Byerlee, J.,1983a. Strengths of clay and non-clay faultgouges at elevated temperatures and pressures, The24th US Symposium onRock Mechanics (USRMS).
    Moore, D.E., Lockner, D.A., Ma, S., Summers, R., Byerlee, J.D.,1997. Strengths ofserpentinite gouges at elevated temperatures. Journal of Geophysical Research:Solid Earth102,14787-14801.
    Moore, D.E., Lockner, D.A.,2004. Crystallographic controls on the frictionalbehavior of dry and water-saturated sheet structure minerals. Journal ofGeophysical Research109, B03401.
    Moore, D.E., Lockner, D.A.,2007. Friction of the smectite clay montmorillonite: areview and interpretation of data. In: Dixon, T.H., Moore, J.C(Eds.), TheSeismogenic Zone of Subduction Thrust Faults. MARGINS Theoretical andExperimental Earth Science Ser., vol.2, pp.317–345.
    Moore, D.E., Lockner, D.A.,2008. Talc friction in the temperature range25°C–400°C: Relevance for Fault-Zone Weakening. Tectonophysics449,120-132.
    Moore, G.F., Taira, A., Klaus, A., Becker, L., Boeckel, B., Cragg, B.A., Dean, A.,Fergusson, C.L., Henry, P., Hirano, S., Hisamitsu, T., Hunze, S., Kastner, M.,Maltman, A.J., Morgan, J.K., Murakami, Y., Saffer, D.M., Sánchez-Gómez, M.,Screaton, E.J., Smith, D.C., Spivack, A.J., Steurer, J., Tobin, H.J., Ujiie, K.,Underwood, M.B., Wilson, M.,2001. New insights into deformation andfluid flow processes in the Nankai Trough accretionary prism: Results of OceanDrilling Program Leg190, G-cubed2,10-25.
    Moore, J.C., Saffer, D.,2001. Updip limit of the seismogenic zone beneath theaccretionary prism of southwest Japan: An effect of diagenetic to low-grademetamorphic processes and increasing effective stress. Geology29,183-186.
    Morrow, C., Radney, B., Byerlee, J.,1992. Frictional Strength and the EffectivePressure Law of Montmorillonite and lllite Clays, in: Brian, E., Teng-fong, W.(Eds.), International Geophysics. Academic Press, pp.69-88.
    Morrow, C.A., Moore, D.E., Lockner, D.A.,2000. The effect of mineral bondstrength and adsorbed water on fault gouge frictional strength. Geophys. Res.Lett.27,815-818.
    Nakatani, M.,2001. Conceptual and physical clarification of rate and state friction:Frictional sliding as a thermally activated rheology. Journal of GeophysicalResearch: Solid Earth106,13347-13380.
    Niemeijer, A., Marone, C., Elsworth, D.,2010. Fabric induced weakness of tectonicfaults. Geophys. Res. Lett.37, L03304.
    Niemeijer, A., Spiers, C.,2005. Influence of phyllosilicates on fault strength in thebrittle-ductile transition: Insights from rock analogue experiments. SpecialPublication-Geological Society of London245,55-88.
    Niemeijer, A., Spiers, C.,2007. A microphysical model for strong velocity weakeningin phyllosilicate-bearing fault gouges. Journal of Geophysical Research112,B10405.
    Niemeijer, A.R., Spiers, C.J., Peach, C.J.,2008. Frictional behaviour of simulatedquartz fault gouges under hydrothermal conditions: Results from ultra-high strainrotary shear experiments. Tectonophysics460,288-303.
    Numelin, T., Marone, C., Kirby, E.,2007. Frictional properties of natural fault gougefrom a low-angle normal fault, Panamint Valley, California. Tectonics26,TC2004.
    Oohashi, K., Hirose, T., Kobayashi, K., Shimamoto, T.,2012. The occurrence ofgraphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins andimplications for fault creep. Journal of Structural Geology38,39-50.
    Oohashi, K., Hirose, T., Shimamoto, T.,2011. Shear-induced graphitization ofcarbonaceous materials during seismic fault motion: Experiments and possibleimplications for fault mechanics. Journal of Structural Geology33,1122-1134.
    Ormerod, E.C., Newman, A.C.D.,1983. Water sorption on Ca-saturated clays; II,Internal and external surfaces of montmorillonite. Clay Minerals18,289-299.
    Parry, W.T., Bruhn, R.L.,1986. Pore fluid and seismogenic characteristics of faultrock at depth on the Wasatch Fault, Utah. Journal of Geophysical Research:Solid Earth91,730-744.
    Parry, W.T., Wilson, P.N., Bruhn, R.L.,1988. Pore-fluid chemistry and chemicalreactions on the Wasatch normal fault, Utah. Geochimica et Cosmochimica Acta52,2053-2063.
    Polissar, P.J., Savage, H.M., Brodsky, E.E.,2011. Extractable organic material infault zones as a tool to investigate frictional stress. Earth and Planetary ScienceLetters311(3-4),439-447.
    Reinen, L.A., Weeks, J.D., Tullis, T.E.,1991. The frictional behavior of serpentinite:Implications for aseismic creep on shallow crustal faults. Geophys. Res. Lett.18,1921-1924.
    Renard, F., Ortoleva, P.,1997. Water films at grain-grain contacts: Debye-Hückel,osmotic model of stress, salinity, and mineralogy dependence. Geochimica etCosmochimica Acta61,1963-1970.
    Rice, J.R.,1992. Fault stress states, pore pressure distributions, and the weakness ofthe San Andreas fault. International Geophysics Series51,475-475.
    Rice, J.R.,1993. Spatio-temporal complexity of slip on a fault. Journal ofGeophysical Research: Solid Earth98,9885-9907.
    Rice, J.R., Tse, S.T.,1986. Dynamic Motion of a Single Degree of Freedom SystemFollowing a Rate and State Dependent Friction Law. J. Geophys. Res.91,521-530.
    Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G.,Guggenheim, S., Koval, P.V., Mueller, G., Neiva, A.M.R., Radoslovich, E.W.,Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z., Wones, D.R.,1999.Nomenclature of the micas. Mineralogical Magazine63,267-279.
    Ruina, A.,1983. Slip Instability and State Variable Friction Laws. J. Geophys. Res.88,10359-10370.
    Rutter, E.H.,1983. Pressure solution in nature, theory and experiment. J.geol. Soc. London,140(5),725-740.
    Saffer, D.M., Frye, K.M., Marone, C., Mair, K.,2001. Laboratory results indicatingcomplex and potentially unstable frictional behavior of smectite clay. Geophys.
    Saffer, D.M., Marone, C.,2003. Comparison of smectite-and illite-rich gougefrictional properties: application to the updip limit of the seismogenic zone alongsubduction megathrusts. Earth and Planetary Science Letters215,219-235.
    Schleicher, A.M., van der Pluijm, B.A., Solum, J.G., Warr, L.N.,2006. Origin andsignificance of clay-coated fractures in mudrock fragments of the SAFODborehole (Parkfield, California). Geophys. Res. Lett.33, L16313.
    Schleicher, A.M., van der Pluijm, B.A., Warr, L.N.,2010. Nanocoatings of clay andcreep of the San Andreas fault at Parkfield, California. Geology38,667-670.
    Scholz, C.H.,1988. The brittle-plastic transition and the depth of seismic faulting.Geologische Rundschau77,319-328.
    Scholz, C.H.,1998. Earthquakes and friction laws. Nature391,37-42.
    Scott, D.R., Marone, C.J., Sammis, C.G.,1994. The apparent friction of granular faultgouge in sheared layers. J. Geophys. Res.99,7231-7246.
    Scruggs, V.J., Tullis, T.E.,1998. Correlation between velocity dependence of frictionand strain localization in large displacement experiments on feldspar, muscoviteand biotite gouge. Tectonophysics295,15-40.
    Shimamoto, T., Logan, J.M.,1981. Effects of simulated clay gouges on the slidingbehavior of Tennessee sandston. Tectonophysics75,243-255.
    Sibson, R.H.,1977. Fault rocks and fault mechanisms. Journal of the GeologicalSociety133,191-213.
    Smith, S.A.F., Di Toro, G., Kim, S., Ree, J.-H., Nielsen, S., Billi, A., Spiess, R.,2012.Coseismic recrystallization during shallow earthquake slip. Geology41,43-66.
    Smith, S.A.F., Faulkner, D.R.,2010. Laboratory measurements of the frictionalproperties of the Zuccale low-angle normal fault, Elba Island, Italy. J. Geophys.Res.115, B02407.
    Solum, J.G., Hickman, S.H., Lockner, D.A., Moore, D.E., van der Pluijm, B.A.,Schleicher, A.M., Evans, J.P.,2006. Mineralogical characterization of protolithand fault rocks from the SAFOD Main Hole. Geophys. Res. Lett.33, L21314.
    Sperazza, M., Moore, J.N., Hendrix, M.S.,2004. High-resolution particle size analysisof naturally occurring very fine-grained sediment through laser diffractometry.Journal of Sedimentary Research74,736-743.
    Steurer, J.F., Underwood, M.B.,2003. Clay mineralogy of mudstonesfrom the nankaitrough reference sites1173and1177and frontal accretionary prism site1174.Proc. Ocean Drill. Program Initial Rep.,190/196,1-9.
    Stewart, M., Strachan, R.A., Holdsworth, R.E.,1999. Structure and early kinematichistory of the Great Glen Fault Zone, Scotland. Tectonics18,326-342.
    Takahashi, M., Mizoguchi, K., Kitamura, K., Masuda, K.,2007. Effects of claycontent on the frictional strength and fluid transport property of faults. J.Geophys. Res.112, B08206.
    Tembe, S., Lockner, D.A., Wong, T.F.,2010. Effect of clay content and mineralogyon frictional sliding behavior of simulated gouges: Binary and ternary mixturesof quartz, illite, and montmorillonite. J. Geophys. Res115, B03416.
    Togo, T.,2011. High-velocity frictional behavior of Longmenshan fault gouge fromHongkou outcrop and its implications for dynamic weakening of fault during the2008Wenchuan earthquake. Earthq Science24(3),267-281.
    Tournassat, C., Neaman, A., Villiéras, F., Bosbach, D., Charlet, L.,2003.Nanomorphology of montmorillonite particles: Estimation of the clay edgesorption site density by low-pressure gas adsorption and AFM observations.American Mineralogist88,1989-1995.
    Townend, J.,2009. Drilling, Sampling, and Monitoring the Alpine Fault: Deep FaultDrilling Project—Alpine Fault, New Zealand; Franz Josef, New Zealand,22–28March2009. Eos, Transactions American Geophysical Union90,312-312.
    Tse, S.T., Rice, J.R.,1986. Crustal earthquake instability in relation to the depthvariation of frcitonal sliding properties. Journal of Geophysical Research91(B9),9452-9472.
    Underwood, M.B.,1993. Sediment geochemistry, clay mineralogy and diagenesis: Asynthesis of data from leg131, Nankai trough. Proceedings of the Ocean Drillillgprogram, scientific result131,343-363.
    Van Diggelen, E.W.E., De Bresser, J.H.P., Peach, C.J., Spiers, C.J.,2010. High shearstrain behaviour of synthetic muscovite fault gouges under hydrothermalconditions. Journal of Structural Geology32,1685-1700.
    Verberne, B.A., He, C., Spiers, C.J.,2010. Frictional Properties of Sedimentary Rocksand Natural Fault Gouge from the Longmen Shan Fault Zone, Sichuan, China.Bulletin of the Seismological Society of America100,2767-2790.
    Vrolijk, P.,1990. On the mechanical role of smectite in subduction zones. Geology18,703-707.
    Vrolijk, P., van der Pluijm, B.A.,1999. Clay gouge. Journal of Structural Geology21,1039-1048.
    Wang, J.,1996. Geothermics in China. Seismological Press, Beijing.
    Wang, Z., Fukao, Y., Pei, S.,2009. Structural control of rupturing of the Mw7.92008Wenchuan Earthquake, China. Earth and Planetary Science Letters279,131-138.
    Weeks, J.D., Tullis, T.E.,1985. Frictional Sliding of Dolomite: A Variation inConstitutive Behavior. J. Geophys. Res.90,7821-7826.
    Weyl, P.K.,1959. Pressure solution and the force of crystallization: aphenomenological theory. Journal of Geophysical Research64,2001-2025.
    White, S.W.,2001. Textural and microstructural evidence for semi-brittle flow innatural fault rocks with varied mica contents. International Journal of EarthSciences90,14-27.
    Wintsch, R.P., Christoffersen, R., Kronenberg, A.K.,1995. Fluid-rock reactionweakening of fault zones. Journal of Geophysical Research: Solid Earth100,13021-13032.
    Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., Shaw, J.,2009.Coseismic reverse-and oblique-slip surface faulting generated by the2008Mw7.9Wenchuan earthquake, China. Geology37,515-518.
    Xu, Z., Ji, S., Li, H., Hou, L., Fu, X., Cai, Z.,2008. Uplift of the Longmen Shan rangeand the Wenchuan earthquake. Episodes31(3),291-301.
    Yan, D.P., Zhou, M.F., Li, S.B., Wei, G.Q.,2011. Structural and geochronologicalconstraints on the Mesozoic-Cenozoic tectonic evolution of the Longmen Shanthrust belt, eastern Tibetan Plateau. Tectonics30, TC6005.
    Yao, L., Ma, S., Shimamoto, T., Togo, T.,2013. Structures and high-velocityfrictional properties of the Pingxi fault zone in the Longmenshan fault system,Sichuan, China, activated during the2008Wenchuan earthquake.Tectonophysics599,135-156.
    Yund, R.A., Blanpied, M.L., Tullis, T.E., Weeks, J.D.,1990. Amorphous Material inHigh Strain Experimental Fault Gouges. J. Geophys. Res.95,15589-15602.
    Zhang, L., He, C.,2013. Frictional properties of natural gouges from Longmenshanfault zone ruptured during the Wenchuan Mw7.9earthquake. Tectonophysics594(2013),149-164.
    Zhao, G., Unsworth, M.J., Zhan, Y., Wang, L., Chen, X., Jones, A.G., Tang, J., Xiao,Q., Wang, J., Cai, J., Li, T., Wang, Y., Zhang, J.,2012. Crustal structure andrheology of the Longmenshan and Wenchuan Mw7.9earthquake epicentral areafrom magnetotelluric data. Geology40,139-1142.
    陈建业,2011.汶川地震断层带结构及渗透率.地球物理学报54(7),1805-1816.
    陈义才,沈忠民,罗小平.2007.石油与天然气有机地球化学[M].北京:科学出版社.161-163.
    李爱民,2005.天然有机质与矿物间的吸附及其环境效应的研究进展.岩石矿物学杂志24(6),671-180.
    傅家谟,贾蓉芬.1989.碳酸盐岩有机地球化学.北京:科学出版社.
    马胜利,嶋本利彦,1995.蒙脱石的脱水作用对断层摩擦本构行为的影响.地震地质,17(4),289-304.
    马永旺,杨尽,2001.龙门山中段推覆构造的变形特征.成都理工学院学报,28(3),
    236-240.
    黄第藩,李晋超,张大江等.1989.柴达木盆地第三系原油的熟化序列及其在石油资源预测中的重要意义.石油学报.10(3):1-11.
    徐锡伟,闻学泽,叶建青等.2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质.30(3):597-629.
    张培震,2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,51(4),1066-1073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700