用户名: 密码: 验证码:
α-醇溶蛋白与小麦育种
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究α-醇溶蛋白基因组成及其与小麦育种的关系,我们利用基因组PCR技术分离了158个α-醇溶蛋白基因的编码序列。其中,从二倍体长穗偃麦草(diploid Agropyron elongatum)和老芒麦(Elymus sibiricus)中获得63个α-醇溶蛋白基因的开放阅读框(ORFs),这些序列中90%存在内部终止密码子或移码,前者主要是由于编码谷氨酰胺的密码子(CAG或CAA)发生了碱基C到T的颠换变为终止密码子(TAG或TAA)。通过分析α-醇溶蛋白基因推导的氨基酸序列发现α-醇溶蛋白是由N-端信号肽,N-端重复区,第一个多聚谷氨酰胺区,N-端非重复区,第二个多聚谷氨酰胺区和C-端非重复区六部分组成,其中除了两个变异较大的多聚谷氨酰胺区外,其他区域比较保守且序列间相似性较大:其差异主要归因于单核昔酸多态性(SNPs)、序列中的密码子的改变或移码突变。在重复区的前三个密码子中,我们发现了一些新的基序,例如GRV和RV;在第一个多聚谷氨酰胺区出现了(Q)_3AR(Q)_5,(Q)_2 AR(Q)_5和(Q)_3A新基序;我们也发现一些具有奇数个半胱氨酸残基的α-醇溶蛋白,并且非保守的半胱氨酸残基在N-和C-末端非重复区都存在。在二倍体长穗偃麦草的假基因中发现了一种已知的乳糜泻疾病(CD)抗原决定簇;在老芒麦的真基因中发现了两种CD抗原决定簇。系统进化树的分析表明,来自于二倍体长穗偃麦草的α-醇溶蛋白基因由若干个亚家族组成,与十倍体来源的基因聚在一起;而来自于老芒麦的α-醇溶蛋白基因则与小麦属的α-醇溶蛋白基因彼此之间具有更高的序列相似性。
     同时,我们从小麦体细胞杂种渐渗系Ⅱ-12及其亲本普通小麦JN177和十倍体长穗偃麦草中分离了95个α-醇溶蛋白基因的ORFs。序列比对的结果表明杂种Ⅱ-12中α-醇溶蛋白基因的组成和来源如下:(1)杂种中大多数α-醇溶蛋白基因和IN177α-醇溶蛋白基因相似;(2)小部分来自于十倍体长穗偃麦草的渐渗;(3)一些新的基因是由点突变、不等交换或者亲本基因的复制滑动所造成的。因此,我们证实了新的α-醇溶蛋白基因可能通过体细胞杂交而更快的产生,这种产生的方式与HMW-GS自然进化的机制是一致的。进一步氨基酸序列分析表明,在亲本小麦JN177和Ⅱ-12的α-醇溶蛋白基因中鉴定出了四种已知类型的CD抗原决定簇,在十倍体长穗偃麦草中只发现一种。值得注意的是虽然有相同的四种类型的CD表面抗原决定簇,但是杂种Ⅱ-12中编码CD表面抗原决定簇序列的基因数量要低于JN177,特别是在假基因中则更低。文章讨论了体细胞杂种α-醇溶蛋白与小麦育种的关系。
     α-醇溶蛋白中半胱氨酸的数目和位置影响面粉的品质,因此,我们选择了两个与面粉品质具有潜在相关性的基因,一个来自于老芒麦,另一个来自于Ⅱ-12,对其进行原核表达,然后构建了基于ubiquitin启动子的真核表达载体pCAMBIA3301-E42和pCAMBIA3301-Ⅱ-93,接着运用农杆菌介导的转化方法分别转化小麦株系,通过双引物PCR筛选后,初步获得了19株阳性株系,为进一步的分子鉴定、遗传分析、功能鉴定和育种应用奠定基础。
     从Ⅱ-12中克隆的H1Dx5基因是一个潜在的优质HMW-GS基因,利用胚乳特异的Bxl7启动子构建了该基因的真核表达载体pBIN20-H1Dx5,为今后该基因功能研究和应用于小麦育种打下了基础。
In order to exploitα-gliadin composition and possible relationship with wheat breeding,one hundred and fifty-eightα-gliadin open reading frames were cloned and sequenced from wheat relative grasses,the somatic hybrid wheat introgression lineⅡ-12 and its biparents.Out of them,sixty-threeα-gliadin open reading frames were characterized from diploid Agropyron elongatum and Elymus sibiricus.About 90%of these sequences contained an internal stop codon(TAG or TAA)or frameshift,the former maily due to the change from C to T in glutamine(CAG or CAA).Aligned with reportedα-gliadin sequences,signal peptide domain,repetitive domain and C-terminal region were significantly identical,but both polyglumatine domains different.Most of the amino acid differences could be attributed to varieties of SNPs and sequences involving complete codons,or frameshift changes.Two new types of motifs GRV and RV were found in repetitive domains of the first three codons.Novel types of motifs,including(Q)_3AR(Q)_5,(Q)_2AR(Q)_5,(Q)_3A,were characterized in the first polyglumatine region.Some ghadins with odd number of cysteine residues were discovered in both N- and C- terminal unique domain,α-gliadin of E.sibiricus contained two types of known CD epitode in potential real gene,whereas,those of diploid Agropyron elongatum has only one type in pseudogenes,no in potential real ones.Phylogenetic analysis showed thatα-gliadins from diploid Agropyron elongatum were comprised of several subfamilies,which were closely related to those from decaploid Agropyron elongatum;while that from E.sibiricus were more homologous to those from other Triticum species.
     Ninety-fiveα-gliadin open reading frames were cloned and sequenced from somatic hybrid wheat introgression lineⅡ-12 and its parents Triticum aestivum cv. Jinan177(JN177)and decaploid Agropyron elongatum.The data showed the composition and origin of theα-gliadin gene inⅡ-12 included:(1)most that were homologous to those of JN177;(2)a few derived direct from decaploid A.elongatum; (3)some new genes that were created via point mutation,unequal,crossover or slippage of a parental gene.Therefore,Novelα-gliadin genes were found to originate via point mutation,unequal crossover or slippage of a parental gene,demonstrating new genes could be rapidly created through somatic hybridization in a manner similar to that previously shown for HMW-GS genes.A particular quality attribute of interest was the presence or absence of celiac disease(CD)epitopes.These were found to be 4 times more common amongα-gliadin genes from the parent wheat JN177 than from decaploid A.elongatum.Although four types of CD-epitopes were found in introgression lineⅡ-12,the number of the genes encoded CD-epitopes was lower than in JN177,due to the occurrence of pseudogenes.We discussed the benefit of theseα-gliadins to wheat breeding.
     The number and the locus of cysteine residues inα- gliadin gene play very important role in flour quality.In order to investigate their function,Two genes with odd number cysteine residues,one is from Elymus sibiricus,and the other fromⅡ-12, were conducted prokaryotic expression and then constructed the eukaryotic expression vectors pCAMBIA3301-E42,pCAMBIA3301-Ⅱ-93 controlled by the promoter ubiquitin.After that these two genes were transformed into the wheat strain respectively by using Agrobacterium-mediated transformation method.Nineteen positive transgenic plants were obtained by PCR screening.It can greatly promote the further study of these genes concerning molecular characteristics,genetic analysis, functional detection and the application for wheat breeding.
     H1Dx5,which is cloned from the somatic hybrid wheat introgression lineⅡ-12, is a potential quality-associated HWM-GS subunit according to its primary structure of deduced amino acid.We have constructed the eukaryotic expression vector pBIN20-H1Dx5 successfully as to pave a way for studying its function and potential utility,in plant breeding.
引文
1.Altpeter F,Vasil V,Srivastava V,Vasil IK(1996)Integration and expression of the high molecular weight glutenin subunit 1Axl gene into wheat.Nat Bioteehnol 14:1155-1159
    2.Anderson OD,Greene FC(1989)The characterization and comparative analysis of high molecular weight glutenin genes from genomes A and B of a hexaploid bread wheat.Theor Appl Genet 77:689-700
    3.Anderson OD,Litts JC,Greene FC(1997)The α-gliadin gene family.Ⅰ characterization of ten new wheat α-gliadin genomic clones,evidence for limited sequence conservation of flanking DNA,and Southern analysis of gene family.Theor Appl Genet 95:50-58
    4.Anderson OD,Greene FC(1997)The α-gliadin gene family.Ⅱ.DNA and protein sequence variation,subfamily structure,and origins of pseudogenes.Theor Appl Genet 95:59-65
    5.Arentz-Hansen H,Korner R,Molber Φ,Quarsten H,Vader W,Kooy YMC,Lundin KEA,Koning F,Roepstorff P,Sollid LM,McAdarn S(2000)The intestinal T cell response to α-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase.J.Exp.Med.191:603-612.
    6.Barro F,Rooke L,Bekes F,Crras P,Tatham AS,Fide R,Lazzeri PA,Shewry PR,Bareelo P (1997)Transformation of wheat with high molecular weight subunit genes results in improved functional properties.Nat Biotechnol 15:1295-1299
    7.Bates GW(1987)Treatment of the donor protoplasts with lethal doses of a mutagen has the additional positive effect of elimination of protoplasts not involved in the fusion.Theor Appl Genet 74:718-726
    8.Bertha P,Bouharmont J(1997)Use of somaelonal variation and in vitro selection fir chilling tolerance improvement in rice.Can J Plant Sci 72:725-733
    9.Blechl AE,Anderson OD(1996)Expression of a novel high-molecular-weight glutenin subunit gene in transgenie wheat.Nat Biotechnol 14:875-879
    10.Borja J,Abdalla O,Mujeeb-Kazi A,Ter-Kuile N,Autrique E(1994)Agronomic evaluation of somaelonal variants from durum wheat eultivars.Agron Abstr.American Society of Agronomy,Madison
    11.Bozorgipour R,Snape J(1997)An assessment of somaclonal variation as a breeding tool for generating herbicide tolerance genotypes in wheat.Euphytica 94:335-340
    12.Chen F,Xu C,Chen M,Wang Y,Xia G(2008)A new α-gliadin gene family for wheat breeding:somatic introgression line Ⅱ-12 derived from Triticum aestivum and Agropyron elongatum.Mol Breeding(In revision)
    13.Chen F,Luo Z,Zhang Z,Xia G(2007)Variation and potential value in wheat breeding of low-molecular-weight glutenin subunit genes cloned by genomic and RT-PCR in a derivative of somatic introgression between common wheat and Agropyron elongatum.Mol Breed 21(2):141-152
    14.Cheng M,Fry JE,Pang SI,Zhou H,Horinaka CM,Duncan DR,Conner TW,WanY(1997)Genentic transformation of wheat mediated by Agrobacterium tumerfaciens.Plant Physiol 115:971-980
    15.Cooper DB,Sears RG,Lookhart GL,Jones,BL(1986)Heritable somaclonal variation of gliadinproteins of wheat plants derived from immature embro callus culture.Theor Appl Genet 71:784-790
    16.Dieterich W,Ehnis T,Bauer M,Donner P,Volta U,Riecken EO,Schuppan D(1997)Identification of tissue transglutaminase as the autoantigen of celiac disease.Nat.Med.3:797-801.
    17.D'Ovidio R,Lafiandra D,Tanzarella OA,Anderson OA,Greene FC(1991)Molecular characterization of bread wheat mutants lacking the entire cluster of chromosome 6A-controlled gliadin components.J Cereal Sci 14:125-129
    18.Evans D,Sharps W(1983)Single gene mutations in tomato plants regenerated from tissue culture.Science 221:949-951
    19.Felix I,Martinant JP,Bernard M,Bernard S,Branlard G(1996)Genetic characterisation of storage proteins in a set of F1-derived haploid lines in bread wheat.Theor Appl Genet 92:340-346
    20.Feng DS,Xia GM,Zhao SY,Chen FG(2004)Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum.Theor Appl Genet 110:136-144
    21.Fehér A,Preiszner Z,Litkey J(1992)Characterization of chromosome instability in interspeeific somatic hybrids obtained by χ-ray fusion between potatos(Solanum tuberosum L.)In addition,S.brevidens Phil.Theor Appl Genet 84:880-890
    22.Field JM,Shewry PR,Miflin BJ(1983)Solubilisation and eharacterisation of wheat gluten proteins:correlation between the amount of aggregated proteins and baking quality.J Sci Food Agric 34:370-377
    23.Frits Koning(2003)The molecular basis of Celiac disease J.Mol.Recognit 16:333-336
    24.Dicke WK(1950)Coeliakieeen onderzoek naar de nadelige mvloed van sommige graansoorten op de lijder aan coeliakie[MD Thesis].The Netherlands:University of Utrecht
    25.Galiba G,Sutka J(1989)Forst resistance of somaclones derived from Triticum aestivum L.winter calli.Pla(?).Breeding 102:101-104
    26.Glimelius K,Fahleson J,Landgren M(1991)Gene transfer via somatic hybridization in plants.Trends in Biotech 9:24-30
    27.Godkin A,Friede T,Davenport M,Stevanovie S,Willis A,Jewell D,Hill A,.Rammensee HG (1997).Use of eluted peptide sequence data to identify,the binding characteristics of peptides to the insulin-dependent diabtes susceptibility allele HLA-DQ8(DQ3.2).Int.Immunol 9:905.
    28.Greene FC,Anderson OD;Yip RE,Halford NG,Malpica-Romero J-M,Shewry PR(1988)Analysis of possible quality-related sequence variations in the lD glutenin high-molecular-weight-subunit genes of wheat.In:Miller TE,Koebner RMD(eds)Proc 7th Int Wheat Genetic Symposium,IPSR,Cambridge 735-740
    29.Gregersen PL,Brinch-Pedersen H,Preben BH(2005)A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat Transgenic Research 14:887-905
    30.Gu YQ,Crossman C,Kong XY,Luo MC,You FM,Coleman-Derr D,Dubeovsky J,Anderson OD(2004)Genomic organization of the complex α-gliadm gene loci in wheat.Theor Appl Genet 109:648-657
    31.Gupta R.B,Popineau Y,Lefebvre J,Cornec M.,Lawrence JG,MacRitchie F(1995)Biochemical basis of flour properties in bread wheats.Ⅱ Changes in polymeric protein formation and dough/gluten properties associated with the loss of low Mr or high Mr glutenin subunits.J.Cereal Sci 21,103-116.
    32.Herberd NP,Barrels D,Thompson RD(1985)Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines.Mol Gen Genet 198:234-242
    33.Herpen TWJM,Goryunova SV,Schoot J,Mitreva M,Salentijn E,Verst O,Schenk MF,Veelen PA,Koning F,Soest LJM,Vosman B,Bosch D,Hamer R J,Crilissen LJWJ,Smulders MJM(2006)Alpha-gliadin genes from the A,B,and D genomes of wheat contain different sets of celiac disease epitopes.BMC Genomics 7:1-13
    34.Kasarda DD,Okita TW,Bemardin JE,Baecker PA,Nimmo CC,Lew EJ,Dietler MD,Greene FC(1984)Nucleic acid(cDNA)and amino acid sequences of alpha-type gliadins from wheat(Triticum aestivum).Proc Natl Acad Sci 81:712-716
    35.Khatkar BS,Fido RJ,Tatham AS,Schofield JD(2002)Functional properties of wheat gliadins.ll.Effects on dynamic rheological properties of wheat gluten.J of Cereal Sci 35:307-313
    36.Kumar S,Tamura K.and Nei M(2004)MEGA3:Integrated softwate for Molecular Evolutionary Genetics Analysis and sequence alignment.Briefings m Bioinformatics 5:150-163
    37.Kwok WW,Domeier ME,Raymond FC,Byers P,Nepom GT(1996)Allele-specific motifs characterize HLA-DQ interactions with a diabetes-associated peptide derived from glutamic acid decarboxylase.J.Immunol 156:2171-2177
    38.Lafiandra D,Kasards DD,Morris R(1984)Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivats Cheyenne and Chinese Spring by two dimensional(two-pH)electrophoresis.Theor Appl Genet 68:531-539
    39.Larkin P,Scowcroft W(1981)Somaclonal variation-a novel source of variability from cell cultures for plant improvement.Theor Appl Genet 60:197-214
    40.Larkin P,Ryan S,Brettel J,Scowcroft W(1984)Heritable somaclonal varion in wheat.Theor Appl Genet 67:443-45
    41.Liu S,Zhao S,Chen F,Xia G(2007)Generation of novel high quality.HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum.BMC Evol Biol 7:76-83
    42.Marsh MN(1992)Gluten,major histocompatibility complex,and the small intestine.Gastroenterology 102:330
    43.Masci S,Rovelli L,Kasarda DD,Vensel WH,and Lafiandra D(2002)Characterisation and chromosomal localisation of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring.Theor Appl Genet 104:422-428
    44.Molberg Q,McAdam S,Korner R,Quarsten H,Kristiansen C,Madsen L,Fugger L,Scott H,Noren O,Roepstorff P,Lundin KEA,Sjostrom H,Sollid LM(1998)Tissue transghitaminase selectively modifies ghadin peptides that are recognized by gut derived T cells in celiac disease.Nat.Med.4:713-717
    45.Miiller S,Wieser H(1995)The location of disulphide bonds in a-type gliadins.J of Cereal Sci 22:21-27
    46.Murray MG,Thompson WF(1980)Rapid isolation of high molecular weight plant DNA.Nucleic Acids Res 8:4321-4325
    47.Nei M,Gojobori T(1986)Simple methods for estimating the numbers of synonymous and nonsynonymons nucleotide substitutions.Mol Biol Evol 3:418-426
    48.Okita TW,Cheesbrough V,and Reeves CD(1985)Evolution and heterogeneity of the α/β-type and γ-type gliadin DNA sequences.J Biol Chem 260:8203-8213
    49.Payne PI,Holt LM,Lawrence GJ,Law CN(1982)The genetics of gliadin and glutenin,the major storage proteins of the wheat endosperm.Qualitas Plantarum Plant Foods Hum Nutr 31:229-241
    50.Payne PI(1987)Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality.Annu Rev Plan Physiol 38:141-143
    51.Payne PI,Nightingale MA,Krattiger AF,Holt LM(1987)The relationship between HMW-glutenin subunit composition and the bread-making quality of British-grown wheat varieties.J Sci Food Agric 40:51-65
    52.Pena PJ,Zareo-Hernandez,Mujeeb-kazi(1995)Glutenin subunit compositions and bread making quality characteristics of synthetic hexaploid wheat derived from Triticum turgidum X Triticum tauschii(coss.)schmal crosses.J Cereal Sci 21:15-23
    53.Porceddu E,Turchetta T,Masci S,D'Ovidio R,Lafiandra D,Kasarda DD,Impigha A,Nachit MM(1998)Variation in endosperm protein composition and technological quality properties in durum wheat.Euphytica 100:197-205
    54.Rammensee HG,Friede T,Stevanovic S(1995)MHC ligands and peptide motifs:first listing.Imunogenetics 41:178-228.
    55.Rogers WJ,Miller TE(1997)Introduction to bread wheat(Triticum aestivum L.)and assessment for bread-making quality of alleles from T.boeoticum Boiss.ssp.thaoudar at Glu-Al encoding two high molecular weight subunits of glutenin.Euphytica 93:19-29
    56.Rozas J,Sanchez-DelBarrio JC,Messeguer X,Rozas R(2003)DnaSP,DNA poiymorphism analyses by.the coalescent and other methods.Bioinformatics 192496-2497
    57.Sambrook J,Fritsch EF,Maniatis T(1989)Molecular cloning:a laboratory,manual.Cold Spring Harbor Laboratory Press,New York
    58.Shewry PR.,Popineau Y,Lafiandra D and Belton P(2001)Wheat glutenin subunits and dough elasticity:findings of the EUROWHEAT project.Trends Food Sci.Teeh.11:433-441.
    59.Shewry PR,Halford NG and Lafiandra D(2003)Genetics of wheat gluten proteins.Advances in Genetics 49:111-184
    60.Shewry PR,Tatham AS(1997)Biotechology of wheat quality.J Sci Food Agric 73:397-406
    61.Shewry PR,Napier JA,Tatham AS(1995)Seed storage proteins:structures and biosynthesis.The Plant Cell 7:945-956
    62.Sigarava MA,Earle ED(1997)Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage(Brassica oleracea ssp.capitata)via protoplast fusion.Theor Appl Genet 94:213-220
    63.Sjostrom H,Lundin KEA,Molberg Φ,Korner R,McAdam S,Anthonsen D,Quarsten H,Noren O,Roepstorff P,Thorsby E,Sollid LM(1998)Identification of a gliadin T cell epitope in coeliac disease:general importance of gliadin deamidation for intestinal T cell recognition.Scand.J.Immnol.48:111-115.
    64.Sollid LM,Markussen G,Ek J(1989)Evidence for a primary,association of coeliac disease to a particular HLA-DQ alpha/beta heterodimer.J.Exp.Med.169:345-350.
    65.Spurkland A,Ingvarsson G,Falk ES,Knutsen I,Sollid LM,Thorsby E(1997)Dermatitis herpetiformis and celiac disease are both primarily associated with the HLA-DQ or the HLA-DQ heterodimers.Tissue Antigens 49:29.
    66.Svec M,Gregova E,Miklovicova M,Kraic J(1999)Short communication changes in expression of HMW glutenins of wheat(Triticum aestivum L.)reduced by nitrosoethylurea.Plant Breeding 118(3):272
    67.Symillides Y,Henry Y,De Buyser J(1995)Analysis of Chinese Spring regenerants obtained from short-and long-term wheat somatic embryogenesis.Euphytica 82:263-268
    68.Tautz D,Trick M,Dover GA(1986)Cryptic simplicity m DNA is a major source of genetic variation.Nature 322:652-656
    69.Tighe MR,Hall MA,Barbado M(1992)HLA class Ⅱ alleles associated with celiac disease susceptibility in a southern European population.Tissue Antigens 40:90-97.
    70.Vader LW,Stepniak DT,Bunnik EM,Kooy YM,de Haan W,Drijfhout JW,van Veelen PA,Koning F(2003)Characterization of cereal toxicity for celiac disease patients based on protein homology in grains.Gastroenterology 125:1105-1113
    71.Vader W,Kooy Y,van Veelen P.de Ru A,Harris D,Beneldauijsen W,Pena S,Mearin L,Drijfhout JW,Koning F(2002a)The gluten response in childrenwith recent onset celiac disease.A highly diverse response towards multiple gliadin and glutenin derived peptides.Gastroenterology 122:1729-1737.
    72.Vader W,de Ru A,Wal Y,van de Kooy Y,Benckhuijsen W,Mearin L,Drijfhout JW,van Veelen P,Koning F(2002b)Specificity of tissue transglutaminase explains cereal toxicity in celiac disease.J.Exp.Med.195:643-649.
    73.van de Wal Y,Kooy YMC,Drijfhont JW,Amons R,Koning F(1996)Peptide binding characteristics of the coeliac diseaseassociated DQ(_1~*0501,_1~*0201)molecule.Immunogenetics 44:246-253.
    74.van de Wal Y,Kooy Y,Veelen van P,Pana S,Mearin L,Molberg Φ,Lundin L,Mutis T,Benckhuijsen W,Drijfhout JW,Koning F(1998a)Small intestinal cells of celiac disease patients recognize a natural pepsin fragment of gliadin.Proc.Natl Aead.Sci.USA 95:10050-10054.
    75.van de Wal Y,Kooy YMC,Veelen van P,Pen-a AS,Mearin ML,Papadopoulos GK,Korting F(1998b)Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity.J.Immunol.161:1585-1588.
    76.van de Wal Y,Kooy YMC,Veelen van P,August SA,Drijfhout JW,Koning F(2000)Glutenin is involved in the gluten-driven mucosal T cell response.Eur.J.Immunol.29:3133-3139.
    77.Vartdal F,Johansen BH,Friede T,Thorpe CJ,Stevanovic S,Eriksen JE,Sletten K,Thorsby E,Rammensee HG,Sollid LM(1996)The peptide binding motif of the disease associated HLA-DQ molecule.Eur.J.Immunol.26:2764-2774.
    78.Vasil V,Castillo AM,Fromm ME,Vasil IK(1992)Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus.Biotechnology 10:667-674
    79.Wahls WP,Wallace LJ,Moore PD(1990)Hypervariable minisatellite DNA is a hotspot for homolosous recombination in human cells.Cell 60:95-103
    80.Wang J,Xiang FN,Xia GM(2005)Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line.Planta 221:277-286Wieser H(2007)Chemistry of gluten proteins.Food Microbiology 24:115-119
    81.Wang H,Wei Y,Yah Z and Zheng Y(2007)Isolation and analysis of α-gliadin gene coding sequences from Tritcum durum.Agricultural Sciences in China 6(1):25-32
    82.Weir B,Gu X,Wang MB,Upadhyaya N,Elliott AR,Brettell R(2001)Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker.Aust J Plant Physiol 28:807-818
    83.Wu H,Sparks C,Amoah B,Jones HD(2003)Factors influencing successful Agrobacterium-mediated genetic transformation of wheat.Plant Cell Rep 21:659-668
    84.Xia GM,Li ZY,He CX,Chen HM,Richard B(1999)Transgenic plant regeneration from wheat(Triticum aestivum L.)mediated by Agrobaeterium tumerfaciens.Acta Phytophysiologica sinica 25:22-28
    85.Xia GM,Xiang FN,Zhou AF,Wang H,He SX,Chen HM(2003)Asymmetric somatic hybridization between wheat(Triticum aestivum L.)and Agropyron elongatum(Host)Nevski.Theor Appl Genet 107:299-305
    86.Xue ZY,Zhi DY,Xue GP,Zhang H,Zhao YX,Xia GM(2004)Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum.Plant Sci 167:773-779
    87.Zhang XY,Dong YS,Wang RRC(1996)Characterization of genomes and choromosomes in partial amphipliods of hybrid Triticum aestivum/Thinopyrum ponticum by in stiu hybridization,isozyme analysis and RAPD.Crenome 39:1062-1071
    88.Zhao TJ,Quan TY,Xia GM,Chen HM(2003)Glutenin and SDS sedimentation analysis of the F_5 somatic hybrids between Triticum aestivum and Agropyron elongatum.J Shandong Univ(Nat Sci)38(3):112-116(in Chinese with English abstract)
    89.Zhou AF,Xia GM,Zhang X(2001)Analysis of chromosomal and organellar DNA of somatic hybrids between Triticum aestivum and Haynaldia villosa.Schur Mol Genet Genomics 265:387-393
    90.焦明大,韩方普,何孟元,郝水,张延滨,祁适(1999)八倍体小冰麦及其亲本种子醇溶蛋白和高分子量麦谷蛋白亚基的研究。植物学报41:405-408
    91.桑建利,王玉秀,朱至清(1992)小麦体细胞无性系种子醇溶蛋白和谷蛋白的变异。植物学报34(11):845-849
    92.王培,范光年,方仁(1992)幼穗无性系变异在小麦育种上的应用。作物学报18(5):391-396
    93.王晓娟,李兴林,王亚馥(2001)高粱总DNA导入春小麦稳定后代高分子量麦谷蛋白亚基盼变化。西北植物学报20:979-983
    94.王亚馥,陈克明,焦成瑾,周文麟,倪建福(1995)外源DNA导入小麦后的变异系生物学特性及胚乳蛋白的研究。作物学报21:404-411
    95.夏光敏,向凤宁,周爱芬,王槐,何世贤,陈惠民(1999)小麦与高冰草属间体细胞杂交获可育杂种植株。植物学报41(4):349-352
    96.张怀刚,陈集贤,胡含(1997)小麦体细胞无性系Glu21基因突变体的遗传分析。遗传19(1):23-25
    97.张怀刚,陈集贤,胡含(1998)小麦体细胞无性系SDS沉淀值的变异与遗传。西北农业学报7(2):1-5
    98.赵同金,权太勇,夏光敏,陈惠民(2003)小麦与高冰草体细胞杂种F5胚乳贮藏蛋白和SDS沉降值分析。山东大学学报(理学版)38(3):112-116
    99.朱至清,桑建利,王玉秀,李银心,朱颖民,王培,方仁,范光年.陈玉蓉,翡翠娟(1992) 体细胞无性系变异培育高蛋白小麦种质。植物学报34(12):912-918
    1、小麦体细胞杂种渐渗系Ⅱ-12 LMW-GS基因的克隆、鉴定和潜在育种价值的分析.中国科技论文在线2007
    2、Fanguo Chen~*,Chunhui Xu~*,Mengzhu Chen~*,Yanhui Wang,Guangmin Xia~(**)A new α-gliadin gene family for wheat breeding:somatic introgression line Ⅱ-12derived from Triticum aestivum and Agropyron elongatum.Mol Breeding,2OOg(In

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700