用户名: 密码: 验证码:
安徽冬瓜山铜矿床矽卡岩岩相学和矿物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安徽铜陵地区是长江中下游多金属成矿带的一个重要组成部分。矽卡岩型矿床在区内分布广泛,是区内最重要的矿床类型之一。冬瓜山铜矿床是该区埋藏最深、规模最大的一个矽卡岩型铜矿床,其地质特征在区内具有代表性和典型性。本文对冬瓜山铜矿床中的主要矽卡岩矿物(石榴石和辉石)进行了详细的岩相学和矿物学研究,并在此基础上探讨了冬瓜山矿区矽卡岩及相关矿床的成因。取得了以下主要成果和认识。
     1、通过岩相学观察,根据矿物穿插、交代关系可将石榴石分为两期。其中第一期石榴石环带发育,颜色较深,多呈深棕色;第二期石榴石呈细脉状侵入第一期石榴石中,或者形成石榴石颗粒的边缘,具有明显的光性异常,颜色较浅,多呈黄白色。
     2、冬瓜山铜矿床中矽卡岩主要由石榴石和单斜辉石组成。两期石榴石均属于钙铁榴石-钙铝榴石系列,但第Ⅰ期石榴石钙铁榴石组分含量较高,而第Ⅱ期石榴石钙铝榴石组分相对较高。辉石属钙铁辉石-透辉石系列,其中透辉石含量较多,可达92%。
     3、稀土元素分析结果显示,第Ⅰ期石榴石稀土配分模式为轻稀土元素(LREE)富集、Eu正异常的右倾曲线;第Ⅱ期石榴石稀土配分模式为重稀土元素(HREE)略微富集、Eu负异常的平缓曲线,近乎左倾。辉石的稀土元素配分模式为Eu负异常的平缓右倾曲线,LREE略微富集。通过分析认为,第Ⅰ期石榴石为岩浆成因,形成于较氧化环境下;辉石与第Ⅱ期石榴石为热液交代成因,形成于较还原环境下。
     4、微量元素分析结果表明,两期石榴石与辉石的元素分布特征相似,亲氧族元素Th、U等富集,亲铁族元素Ga、Mo尤其是W富集,而亲铜族元素除Sn元素外均比较亏损。这些特征与矿田内相关岩体的元素特征基本一致,表明矽卡岩的形成可能与岩浆岩密切相关。成矿元素及其伴生元素的R-型系统聚类分析发现,在石榴石中与Cu密切相关的微量元素为Zn和Pb,而在辉石中与Cu密切相关的微量元素为Ga。这些特征可作为深部找矿的依据之一。
Tongling area is an important part of the Middle-lower Yangtze Riverpoly-metallogenic belt, Anhui province. As one of the most important types ofdeposits, skarn-type deposits are widely distributed in this area. Dongguashan copperdeposit is the largest and deepest skarn-type deposit in this area, with representativeand typical geological features. A detailed petrographical and mineralogical study hasbeen carried out on the major skarn minerals(including garnet and pyroxene) in theDongguashan copper deposit,with a focus on the genesis of the skarn and associateddeposit. The following are major achievements obtained in this thesis:
     1. Petrographic observation supports dividing of formation process of garnet intotwo periods based on mineral intersection and metasomatism. The first period garnetis dark brown in color and has a zonal texture. While the second period garnet is lightyellow in color and has an optical anomaly, and occurs as veins intruding into the firstperiod garnet or outer zone surrounding the first period garnet.
     2. The skarn in the Dongguashan copper deposit is mainly composed of garnetand clinopyroxene. The garnet formed in the two period belongs to anandradite-grossular series, however, the first period garnet is higher in andraditecomponent, but the second period garnet is higher in grossular component. Pyroxenebelongs to a hedenbergite-diopside series, with more diopside component up to92%.
     3. Rare earth elements analysis result shows the REE partition pattern of firstperiod garnet is rich in LREE, positive Eu abnormal. The REE partition pattern ofsecond period garnet is slightly rich in HREE, negative Eu abnormal. The REEpartition pattern of pyroxene is slightly rich in LREE, negative Eu abnormal. Acomprehensive analysis is consistent with formation of the first period garnet bycooling and crystallization of the skarn magma in oxidize environment; and supportsformation of the second period garnet and pyroxene by metasomatized hydrothermalfluid and carbonate in reduction environment.
     4. Trace elements analysis result shows all the garnets and pyroxene arecharacterized by a general of Lithophile elements (Th、U. etc) and Siderophileelements (Ga、Mo especially W) enrichment and chalcophile elements depletion(except Sn). These characteristics are similar with elements distribution features ofrelated magmatic rocks in the ore field, indicating the formation of skarn probablyclosely correlation with magmatic rocks. R-system cluster analysis of metallogenic elements and associatied elements suggests that Zn and Pb are closely correlation withCu in garnets, while Ga in pyroxene. These characteristics as one of the symbol ofdeep prospecting.
引文
Ames L, Tiloton G R, Zhou G. Timing of collision of Sino-Korean and Yangzte cretons: U-Pbdating of coesite-bearing eclogites.1993, Geology,21:339-342.
    Anders E, Grevess E N. Abundances of the elements: meteoritic and solar. Geochim. CosmochimActa,1989,53:197-214.
    Cong Bolin, Wang Qingchen, Zhai Mingguo, et al. Ultra-high pressure metamorphic rocks in theDabie-Su-Lu region, China: their formation and exhumation. Island Arc,1994,3(3):135-150.
    Cota B Von. A treatise on Ore Deposits. New York: D.Van Nostrand,1870.574.
    Gaspar M G, Knaack C, Meinert L D, Ottonello G. REE distuibution in grandites from the CrownJewel gold skarn deposit: A LA-ICP-MS study. Geochim Cosmochim Acta,2005,69(10):788.
    Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems:A LA-ICP-MS study of garnetsfrom the Crown Jewel gold deposit. Geochimica Et Cosmochimica Acta,2008.72:185-205.
    Gaspar M, Knaack C, Meinert L, et al. In situ LA-ICP-MS analyses of skarn garnets:Insights intometasomatic processes and implications for Lu/Hf geochronology.Geophys Res Abstr,2006,8:09954.
    Gu LX, Khin Zaw, Hu WX et al. Distinctive features of late palaeozoic massive sulphide depositsin South China. Ore Geology Reviews,2007.31:107—138.
    Gu LX, Zheng YC, Tang XQ, et al. Copper, gold and silver enrichment in ore mylonites withinmassive sulphide orebodies at Hongtoushan VHMS deposit, N. E. China. Ore GeologyReviews,2007,30:1-29.
    Gustafson W I.The Stability of Andradite,Hedenbergite,and related minerals in the systemCa-Fe-Si-O-H.J Petrol,1974,15(3):455-496.
    Hou Zengqian, Yang Zhuseng, Li Yinqing, Zeng Pusheng, Meng Yifeng.2004. Fluid migration toforeland basin during dabie-orogeny in China: evidence from the gypsum formation andregional alteration in Yangtze Metallogenic belt. Sinica Geologica Acta,78(1):203-220.
    Kato Y. Rare Earth Elements as an Indicator to Origins of Skarn Deposits:Examples of theKamioka Zn-Pb and Yoshiwara-Sannotake Cu(-Fe)Deposits in Japan. Resour Geol,1999,49(4):183-198.
    Lawrence D. Meinert. Geology, Zonation, and fluid evolution of the big gossan Cu-Au skarndeposit, Ertsberg district, Irian Jaya. Economic Geology,1997,92(5):509-534.
    M.E. Lanfranchini, R.E. De Barrio, R.O. Etcheverry. Geology and Chemistry of the El AbueloCalcic Fe-skarn and Related Cu-(Ag)-Bearing Hydrothermal Veins, Chubut Province,Southern Argentina. Exploration and Mining Geology,2007,16,145-158.
    McDonough, W.F., and S.-S. Sun, The composition of the Earth, Chem. Geol.,1995.120,223-253.
    Meinert, K; Wolf, GK. Corrosion studies of stainless steel316L, modified by ion beamtechniques, under simulated physiological conditions. Surface&Coatings technology.1998,98(1-3),1148-1156.
    Norman D I, Kyle P R, Baron C, Analysis of trace elements including rare earth elements in fluidinclusion liquid.Econ Geol,1989,84:162-166
    Pan Y M, Dong P. The lower Changjing (Yangzi/Yangtze River) metallogenic belt, east centralChina:Intrusion–and wall rock–hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore GeologyReviews,1999,15(4):177~241.
    Rahn, Meinert K. Apatite fission track ages from the Adula nappe: late-stage exhumation andrelief evolution. Schweizerische mineralogische and petrographische mitteilungen.2005,85(2-3):233-245.
    Ray G E, Webster I C L. An overview of skarn deposits. B.C. Ministry of Energy, Mines andPetroleum Resources Paper,1991,4:213~252.
    Ray, DC. The correlation of lower wenlock series (silurian) bentonites from the lower hill farmand eastnor park boreholes, Midland platform, England. Proceedings of the geologistsassociation.2007,118:175-185.
    Scheibner B, Worner G, Civetta L,et al. Rare earth element fractionation in magmatic Ca-richgarnets.Contrib Mineral Petrol,2007,154:55-74.
    Stalder R, Foley S F, Brey G P, et al. Mineral-aqueous fluid partitioning of trace elements at900-1200℃and3.0-5.7GPa:New experimental data for garnet,clinopyroxene,and rutile,andimplications for mantle metasomatism.Geochimica. Cosmochimica Acta,1998,62(10):1781-1801.
    Taylor B E, Liou J G. The low-temperature stability of andradite in C-O-H fluids. Am Mineral,1978,63:378-393.
    Tolga Oyman.2010. Geochemistry, mineralogy and genesis of the Ayazmant Fe-Cu skarn depositin Ayvalik,(Balikesir), Turkey. Ore Geology Reviews,37,175-201.
    Wang Q F, Deng J, Wan L, et al. Multifractal Analysis of Element Distribution in Skarn-typeDeposits in the Shizishan Orefield,Tongling Area, Anhui Province, China. Acta GeologicaSinica,2008,82(4):896-905.
    Yin An, Nie Shangyou. An indentation model for the North and South China collision and thedevelopment of the Tan-Lu and Honam fault systems, Eastern Asia. Tectonics,1993,12:801-813.
    Zhao,GC; Sun, M; Wilde, SA. Major tectonic units of the north China and their Paleoproterozoicassembly. Science in China series D-earth sciences.2003,46(1):23-38.
    安徽省321地质队.铜陵地区狮子山矿田及外围地区立体地质填图成果报告.1990.
    安徽铜陵狮子山矿区冬瓜山铜矿床南段勘探地质报告.安徽省地质矿产局321地质队.1995年7月.
    安徽铜陵狮子山矿田冬瓜山铜矿详细普查地质报告.安徽省地质矿产局321地质队.1985年6月.
    常印佛,刘湘培,吴言昌.长江中下游铜陵成矿带.北京:地质出版社,1991.
    常印佛,刘学圭.关于层控式矽卡岩型矿床-以安徽省内下扬子凹陷中一些矿床为例.矿床地质,1983,(1):11-20.
    陈骏,Halls C, Stanley C J.柿竹园矽卡岩型钨锡钼铋矿床主要造岩矿物中REE的分布特征及成岩意义.地球化学,1994,23,suppl:84-92.
    储国正.铜陵狮子山铜金矿田成矿系统及其找矿意义:【博士学位论文】.北京:中国地质大学(北京),2003.
    冯孝良,管仕平,牟传龙,等.西藏甲马铜多金属矿床的岩浆热液交代成因:地质与地球化学证据.地质地球化学,2001,29(4):40-48.
    顾连兴,徐克勤.论长江中、下游中石碳世海底块状硫化物矿床/地质论评,1986.60(2):176-187.
    韩松,黄忠祥,贾秀勤,等.云南个旧打磨山钙质矽卡岩及石榴石的稀土元素地球化学特征.岩石学报,1993,9(2):192-198.
    韩吟文,马振东,等.地球化学.北京:地质出版社,2003.
    洪天求,李双应,胡永强.安徽铜陵地区石炭系层序地层研究.合肥工业大学学报(自然科学版).2000,23(3):299-303.
    侯增谦,杨竹森,吕庆田,等。安徽铜陵冬瓜山大型铜矿:海底喷流—沉积与矽卡岩叠加复合成矿过程.地质学报,2011,85(5):559—686.
    黄顺生,徐兆文,顾连兴,等.2004.安徽铜陵狮子山矿田岩浆岩地球化学特征及成因机制探讨。高校地质学报,10(2):217-226.
    黄许陈,储国正.铜陵狮子山矿田多位一体(多层楼)模式.矿床地质,1993,12(3):221-252.
    蒋敬业,程建萍,祁士华,等.应用地球化学.中国地质大学出版社.2006.3
    瞿泓滢,常国雄,裴荣富,等.安徽铜陵狮子山铜矿田岩石的地球化学特征.2011,30(4):430-439.
    李进文,裴荣富,梅燕雄,等.安徽铜陵狮子山铜(金)矿田成矿流体地球化学研究.矿床地质,2006.25(4):427-437.
    李进文,铜陵矿集区矿田构造控矿与成矿化学动力学研究:【博士学位论文】。北京:中国地质科学院,2004.
    李文达,王文斌,范洪源,等.长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性.火山地质与矿产,1997,20(增刊):1-131.
    林新多,许国建.岩浆成因矽卡岩的某些特征及形成机制初探.现代地质,1989.3(3):351-358.
    凌其聪,程惠兰.岩浆矽卡岩的地质特征及其形成机理讨论—以铜陵地区为例.长春科技大学学报,1998,28(4):366-371.
    凌其聪,刘丛强.层控矽卡岩及有关矿床形成过程的稀土元素行为—以安徽冬瓜山矿床为例.岩石学报,2003,19(1):192-200.
    刘惠芳,陆琦.湖南金船塘矿区矽卡岩矿物及Sn元素在绿帘石中的分布特征.地球科学-中国地质大学学报,2008,33(2):210-218.
    刘裕庆,刘兆廉,杨成兴.铜陵地区冬瓜山铜矿的稳定同位素研究.中国地质科学院矿床地质研究所所刊,1984,第1号,70-101.
    陆建军,郭维民,陈卫峰,等.安徽铜陵冬瓜山铜金矿床成矿模式.岩石学报,2008,24(8):1857-1864.
    陆建军,华仁民,徐兆文,等.安徽铜陵冬瓜山铜、金矿床两阶段成矿模式.高校地质学报,2003,9(4):678-690.
    孟宪民.矽卡岩的找矿意义.地质学报,1955,35(1):59-80.
    倪若水.长江中下游中生代沉积盆地的含矿建造.火山地质与矿产,1995,16(2):42-54.
    邱士东,谢玉玲,徐久华,等.安徽铜陵冬瓜山铜矿床成矿流体特征及演化.矿床地质,2007,26(2):204-21.
    宋学信,张景凯.中国各种成因黄铁矿的微量元素特征.中国地质科学院矿床地质研究所所刊,1986,2:166-175.
    唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1998.
    王莉娟,王京彬,王玉往,等.内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学.岩石学报,2002,18(4):575-584.
    王训诚,周玉才.安徽省安庆铜铁矿床地质特征及成因探讨.地质与勘探,1995,31(3):16-23.
    王彦斌,刘敦一,曾普胜,等.安徽铜陵地区壳幔岩浆底侵作用的时代—朝山辉石闪长岩锆石SHRIMP定年.地球学报,2004,25(4):423-427.
    王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989.
    吴才来,陈松永,史仁灯,等.铜陵中生代中酸性侵入岩特征及成因.地球学报,2003,24(1):41-48.
    吴才来,高前明,国和平,等.铜陵中酸性侵入岩成因及锆石SHRIMP定年.岩石学报,2010,26(9):2630-2652.
    吴才来,周珣若,黄许陈,等.铜陵地区中酸性侵入岩年代学研究.岩石矿物学杂志,1996,15(4):299-306.
    吴言昌,邵桂清,吴炼.岩浆矽卡岩及其矿床.安徽地质,1996,6(2):30-39.
    吴言昌.论岩浆矽卡岩--一种新类型矽卡岩.安徽地质,1992.2(1):12-26.
    肖成东,刘学武.东蒙地区矽卡岩石榴石稀土元素地球化学及其成因.中国地质,2002,29(3):311-316.
    谢光华,王文斌.安徽新桥铜硫矿床成矿时代及成矿物质来源.火山地质与矿产,1995(,27):101-107.
    徐林刚,杨富全,李建国,等.新疆富蕴县蒙库铁矿地质地球化学特征.岩石学报,2007,23(10):2653-2664.
    徐晓春,陆三明,谢巧琴,等.安徽铜陵冬瓜山铜金矿床流体包裹体微量元素地球化学特征及其地质意义.岩石学报,2008,24(8):1865-1874.
    徐晓春,陆三明,谢巧琴,等.安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义.地质学报,2008,82(4):500-509.
    徐晓春,陆三明,谢巧勤,等.铜陵狮子山矿田岩浆岩及金矿床的稀土元素地球化学.中国稀土学报,2006,24(5):615—622.
    徐晓春,赵丽丽,谢巧琴.铜陵狮子山矿田金矿床和铜矿床矿石稀土元素地球化学.高校地质学报,2009,15(1):35-47.
    徐兆文,陆现彩,高庚,等.铜陵冬瓜山层状铜矿同位素地球化学及成矿机制研究.地质论评,2007,53(1):44-51.
    许国建,林新多.安徽长龙山矽卡岩浆型铁矿床成因探讨.地球科学-中国地质大学学报.1990.15(6):649-656.
    薛春纪,祁思敬,隗合明,等.基础矿床学.北京:地质出版社,2006.
    杨更生,刘长学,隋竹慧,等.湖南七里坪—半边街镁质矽卡岩硼矿床微量元素地球化学.化工矿产地质,1996,18(4):271-275.
    姚鹏,李金高,顾雪祥,等.从REE和硅同位素特征探讨西藏甲马矿床层状矽卡岩成因.岩石矿物学杂志,2006,25(4):305-312.
    曾普胜,裴荣富,侯增谦,等.安徽铜陵地块沉积-喷流块状硫化物矿床.矿床地质,2002,21(增刊):532-534.
    曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区燕山期岩浆流体系统时空结构及成矿.矿床地质,2004,23,(3):298-309.
    翟裕生,姚书振,林新多,等.长江中下游地区铁、铜等成矿规律研究.北京:地质出版社,1992.1-235.
    张景森,张静,周俊杰.矽卡岩和矽卡岩型矿床研究方法.河北工程大学学报(自然科学版),2009,26(1):85-89.
    张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究:【博士学位论文】.安徽:合肥工业大学,2005.
    赵斌,M. D. barton.接触交代矽卡岩型矿床中石榴子石和辉石成分特点及其与矿化的关系.矿物学报,1987,7(1):1-8.
    赵斌,曹荣龙.钙铁辉石、透辉石和钙铁榴石变化的实验研究.地球化学,1975,1:63-74.
    赵斌,李统锦,李昭平.矽卡岩形成的物理化学条件实验研究.地球化学,1983,(3):256-268.
    赵斌,李院生,赵劲松.岩浆成因矽卡岩的包裹体证据.地球化学,1995,24(2):198-200.
    赵斌,赵劲松,刘海臣.长江中下游地区Cu(Au)/Cu-Fe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学.地球化学,1999,28(2):113-125.
    赵斌,赵劲松,张重泽,等.岩浆成因矽卡岩的实验证据.科学通报.1993,38(21).
    赵斌.钙铁辉石变化特征的实验研究.地球化学,1974,3:196-203.
    赵劲松,邱学林,赵斌,等.大冶-武山矿化矽卡岩的稀土元素地球化学研究.地球化学,2007,36(4):400-412.
    赵一鸣,环太平洋地区的矽卡岩矿床.矿床地质,1991,10(1):41-51.
    赵振华.微量元素地球化学原理.北京:科学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700