用户名: 密码: 验证码:
庐枞矿集区三维地质地球物理建模技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下地质体三维结构、构造形态的正确认识是我们认识地质与成矿过程、指导找矿实践的重要基础,而矿集区三维地质-地球物理建模技术为了解一定深度(3km-5km)地下精细结构以及地层、岩体的空间展布关系即地下结构的“透明化”提供了可能性。论文以国家科技专项“深部矿产资源立体探测技术与实验(SinoProbe-03)"专项为依托,选择庐枞矿集区作为研究对象,通过利用研究区内的综合地质地球物理资料,以反射地震剖面、重磁数据为基础,进行矿集区三维地质地球物理建模研究,进而了解矿集区深部三维构造特征,为庐枞矿集区“第二找矿空间”提供深部认识,具有重要科学研究意义和实际意义。
     通过对庐枞矿集区区域地质资料、重磁场数据、反射地震剖面深入认识,并利用人机交互反演,初步实现了庐枞矿集区5km以内的地质结构“透明化”,深化了对该地区成矿、控矿结构的认识,论文取得了如下进展:
     本次研究提出了一种新的矿集区三维地质-地球物理建模的思路和技术流程,即通过充分理解研究区区域地质概况,深入挖掘重磁场特征,以反射地震剖面作为骨干剖面,利用全三维建模平台,首先建立骨干剖面约束的三维模型,在此基础上将该模型垂直构造走向切分成多条二维剖面,逐条修改直到完全符合地表地质形态以及对研究区的基本地质认识及物性特征,初始模型建立后,对初始模型逐条剖面进行重力反演拟合,通过人机交互进一步修正三维模型。该方法最大的优势就在于无论在三维初始模型建立过程中,还是在反演拟合过程中,都可以最大限度融合建模人员对矿集区地质地球物理特征的理解。
     在建模过程中,对不同时期地层划分方案进行了整合和归并,开展了物性统计研究,并确定地层及侵入岩密度作为反演拟合的基础。开展了位场分离方法试验研究,对庐枞地区重力数据采用多种不同位场分离方法求取剩余异常,最终采用高通滤波位场分离结果作为反演建模数据。对矿集区内五条地震剖面进行系统认识,分析了庐枞火山岩盆地的边界结构框架,根据地震剖面反射特征,将盆地分为南北两部分,推测平行于反射地震2线的区域性断裂是南北两部分的分界线。在地震剖面上所识别出的盆地北面下部的三叠和白垩系地层的空间展布特征,为斑岩型及矽卡岩型矿床的预测提供了目标。
     通过在反射地震骨干剖面约束下进行重力反演拟合,推测得到了研究区内主要的岩体深部延伸范围,以及主要隐伏岩体的空间形态。三维模型展示了庐枞盆地的精细结构,尤其是与成矿有关地层及岩体的空间展布规律,为进一步找矿工作提供了参考。
Understanding of three-dimensional underground geologic structure is an important basis for recognize geology and mineralization processes.The three-dimensional geological geophysical modeling techniques provides an opportunity to understand certain depth (3km-5km) and the structure of underground formations, rock spatial distribution relations.The study as the basis of special of national science and technology projects,"Three-dimensional exploration of mineral resources in deep technical and experimental (SinoProbe-03)".Lujiang-Zongyang ore district was selected as the study area in this paper, we using integrated geological and geophysical data as the basis for ore district dimensional modeling in order to understand deep three-dimensional structural characteristics of ore district.
     In this paper the geological data, gravity and magnetic data, seismic reflection profiles of Lujiang-Zongyang ore district had been used to construct the3D geological and geophysical model. The initial realization of Lujiang-Zongyang ore district5km depth geological structure had been deepened the region mineralization, ore understanding of the structure and some progress had been made in this study:
     This study presents appropriate technical processes for three-dimensional geological and geophysical modeling for Lujiang-Zongyang ore district. Firstly, the seismic profiles are prepared for construct the initial3D model, then the initial model was cut into the two-dimensional sections modified one by one until full compliance with the surface geology of the study area. Then the initial model for gravity inversion fitting profiles one by one, through further amendments interactive3D models. The biggest advantage of this method is that one can maximize the integration understand of modelling ore district geological and geophysical characteristics.
     In the modelling process, the different periods were integrated stratigraphic division and merging programs, carried out statistical studies the physical properties and determine the stratigraphic and intrusive rocks density inversion fitting as the basis. Various regional-residual separation methods had been used to carry out and finally high-pass filtering been choosed to the final separation results as potential field inversion modeling data. According to interpretation of five seismic profiles acrossed Lujiang-Zongyang ore district, the volcanic basin boundary structural framework based on seismic reflection characteristics was divided into two parts, north and south, suggesting that two lines parallel to the reflection seismic fault is the north-south regional dividing line between the two parts. The distribution characteristics of seismic profiles contribute to provide information to target porphyry and skarn deposits.
     Finally, the deformation range of rock in depth and key fault strike had been revealed by using seismic reflection profiles under gravity inversion constrained fitting inversion. The3D geological and geophysical model of Lujiang-Zongyang shows the3D structure of the basin, particularly related to mineralization of rock formations and spatial distribution law for further prospecting work.
引文
Alanna C. Dutra, Yora R Marangoni. Gravity and magnetic 3D inversion of Morro do Engenho complex, Central Brazil[J]. Journal of South American Earth Sciences,2009,28:193-203.
    Antonio G Camacho, Jose Fernandez, Joachim Gottsmann. The 3-D gravity inversion package GROWTH2.0 and its application to Tenerife Island, Spain[J]. Computers & Geosciences, 2011,37:621-633.
    Bosch M, J McGaughey. Joint inversion of gravity and magnetic data under lithologic constraints[J]. The Leading Edge,2001,8:877-881.
    Cagniard L.1953.Basic theory of the magnetotelluric method of geophysical prospecting.Geophysies,18:605-631.
    C G Farquharson, C R W Mosher. Three-dimensional modelling of gravity data using finite differences[J]. Journal of Applied Geophysics,2009,68:417-422.
    Constable SC, Parker RL, Constable CG.1987.Occam's inversion:a practical algorithm for generating smooth models from EM sounding data. Geophysics,52 (3):289-300.
    Conxi Ayala, Monts Torne, Jaume Pous. The lithosphere asthenosphere boundary in the western Mediterranean from 3D joint gravity and geoid modeling:tectonic implications[J]. Earth and Planetary Science Letters,2003,209:275-290.
    Cross KC, Daly SJ, Flint RB.1993.Mineralisation associated with the GRV and Hiltaba suite granitoids.Geological Survey of South Australia Bulletin,(54):132-139.
    David Lopes de Castro. Gravity and magnetic joint modeling of the Potiguar Rift Basin (NE Brazil):Basement control during Neocomian extension and deformation [J]. Journal of South American Earth Sciences,2011,31:186-198.
    Egbert G, Booker JR.1986.Robust estimation of geomagnetic transfer functions,Geophys. J. R. Astr. Soc,87:173-194.
    Farquharson CG, Oldenburg DW.2004.A comparison of automatic techniques for estimating the regularization parameter in non-linear inversion problems.Geophys.J.Int,156:411-425.
    Fullagar P K, N A Hughes, J Paine. Drilling-constrained 3D gravity interpretation [J]. Exploration Geophysics,2000,31:17-23.
    Fullagar P K, G A Pears. Towards geologically realistic inversion[C]. Exploration in the new millennium, Proceedings of the Fifth Decennial Conference on Mineral Exploration, 2007:445^60.
    Goleby B R, Korsch R J, Fomin T, et al. Preliminary 3-D geological model of the Kalgoorlie region Yilgarn craton Western Australia Based on deep seismic-reflection and potential-field data[J]. Australian Journal of Earth Sciences,2002,49:917-933.
    Gongwen Wang, Lei Huang.3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China[J]. Geosciencefrontiers,2012:1-9.
    naynes Dw,(?>)ross KC, Bins R(?), Keed MH.1995.Ulympic Dam ore genesis:A fluid mixing model. Economic Geology,(90):281-307.
    H A Williams, P G Betts, L Ailleres. Constrained 3D modeling of the Mesoproterozoic Benagerie Volcanics, Australia[J]. Physics of the Earth and Planetary Interiors,2009,173:233-253.
    Heinson GS, Direen NG, Gill RM.2006.Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit,southern Australia.Geological Society of America,34(7):573-576.
    Hestenes MR,Stiefel E.1952,Methods of conjugate gradients for solving linear systems.Journal of Research of National Bureau of Standarde,49(6):409-436.
    Ilya Prutkin, Peter Vajda, Robert Tenzer, et al.3D inversion of gravity data by separation of sources and the method of local corrections:Kolarovo gravity high case study[J]. Journal of Applied Geophysics,2011,75:472-478.
    John C, Ingham M, Locke CA, Bibby H.2009.Subsurface structure across the axis of the Tongariro Volcanic Centre, New Zealand, Journal of Volcanology and Geothermal Research,(179):233-240.
    John W, Cady. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms[J]. Geophysics,1980,45(10):1507-1512.
    Johnson JP, McCulloch MT.1995.Sources of mineralizing fluids for the olympic dam deposit(South Australia):Sm-Nd isotopic constraints.Chemical Geology,(121):177-199.
    Kagiyama T, Utada H,Yamamoto T.1999.Magma ascent beneath Unzen Volcano, SW Japan, deduced from the electrical resistivity structure. Journal of Volcanology and Geothermal Research, (89):35-42.
    Keating P, N Pinet. Use of non-linar filtering for the regional residual separation of potential field data[J]. Journal of Applied Geophysics,2011,73:315-322.
    Keating P, N Pinet, M Pilkington. Comparison of some commonly used regional residual separation techniques[J]. Proceedings of International Workshop on Gravity, Electrical & Magnetic Methods and their Application,2011:73-76.
    Li Y, D W Oldenburg.3D inversion of magnetic data[J]. Geophysics,1996,61:394-408.
    Li Y, D W Oldenburg.3D inversion of gravity data[J]. Geophysics,1998,63:109-119.
    Li Y, Oldenburg D W. Fast inversion of large-scale magnetic data using wavelet transforms and logarithmic barrier method[J]. Geophysics,2003,152:251-265.
    Cu Q T, Qi G, Yan J Y, et al.3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling:A case history[J]. Geophysics,2013,78(1):1-11.
    Mackie RL,Madden TR.Conjugate gradient relaxation solutions for three-dimensional magnetotelluric modeling[J].Geophysics,1993,58:1052-1057
    vladden TR, Mackie RL.1989.Three-Dimensional Magnetotelluric Modeling and Inversion[J].Proc. IEEE,77(2):318-333.
    Mahir Isik, Hakki Senel.3D gravity modeling of Buyuk Menderes basin in Western Anatolia usingparabolic density function[J]. Journal of Asian Earth Sciences,2009,34:317-325.
    Maier R, Heinson G, Thiel S, Selway K, Gill R, Scroggs M.2007.A 3D lithospheric electrical resistivity model of the Gawler Craton, Southern Australia. Applied Earth Science (Trans. Inst. Min.Metall.B),116(1):13-21.
    Malehmir A, Tryggvason A, Juhlin C. Seismic imaging and potential field modeling to delineate structures hosting VHMS deposits in the Skellefte Ore District Northern Sweden[J]. Tectonophysics,2004,426:319-334.
    Malehmir A, A Tryggvason, H Lickorish,et al. Regional structural profiles in the western part of the Palaeoproterozoic Skellefte ore district, northern Sweden[J]. Precambrian Research, 2007,159:1-18.
    Manoj C, Nagarajan N.2003.The application of artificial neural networks to magnetotelluric time-series analysis.Geophys.J.Int,153(2):409-423.
    Martyn U,Oscar CE, Belmonte S,Arzate J, Bedrosian P.2002.Crustal structure of the Chicxulub Impact crater imaged with magnetotelluric exploration. Geophysical Research Letters,29(16):1-4.
    M N Nabighian, M E Ander, V J S Grauch, et al. Historical development of the gravity method in exploration[J]. Geophysics,70(6):63-89.
    M N Nabighian, V J S Grauch, R O Hansen. The historical development of the magnetic method in exploration[J]. Geophysics,2005,70(6):33-61.
    Miguel Bosch, Ronny Meza, Rosa Jimenez, et al. Joint gravity and magnetic inversion in 3D using Monte Carlo methods[J]. Geophysics,2006,71(4):153-156.
    Michael Maxelon, PhilippeRenard, GabrielCourrioux. A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units[J]. Computers & Geosciences,2009,35:644-658.
    Moorkamp M, Jones AG, Rao CK.2006.Processing magnetotelluric time series with adaptive filters and neural networks.18th EM Induction Workshop, El Vendrell,Spain.
    Muller A, Haak V.2004.3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java):integrating magnetotellurics, induction vectors and the effects of steep topography. Journal of Volcanology and Geothermal Research,(138):205-222.
    Muller MR, Jones AG, Evans RL, Grutter HS, Hatton C, Garcia X, Hamilton MP, Miensopust MP, Cole P, Ngwisanyi T, Hutchins D, Fourie CJ, Jelsma HA, Evans SF, Aravanis T, Pettit W, Webb SJ, Wasborg J and The SAMTEX Team.2009, Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa: Constraints from broadband magnetotellurics. Lithos,(112S):93-105.
    Nobuo Matsushima,Hiromitsu Oshima,Yasuo Ogawa,Shinichi Takakura,Hideyuki Satoh.Mitsuru Utsugi,Yasunori Nishida.2001.Magma prospecting in Usu volcano, Hokkaido, Japan, using magnetotelluric soundings. Journal of Volcanology and Geothermal Research, (109):263-277.
    Oldenburg D W, Li Y. Inversion for applied geophyscis:a tutorial[J]. Near-surface geophysics, 2005,13:89-150.
    Oldenburg D W, Pratt, et al. Geophysical Inversion for Mineral Exploration:a Decade of Progress in Theory and Practice[C]. Proceedings of Exploration 07:Fifth Decennial International Conference on Mineral Exploration,2007:61-95.
    Patro PK, Sarma SVS.2009. Lithospheric electrical imaging of the Deccan trap covered region of western India. Journal of geophyscal research, (114):1-16.
    Pejman Shamsipour, Denis Marcotte, Michel Chouteau.3D stochastic joint inversion of gravity and magnetic data[J]. Journal of Applied Geophysics,2012,79:27-37.
    Pierrick Chasseriau, Michel Chouteau.3D gravity inversion using a model of parameter covariance[J]. Journal of Applied Geophysics,2003,52:59-74.
    Pratt D A, McKenzie, et al. A user guided expert system approach to 3D interpretation of magnetic anomalies[C]. ASEG 15th Geophysical Conference and Exhibition, Brisbane,2001.
    Popova IV, Ogawa Y.2007.Application of a modified Hopfield neural network to noisy magnetotelluric data.Izvestiya Physics of the Solid Earth,43(3):217-224.
    Portniaguine O, Zhdanov MS.1999.Focusing geophysical inversion images.Geophysics,64 (3):874-887.
    Pospeeva EV.2008. Application of Medium-Scale Magnetotelluric Sounding to Identify Deep Criteria for Promising Areas for Kimberlite Exploration.Russian Journal of Pacific Geology,2(3):205-217.
    Richard L, Geoff B, Mark D.3D geological mapping and potential field modelling of West Arnhem Land, Northern Territory[C]. ASEG,2007:1-9.
    Rodi W, Mackie RL.2001.Nonlinear conjugate gradient s algorithm for 2D magnetotelluric inversion.Geophysics,66 (1):174-187.
    R T Shuey, A S Pasquale. End corrections in magnetic profile interpretation[J]. Geophysics, 1973,38(3):507-512.
    Shaw R, Srivastava S.2007.Particle swarm optimization:Anew tool to invert geophysical data.Geophysics,72(2):75-83.
    Smith JT, Booker JR.1996.Rapid inversion of two and three dimensional magnetotelluric data.Geophys Res,96(B3):3905-3922.
    Spichak V, Popova I.2002.Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters.Geophys,142(1):15-26.
    Spichak VV, Menvielle M, Roussignol M.1999.Three-Dimensional Inversion of the Magnetotelluric Fields Using Bayesian Statistics. In 3D Electromagnetics, Ed. by M. Oristaglio and B. Spies (SEG Publ. (GD7), Tulsa,406-417.
    Spichak VV, Zakharova OK, Rybin AK.2011.Methodology of the indirect temperature estimation basing on magnetotelluric data:Northern Tien Shan case study. Journal of Applied Geophysics, (73):164-173.
    Terra EF L, Menezes PT.L.2012.Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil. Journal of Applied Geophysics.(77):30-38.
    Vinicius Hector Abud Louro, Marta Silvia Maria Mantovani.3D inversion and modeling of magnetic and gravimetric data characterizing the geophysical anomaly source in Pratinha I in the southeast of Brazil Journal of Applied[J]. Geophysics,2012,80:110-120.
    V Pinto, A Casas, L Rivero, et al.3D gravity modeling of the Triassic salt diapirs of the Cubeta Alavesa (northern Spain)[J]. Tectonophysics,2005,40:65-75.
    Wang G, S Zhang, C Yan, et al. Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China[J]. Computers & Geosciences, 2011,37:1976-1988.
    Williams N C, R Lane, P Lyons. Regional constrained 3D inversionof potential field data from the Olympic Cu-Au province, South Australia[J]. Preview,2004 109:30-33.
    Welford K J, J Hall. Crustal structure of the Newfoundland rifted continental margin from constrained 3-D gravity inversion[J]. Geophysical Journal International,2007,171:890-908.
    Williams N C. Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the agnew-wiluna greenstone belt, western Australia [D]. Canada:The university of british Columbia,2008.
    Yang Yushan, Li Yuanyuan, Liu Tianyou. Interactive 3D forward modeling of total field surface and three-component borehole magnetic data for the Daye iron-ore deposit (Central China)[J]. Journal of Applied Geophysics,2011,75:254-263.
    常印佛,董树文,黄德志.1996.论中一下扬子“一盖多底”格局与演化.火山地质与矿产17(1-2):1-14.
    常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社,134-147.
    曹毅,杜杨松,蔡春麟,秦新龙,李顺庭,向文帅.2008,安徽庐枞地区中生代A型花岗岩类及其岩石包体在碰撞后岩浆演化过程中的意义.高校地质学报,14(4):565-576.
    陈沪生,张永鸿.1999.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社.1-223.
    陈沪生,周雪清.1988.下扬子地区HQ-13线地球物-地质综合解释剖面.地质论评,34(5):483-484.
    陈沪生.1988.下扬子地区HQ-13线的综合地球物理调查及其地质意义.石油与天然气地质,9(3):211-221.
    邓晋福,刘翠,冯艳芳,戴圣潜,杜建国,吴明安,童劲松,周肃,苏尚国,吴宗絮,姚孝德,吴雪峰.2011.安徽省庐枞与滁州盆地火山岩岩石学特征与Fe-Cu成矿的关系.地质学报,85(5):626-635.
    丁鹏飞,成兆元.1984.庐枞地区1:5万综合物化探调查的初步应用.物探与化探,8(1):41-53.
    董树文,1991.长江中下游铁铜矿带成因之构造分析.中国地质科学院院报,23:43-55.
    董树文,方景爽,李勇,朱洪吉,:Schoeider W.,BreitkreuzH.,Mattern F.1994.下扬子中三叠世一中侏 罗世沉枞相与印支运动.地质论评,40(2):111-119.
    董树文,高锐,吕庆田,张季生,张荣华,薛怀民,吴才来,卢占武,马立成.2009.庐江-枞阳矿集区深部结构与成矿.地球学报,30(3):279-284.
    董树文,马立成,刘刚,薛怀民,施炜,李建华.2011.论长江中下游成矿动力学.地质学报,85(5):612-625.
    董树文,吴宣志,高锐,卢德源,李英康,何义权,汤加富,曹奋扬,侯明金,黄得志.1998.大别造山带地壳速度结构与动力学.地球物理学报,41(3):349-361.
    董树文,项怀顺,高锐,吕庆田,李建设,战双庆,卢占武,马立成.2010.长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用.岩石学报,26(9):2529-2542.
    段超,周涛发,范裕,袁峰,丁铭,尚世贵,张乐骏.2009.庐枞盆地龙桥铁矿床中菱铁矿的地质特征和成因意义.矿床地质,28(5):643-652.
    高锐,卢占武,刘金凯,匡朝阳,酆少英,李朋武,张季生,王海燕.2010.庐-枞金属矿集区深地震反射剖面解释结果-揭露地壳精细结构,追踪成矿深部过程.岩石学报,26(9):2543-2552.
    宦鹏德.1980.庐枞地区“破火山口”重力场特征.地质与勘探,(2):47-50.
    宦鹏德.1984.发挥物化探方法在区调工作中的作用---庐枞地区1:5万物化探工作成果简介.中国地质,(7):4-8.
    黄清涛.1984.论罗河铁矿床地质特征及矿床成因.矿床地质,3(4):9-18.
    黄文斌,张荣华,胡书敏.2010.安徽庐枞盆地罗河铁矿水岩反应化学动力学实验.地质通报质,29(10):1479-1585.
    李洪英,张荣华,胡书敏.2009.庐枞盆地正长岩类地球化学特征及成因探讨.吉林大学学报(地球科学版),39(5):839-848.
    李中坚.1982.安徽庐枞地区构造体系与铁矿分布关系的研究.中国地质科学院地质力学研究所所刊,(3):74-91.
    罗红明,王家映,师学明,朱培明.2007.量子路径积分算法及其在大地电磁反演中的应用.地球物理学报,50(4):1268-1276.
    吕庆田,韩立国,严加永,廉玉广,史大年,颜廷杰.2010.庐枞矿集区火山气液型铁、硫矿床及控矿构造的发射地震成像.岩石学报,26(9):2598-2612.
    吕庆田,侯增谦,杨竹森,史大年.2004.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束.中国科学(D辑:地球科学),34(9):783-794.
    马立成,董树文,仲玉斌,张千明,高昌生.2011.长江中下游庐江-枞阳矿集区龙桥铁矿成矿时代研究.地质学报,85(7):1206-1214.
    孟贵祥,兰险.2006.EH-4电导率成像系统的特点及其在金属矿勘探中的应用.矿床地质,25(1):36-42.
    马立成,董树文,仲玉斌,等.长江中下游庐江-枞阳矿集区龙桥铁矿成矿时代研究[J].地质学 报,2011,85(7):1206-1214.
    潘国强,董恩耀.1983.庐枞火山岩区火山构造及其控矿作用.中国区域地质,(7):31-37.
    邱检生,任启江,徐兆文,张重泽.1991.安徽沙溪斑岩铜(金)矿床蚀变岩地质地球化学特征研究.南京大学学报,27(2):344-358.
    邱检生,任启江.1991.安徽沙溪斑岩铜(金)矿床含矿裂隙的空间分布特征及矿床成因.桂林冶金地质学院学报,11(4):369-376.
    任启江,邱检生,徐兆文,张重泽,方长泉,杨荣勇.1991.安徽沙溪斑岩铜(金)矿床矿化小岩体的形成条件.矿床地质,10(3):232-241.
    任启江,王德滋,刘孝善,杨荣勇,孙冶东,邱检生.1991.安徽庐枞地区巴家滩和矾山-石马滩岩体的时代和岩浆物质来源.科学通报,(10):771-773.
    任启江,王德滋,徐兆文,董火根,潘龙泉,杨荣勇,方长泉,胡进安.1993.安徽庐枞火山-构造洼地的形成、演化及成矿.地质学报,67(2):131-144.
    沈远超,申萍,刘铁兵,李光明,曾庆栋.2008.EH4在危机矿山隐伏金矿体定位预测中的应用研究.地球物理学进展,23(1):559-567.
    孙立广,杨晓勇,王奎仁,张兆峰,杨学明.1998.安徽沙溪斑岩铜矿床的构造岩石屏蔽控矿作用.大地构造与成矿学,22(3):234-241.
    滕吉文.2003.地球深部物质和能量交换的动力学过程与矿产资源的形成.大地构造与成矿学,27(1):3-21.
    王大勇,李桐林,高远,方含珍,赵广茂2009.CSAMT法和TEM法在铜陵龙虎山地区隐伏矿勘探中德应用.吉林大学学报(地球科学版),39(6):1134-1140.
    王中杰.1982.庐枞火山沉陷.中国地质科学院南京地质矿产研究所所刊,(3):16-36.
    魏文博,陈乐寿,谭捍东,邓明,胡建德,金胜.1997.西藏高原大地电磁深探测-亚东-巴木错沿线地区壳幔电性结构.现代地质,11(3):366-374.
    吴明安,汪青松,郑光文,蔡晓兵,杨世学,狄勤松.2011.安徽庐江泥河矿床的发现及意义.地质学报,85(5):802-809.
    吴长年,任启江,阮惠础,胡文瑄.1993.安徽庐枞盆地何家小岭黄铁矿床特征和成因研究.大地构造与成矿学,17(3):229-237.
    徐文艺,徐兆文,顾连兴,任启江,傅斌,牛翠祎.1999.安徽沙溪斑岩铜(金)矿床成岩成矿热历史探讨,45(4):361-367.
    严加永,吕庆田,孟贵祥,等.铜陵矿集区中酸性岩体航磁3D成像及对深部找矿方向的指示[J].矿床地质,2009,28(6):838-849.
    严加永,吕庆田,孟贵祥,等.三维可视化及物探新技术在矿山接替资源勘查中的应用—以铜陵狮子山矿田为例[J].地球学报,2008,29(1):116-120.
    杨晓勇,王奎仁孙立广,杨学明,黄德志,李英贤,石昆发.2002.沙溪斑岩型铜(金)矿床成矿地球 化学研究及靶区圈定.大地构造与成矿学,26(3):263-270.
    叶高峰,金胜,魏文博,Martyn Unsworth.2007西藏高原中南部地壳与上地幔导电性结构.地球科学-中国地质大学学报,32(4):491-498.
    于学元,白正华.1981.庐枞地区安粗岩系.地球化学,(01):57-65.
    袁峰,周涛发,范裕,钱存超,张乐骏,段超,唐敏慧.2008.庐枞盆地中生代火山岩的起源、演化及形成背景.岩石学报,24(8):1691-1702.
    赵文广,吴明安,张宜勇,等.安徽省庐江县泥河铁硫矿床地质特征及成因初步分析[J].地质学报,2011,85(5):789-801.
    张季生,高锐,李秋生,管烨,彭聪,李朋武,卢占武,侯贺晟.2010.庐枞火山盆地及其外围重、磁场特征.岩石学报,26(9):2613-2622.
    张荣华,张雪彤,胡书敏.2010.庐枞火山盆地深部岩石与成矿过程.岩石学报,26(9):2665-2680.
    周涛发,范裕,袁峰,陆三明,尚世贵,David Cooke,Sebastien Meffre,赵国春,2008,安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义.中国科学(D辑:地球科学,38(11):1342-1353.
    周涛发,范裕,袁峰,宋传中,张乐骏,钱存超,陆三明,David RC.2010庐枞盆地侵入岩的时空格架及其对成矿的制约.岩石学报,26(09):2694-2714.
    周涛发,范裕,袁峰,张乐骏,马良,钱兵,谢杰.2011.长江中下游成矿带火山岩盆地的成岩成矿作用.地质学报,85(5):712-729.
    周涛发,宋明义,范裕,袁峰,刘珺,吴明安,钱存超,陆三明.2007.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义.岩石学报,23(10):2379-2386.
    朱仁学,胡祥云.1995.格尔木-额济纳旗地学断面岩石圈电性结构的研究.地球物理学报,38(增刊):46-57.
    曾琴琴,刘天佑.重、磁异常的经验模态分解及其在鄂东张福山铁矿勘探中的应用[J].地球物理学进展,2011,26(4):1409-1417.
    翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社,1992:12-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700