用户名: 密码: 验证码:
锻造油压机液压控制系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造液压机的装备水平是衡量一个国家机械制造水平和能力的标志之一。锻造油压机以其速度快、精度高、自动化程度高等特点成为目前大型自由锻锤及中小型传统水压机的更新换代产品。液压控制系统是提高锻造油压机工作特性及锻件产品质量的关键设备,开展锻造油压机液压控制系统工作特性和控制特性的研究具有重要的理论意义和实际应用价值。它可以为现代化锻造油压机液压系统优化设计提供技术支撑;可以改进现有的锻造油压机液压控制系统设计,改善系统性能,优化控制技术,以提高锻造油压机的整体水平。
     本文针对现代化锻造油压机快速、无冲击及高精度的要求,开展了锻造油压机工作特性影响因素和锻造油压机控制特性两方面的专题研究。
     利用机理建模技术,进行了锻造油压机液压控制系统及元件的动态建模研究。建立了插装类方向阀、插装类压力阀、三级插装阀、电液比例插装阀、蓄能器、管道、执行机构以及油压机机架振动等关键元件的数学模型。在此基础上,进行了不同快锻回路液压控制系统数学模型的研究,为锻造油压机工作特性影响因素和控制特性研究奠定理论基础。
     从工作速度、关键元件的动态特性、建压时间、卸压时间、各阀间的协调控制和电液比例控制的系统设计等方面,通过大量的仿真和试验研究,对锻造油压机快速性的影响因素进行了研究。从卸压卸荷冲击、管道压力冲击和失荷冲击振动三个方面进行了锻造油压机冲击振动的影响因素研究,并结合生产现场实测数据,利用仿真技术,研究了理想卸压曲线、不同位置管道对系统冲击振动的影响规律,减少失荷造成压机和基础振动的措施等。
     研究了锻造油压机阀控缸控制特性,利用液压系统独立插装单元控制工作缸的特殊性,设计控制器参数,优化了锻造油压机液压控制系统的控制特性,并减小了回程缸的压力跃变,提高了系统的快速性,在实际锻造油压机生产过程中得到了应用,验证了所提出的控制策略的正确性和适用性。
     在仿真和实验研究的基础上,研究了开关型快锻回路、差动溢流快锻回路、比例控制快锻回路的控制特性,分析和比较它们的特点及控制特性,并给出相应的计算机快锻工序。对新型的节能型蓄能器快锻回路进行了仿真和试验研究,提出了计算选择蓄能器的依据,证明了利用蓄能器实现快锻节能的可行性,验证了蓄能器及蓄能器快锻回路数学模型的正确性。
Forging hydraulic press is one symbol which weighs a country machinery manufacturing level and ability. Forging oil press is considered as substitute of large type forging hammer and middle-small traditonal forging water press because of its fast forging speed, high control accuracy and high automatization etc. Developing the hydraulic control system essential characteristics research on the forging oil press has important theoretical significance and practical application value. It can provide the technical support for hydraulic system design optimization of the modernized forging oil press; it can improve hydraulic control system essential characteristics, structure parameters and system design of the existing forging oil press, optimize control technology, and then enhance forging oil press overall level.
     Aming at modernization forging oil press rapid, non-impact and high precision, the influencing factors of forging oil press operating characteristics and the forging oil press control characteristics had been studied. This work around these two special subjects had been carried on as follows:
     Using the mechanism modeling technology, based on hydraulic system dynamic modeling research of the forging oil press, the essential components mathematical model consist of the kind of cartridge directional valves, the kind of cartridge pressure valves, the triple-stage cartridge valves, the electro-hydraulic proportional cartridge valves, the accumulator, the pipeline, the executive mechanism, the hydraulic press vibration etc. were found. According to these, different hydraulic control system mathematical model of fast forging circuit were found. All above models are laying a theoretical foundation for the essential characteristics research of the forging oil press.
     Based on the theoretical modeling foundation, through the massive simulations and the experimental study, comprehensive and systematic analysis of forging oil press rapid influencing factors, which include working speed, the essential components static and dynamic performance, the set-pressure time, the unloading pressure time, various valves coordination control and electro-hydraulic proportional control system design and so on, were carried out. From pressure relief and unloading impact, the pipeline pressure impact and sudden unloading impact vibration three aspects, the influencing key factors of forging oil press impact vibration were conducted. In combination with measured data of production progress, using simulation technology, the ideal release of pressure curve, the influence rules of pipeline to the system impact vibration in the different position, the measures of reducing unloading to lead to the press and the foundation vibration had been obtained, it has the practical significance and the application value.
     The valve controlled cylinder characteristics of the forging oil press was studied. Through designing the controller parameters, the forging hydraulic press hydraulic control system control characteristics was optimized, the return cylinder pressure jump was reduced, the hydraulic system rapidity was enhanced. What is more important it was applied and verified in the actual forging oil press.
     On the basis of the simulation and experimental study, the control characteristics of the switching type fast forging circuit, the differential overflow fast forging circuit and the proportional control fast forging circuit had been analyzed and compared. The corresponding computer fast forging procedures were given. The simulation and the experimental with emphasis on forging circuit using accumulator were studied, the basis of selecting calculation of accumulator was proposed, the simulation and test results had proved energy conservation of fast forging by using the accumulator is feasible and realized, and the mathematical model of the accumulator and the fast forging circuit using accumulator is accuracy.
引文
1张金.世界锻造业现状及发展.机械工人,2002,(11):4-7
    2姚保森.我国锻造液压机的现状及发展.锻压装备与制造技术,2006,(3):84-86
    3沈鸿.12000吨自由锻造水压机.北京:机械工业出版社,1980:1-10
    4 J. W. Brooks.forging of superalloys. Materials & Design, 2000,21(4): 297-303
    5 Klaus Siegert, arkus Husserman, Bruno losch. Recent developments in hydroforming technology.Jounal of materials Proccessing Technology,2000,98:251-258
    6 Ishikawa, Shoji, Shimizu, Masayuki, Uno, Takaharu. Development of fully automatic high-speed open-die forging machine. IHI Engineering Review, 1984,17(3):165-169
    7王焱山.锻压.北京:机械工业出版社,2002:246-247
    8 Les Claar, Al Derouen, Bruno Stillhard. New life for hydraulic presses, Engineering and Technology Guide,1989,(12):40-46
    9 Denman D, McNeil W. Multi-axial servohydraulics controls compaction press. Hydraulic & Pneumatics,2000,98(2):259-264
    10 Young-Hyun Lee, R. Kopp. Application of fuzzy control for a hydraulic forging machine. Fuzzy sets and systems, 2001,118:99-108
    11 Lilly, K.W., Melligeri, A.S. Dynamic simulation and neural network compliance control of an intelligent forging center. J.Intell. Robot. Syst.: Theory, 1996,17:81–99
    12 Nye, T.J., Elbadan, A.M., Bone, G.M. Real-time process characterization of open die forging for adaptive control. J.Eng. Mater. Technol, 2001,123: 511–516.
    13 Liu Wensheng; Nye T.J. Adaptive control for intelligent open die forging. Manufacturing Engineering and Materials Handling,2004,15:759-766
    14 F.R. Biglari, N.P. O’Dowd, R.T. Fenner. Optinum design of forging dies using fuzzy logic in conjunction with the backward deformation method. Machine tools and manufacture, 1998,38:981-1000
    15李贵闪,何晓燕,荣兆杰.我国液压机行业的现状及发展.锻压装备与制造技术,2006,(4):17-19
    16朱钒,张志,张道富等,国内外液压机技术现状及发展趋势.机床与液压,2000,(1):6-7
    17张金.中国锻压行业的发展、机遇和挑战.机械工程师,2003,(6):3-6
    18王德拥,李平.中国锻造的发展历程和近况.河北工业科技,2001,3(18):39-41.
    19蔡墉.我国自由锻液压机和大型锻件生产的发展历程(上).锻造与冲压,2006,(11):84-86
    20蔡墉.我国自由锻液压机和大型锻件生产的发展历程(下).锻造与冲压,2007,(1):84-88
    21蔡墉.中国锻造与WTO.机械工人,2000,(9):4-6
    22魏伟.快锻液压机国内外现状及旧水压机改造.液压机械,1998,(2):7-8
    23蔡墉.世界大型自由锻和模锻液压机装备数量分布一览.锻造与冲压,2006,(8):85-86
    24 W. Voelkner, Present and future developments of metal forming: selected examples. Journal of Materials Processing Technology,2000,106:236-242
    25 Ford G S, Gauper G. Huge hydraulic press to work in California. Hydraulics and pneumatics,2001,(2):25-29
    26 Aksakal, B., Osman, F.H., Bramley, A.N. Determination of experimental axial and sideways metal flow in open die forging. Journal of Materials Processing Technology, 2008, 29: 576–583.
    27徐玉钢.进口快速锻造液压机液压控制设备的消化吸收.第一重型机器厂技术,2005,(5):49-50
    28俞新陆.液压机,北京:机械工业出版社,1982:16-18
    29俞新陆.液压机现代设计理论,北京:机械工业出版社,1987:304-318
    30俞新陆,杨津光.液压机的结构和控制.北京:机械工业出版社,1989:1-34
    31高文章.30MN双柱下拉式快锻液压机.重型机械,1995,(1):32-37
    32 R. Neugebauer, M. Schwaar, St. Ihlenfeldt. New Approaches to Machine Structures to Overcome the Limits of Classical Parallel Structures. CIRP Annals-Manufacturing Technology,2002,51(1): 293-296
    33吴生富.150MN锻造液压机本体组合结构研究.[燕山大学工学博士学位论文].2006:1-14
    34陈尚齐.自由锻造液压机的现代化改造.重型机械,1992,(4):9-17
    35黄奎,莫健华,陈柏金,等.双柱上传动锻造水压机多根拉杆顺序加载预紧力分析,中国机械工程,2008,(7):868-872
    36冯景昌.50MN自由锻造水压机传动系统设计与研究[燕山大学工程硕士学位论文]. 2006:14-20
    37王庆国,苏东海.二通插装阀控制技术.北京:机械工业出版社,2001:5-19
    38黄人豪,濮凤根.二通插装阀控制技术在中国的应用研究和发展综述.液压气动与密封,2003,(2):1-11
    39宋拥政.快速二通插装阀组.液压与气动,1991,(1):28-30
    40 W·Back, Design Systematic and Performance of Cartridge Valve Control, International Conference on Fluid Power,1987:169
    41李贵闪,翟华.电液比例控制技术在液压机中的应用.锻压装备与制造技术,2005,(6):28-30
    42黄火兵,夏伟,屈盛官,等.比例控制与插装阀技术的应用与发展.机床与液压,2007,(4):229-231
    43 Tseknovich L.I. Dynamics investigation for high-speed hydraulic press. Kuznechno-Shtampovochnoe Proizvodstvo. Metallurgical Plant and Technology,1995:22-25
    44陈柏金,黄树槐.锻造液压机液压系统传动方式研究.锻压技术,2003,(2):44-47
    45陈柏金,黄树槐,魏运华,等.大通径电液比例阀及其在锻造液压机上的应用.液压机械,2000,(6):9-11
    46杨大祥,韩炳涛.165MN自由锻造液压机的液压控制系统.重型机械,2006,(3):11-16
    47吴秀峰,张婷婷.快速锻造液压机的设计开发.锻压装备与制造技术,2007,(4):40-41
    48李煌基.威普克液压和潘克锻造技术.北京:北京哈特曼机电设备有限公司,2007
    49 H.J. Panke, Fundamentals of programmed forging.II. Stahl Eisen,1983,103(11):547–552
    50 Pahnke, Michael. Recamping of open die forging plant. MPT Metallurgical Plant and Technology,1988,11(3):4
    51 Pahnke,Hans joachim, Forging machines with hydraulic drive– development operating results. Metallurgical Plant and Technology,1998,11(6):77-82
    52 Wepuko hydraulic, High-pressure Radial Poston Pumps, Wepuko Hydraulic Gmbh&Co.,1996
    53陈柏金,靳龙.泵直接传动式锻造液压机液压伺服控制系统研究.机械与电子,2001,(1):16-18
    54杨启真,李宝,王运赣.快锻液压机压力冲击试验与仿真分析.锻压技术,1990,(6):45-49
    55吴道美.快速锻造液压系统的实验研究.重型机械,1991,(4):6-11
    56陈柏金,黄树槐,魏运华,等.锻造液压机高压卸载系统改进研究.液压与气动,2008,(1):57-60
    57陈柏金.锻造液压机组液压控制系统研究.[华中科技大学工学博士论文].2000:1-9
    58逄振旭.考虑能耗的大功率的复杂液压系统仿真与控制技术的研究.[上海交通大学工学博士学位论文].2001:60-75
    59 Dorf R C. Bisshop R H. Modern control system. England, Addision-eesley publishing company,2001:1-15
    60 S. I. Oh, W. T. Wu, K. Arimoto. Recent developments in process simulation for bulk forming processes. Journal of Materials Processing Technology,2001,111:2-9
    61 Derlansfield P. The Design of Hydraulic System and Dynamic Analysis. Beijing : SciencePress,1987
    62 Q.M. Bilings, S.A.Parameter. Estimator for Stochastic Nonlinear Rational Models.Int.J.Control,1993,(7):309-333
    63 Lei Bufang , Li Yongtang , Liu Jiansheng. Research on the Energy Economization of Electro - hydraulic Hammer. Chinese Journal of Mech. Eng. ,2000,13(1):64-69
    64 Garett A S , James E B. Experiments and Simulationson the Nonlinear Control of a Hydraulic Servosystem.IEEE Transactions on Control System Technology,1999,7(2):238-247
    65 Holzhüter, Th.Simulation of Relay Control Systems Using Matlab/Simulink.Control Engineering Practice,1998,6(9):1089-1096
    66 W.M. Mullins, R.D. Irwin, James C. Malas. Examination on the use of acoustic emission for monitoring metal forging process: a study using simulation technique. Scripta Materialia,1997,36(9):967-974
    67张力钧,黄人豪,胡伟民,等.二通插装阀统一建模方法的研究.液压气动与密封,2003,(6):1-4
    68 Quan Long,Lei Hong-xia,Chen Qing.Visual Research on the Flow Field in Hydraulic Cartridge Poppet Valve with 3-D Model.Proceeding of the Sixth International Conference on Fluid Power Transmission and Contro,2005:448
    69侯明亮,王方艳,毛恩荣.螺纹插装式液控换向阀的状态变量模型与仿真.农业机械学报,2006,(37):145-170
    70 Ikeo.S., Takahashi.K., Miura.R., Kanda.k.. Switching Characteristics of Two-Way Cartridge Valve.BHRA,1986:245-252
    71 Ikeo.Shiqeru, Hanya, Masao. Flow Force on Two-Way Cartridge Valve. Bulletin of the JSME,1986,(29):2938-2945
    72 Watton J, Tadmori M J. A comparison of techniques for the analysis of transmission line dynamics in electro-hydraulic control systems. Applied Math Modelling,1988,(5):457-466
    73 Cross over relief valve cartridge introduced. Diesel Progress: Engines & Drives,1992,(58):15
    74 Liu.Nenghong, Ma.Shenggang, Huang.Renhao. Theoretical analysis and experimental research of static and dynamic performances of cartridge relief valve. Fluid Power Transmission and Control Proceedings of the 2nd International Conference,1989:183
    75唐香君.锻造液压机插装类元件动态特性理论与实验研究[燕山大学工学硕士学位论文].2008:23-45
    76骆建彬,林亨,解云龙,等.液压机三级插装阀组的动态特性分析.液压机械,1995:31-32
    77 Kong Xiangdong, Tang Xiangjun. The Modeling Research of Triple-stage Cartridge Inserted Valve and Proportional Restrictive Valve in Forging Hydraulic Press. ISFP,Beidaihe,2007:101-103
    78吴根茂等.新编实用电液比例技术.杭州:浙江大学出版社,2006:8-9,157-163,221-223
    79路甬祥,胡大纮.电液比例控制技术.北京:机械工业出版社,1988:165-169,178-180,202-209
    80黄人豪,濮凤根.二通插装阀和比例控制技术在我国重大工程和装备中的应用.机电设备,2002,(5):1-7
    81黄火兵,夏伟,屈省官,等.比例控制与插装阀技术的应用与发展.机床与液压,2007,35(4): 229-230
    82 Ulery, Thomas J. Proportional cartridge valves. Economical alternative to large valves. Agricultural Engineering,1990,71(4):11
    83 Henke, Russ. The case for cartridge valve technology. Diesel Progress North American Edition, 2002,68(1):50-52
    84 Anon. Electro-Proportional Cartridge Valves Introduced by Sun. Diesel Progress North American Edition,2003,(69):58
    85 Kong Xiao-Wu,Wei Jian-Hua. Mathematical model and experimental verification of high flow cartridge servo valve. Zhejiang Daxue Xuebao,2007,(41):1759-1762
    86 Liu Song, Yao Bin. Automated onboard modeling of cartridge valve flow mapping. IEEE/ASME Transactions on Mechatronics, 2006,11(4): 381-388
    87 W. Back. Design Systematic and Performance of Cartridge Valve Control. International Conference on Fluid Power,1987:169
    88 Beshahwired Ayalew,Bohdan T,Kualakowski.Modal Approximation of Distributed Dynamics for a Hydraulic Transmission Line with Pressure Input-Flow Rate Output Causality.Journal of Dynamic Systems,Measurement,and Control,2005(9):503
    89 Kong xiaowu, Qiu minxiu. A study of the influence of pipe on valve control hydraulic system. Proceedings of the fifth international conference on fluid power transmission and control. Hang zhou, zhejaing university press,2001:23-27
    90 A.O. Gibson, J.A. Levitt. Modeling and simulation of fluid flow in pipes and hoses. FLUCOME’91. ASME1991: 67-75
    91 F.T. Brown. The transient response of fluid lines. ASME,1962,84(4):547-553
    92 A.k.Trikha,An Efficient Method for Simulating Frequency-dependent Friction in Transient Liquid Flow,Journal of Fluids Engineering. Trans ASME,1975,(3):97
    93孔晓武.带长管道的负载敏感系统研究.[浙江大学博士学位论文].2003:41-49
    94阮晓芳,孔晓武.电液系统仿真中管道模型的选取.液压、气动与密封,2006,(4):59-61
    95万胜狄.金属塑性成形原理.北京,机械工业出版社,1995:36
    96黄人豪.二通插装阀及其基本功率回路的开关特性(续).流体传动与控制,2006(2):35-37
    97 Renn, Jyh-Chyang, Chen, Kei-Je. Design of a novel unbalanced-type hydraulic cartridge valve with faster response. Journal of the Chinese Society of Mechanical Engineers, 2002,23(5): 481-486
    98康双琦.高速钢筋切断机液压剪切系统的设计与研究.[燕山大学工学硕士学位论文].2006:56-58
    99王学芳,叶宏开,汤荣铭.工业管道中的水锤.北京:科学出版社,1995:1-8
    100 Du H L,Nalr S S. Dynamic simulation of a Iarge hydrauliccapsule pipeline system. American Society of Mechanical Engineers,1997,16(4):61—66
    101李军,陈明,赵怀军.液压脉冲系统的压力瞬态脉动仿真研究.机床与液压,2007,35(1):122-124
    102 Chen Jine. heoretic Solution of the TransientFlow of Liquid in the Pipe with Fluid Machinery. Journal of Hydrodynamics,1992,4(4):ll9-126
    103 A. R. Simpson, B. Wylie. Large waterhammer Pressures for column separation in pipelines. Journal hydraulic engineering,1991,117(10):65-73
    104 Kong Xiaowu, Qiu Minxiu. A study of the influences of pipe on valve control hydraulic system. Proceedings of the fifth international conference on fluid power transmission and control. Hangzhou.Zhejiang University Press,2001:23-27
    105辛勇,杨国泰,何成宏.液压机冲击振动及其控制的建模与应用研究.中国机械工程,2000,11(9):1029-1032
    106辛勇,杨国泰.液压机隔振的计算机数值仿真.液压机械,1998,33(1):46-49
    107姚静.多功能组合阀及其控缸特性理论与实验研究.[燕山大学工学硕士学位论文].2004:13-20
    108 Li Hong,Zhao Yuzhou,Han Junwei,Pan Guobin.A Study on Electro-hydraulic Servo System with Asymmetrical Cylinder Using Bond Graph.Proceedings of The Fourth InternationalSymposium on Fluid Power Transmission and Control,2003:427
    109 Q.Zhang, X.Kong. Study of Valve Function and Characteristics Programmability Using Programmable E/H Valve. Proceedings of the 5th international conference on fluid power transmission and control (ICFP’2001), Hangzhou, 2001.4:258-264
    110 Stishov SM; Saburenkov EM. Control of the plunger reciprocating motion in a laboratory hydraulic press. Metallurgical Plant and Technology,1970(2): 1217-18
    111 Anon, Automatic hydraulic press for high-accuracy extrusion,2002(7):56-58
    112 Landaluze, J., Pujana, A.; Maruri, L. Using HIL simulation to set up and test the controller of a new TRY-OUT hydraulic press. 2nd Industrial Simulation Conference 2004.Malaga, Spain, 2004: 53-60
    113 Keskinen E., Launis S., Cotsaftis M. System dynamics of computer controlled hydraulic press for cylinder manufacturing. Proceedings of IASTED International Conference on Robotics and Manufacturing (RM 2001), Cancum, IASTED: 21-24
    114 Frazier, W.G. Source. Robust fuzzy logic-based control of a hydraulic forge press. Proceedings of AIRTC'98, Grand Canyon National Park,1998. Elsevier: 83-85
    115 Evdokimova V.V., Novikov A.D., Naumov V.K. Pressure stabilization in a hydraulic press. Instruments and Experimental Techniques,1971,14(2):614-615
    116 Pang Zhen-Xu,Li Cong-Xin, Ni Qi-Min. Structure and control of high speed forging hydraulic press. Journal of Shanghai Jiaotong University,2000,34(10):1399-1340
    117 Kurovich A.N.; Belousov I.Ya.; Murashko R.E. Status and development of hydraulic press production. Tyazheloe Mashinostroenie,2004,(3):46-50
    118李小庆.20MN锻造液压机动态性能仿真研究.[华中科技大学工学硕士学位论文].2005:9-15
    119 Pang Zhenxu. Modeling and simulation of high-speed hydraulic press. China Mechanical Engineering, 2002,13(10):841-843
    120 Jochen Breitling, Darrell Wallace, Taylan Altan. Investigation of different loading conditions in a high speed mechanical press. Journal of materials processing technology, 1996,59:18-23
    121 K. Osakada, X. Wang, S. Hanami. Precision forging process with axially driven container. Journal of materials processing technology, 1997,71:105-112
    122 Luan Yiguo, Sun Sheng. Reverse simulation using the simulation block technique and its application in the precision forging press. Journal of materials processing technology,1997,63:244-247
    123 B. Boroomand, J. Parvizian, A.R. Pishevar. Contact modeling in forging simulation. Journal of materials processing technology, 2002,125-126:583-587
    124陈柏金,张海燕.快速锻造液压机组计算机控制系统.机械与电子,1999,(2):22-24
    125陈柏金,熊晓红.8MN快速锻造液压机组及其控制系统.液压机械,1999,34(1):33-35
    126陈柏金,黄树槐,魏运华.20MN锻造液压机组技术改造.锻造装备与制造技术,2007,42(4):20-22
    127陈柏金.泵直接传动式锻造液压机计算机控制.机床与液压,2000,(5):47-48
    128陈柏金,高俊峰,魏运华.锻造液压机实验研究.液压机械,2006,(60):14-17
    129徐兵.采用蓄能器的液压电梯变频节能控制系统研究.[浙江大学工学博士学位论文].2001:30-34,80-81,131-146
    130权龙,李凤兰,田惠琴,等.变量泵、比例阀和蓄能器复合控制差动缸回路原理及应用.机械工程学报,2006,42(5):115-118
    131柯尊荣.辊压机液压系统建模与主控蓄能器研究.[华中科技大学工学硕士论文].2003:12-30
    132曹树平,罗小辉,胡军华,等.吸收压力脉动的自适应蓄能器回路研究.中国机械工程,2008,(6):671-675
    133 Herkommer R. Ways towards energy saving in hydraulicsteering systems. 3rd International Fluid PowerConference, Aachen:Shaker Verlag, 2002:465-474
    134 Shinichi Y. Study on an Active Accumulator .J SME International Journal ,1996,39(1):119-124
    135权凌霄,孔祥东,高英杰,等.不考虑进口特性的蓄能器吸收冲击理论及试验.机械工程学报,2007,43(9):28-32.
    136吴乃领.蓄能器液压加载系统刚度分析.工程机械,2003,(10):20-23
    137王春行.液压控制系统.北京:机械工业出版社,2003:113-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700