用户名: 密码: 验证码:
感音聋儿听觉及语音相关脑区的震动触觉刺激fMRI及功能连接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨震动触觉刺激fMRI对评价4岁以下不同年龄段先天性极重度感音神经聋婴幼儿的听觉及语言相关脑区研究的可行性。研究睡眠状态下4岁以下不同年龄组先天性极重度感音神经性耳聋婴幼儿的双侧初级、次级听觉脑区之间及其与语言相关脑区之间功能连接程度是否存在差异。方法:先天性极重度感音神经聋婴幼儿38例(实验组):月龄为6-48个月,平均月龄25个月。其中耳蜗移植者15人,随访12人,24-48个月耳蜗植入者为5人。根据大脑发育的关键期分三组:Ⅰ组:0-12个月(包含12个月),10例。Ⅱ组:12-24个月(包含24个月),14例。Ⅲ组:24-48个月,14例。所有聋儿双耳ABR (Auditory brain stem Response)测听结果均为91dBnHL以上。Ⅳ组(对照组):月龄为7-48个月,平均月龄26个月,5例,其中3例听力正常,2例双侧轻度耳聋,双耳ABR测听结果均为50dBnHL。聋儿组及对照组无中枢神经系统发育异常。采集SE T1WI序列、EPI功能序列以及3D GRE T1WI序列。EPI功能成像参数:TR/TE 2000 ms/40 ms, FOV 24cm×24cm,矩阵64×64,层厚5 mm,间隔0 mm,层数20,帧数70帧/层,共计1400层,扫描时间140s。采用日本产DIGITIMER DS7AH型电刺激仪产生震动触觉,组块式方法分别给予右小腿踝部震动触觉刺激。所有刺激态图像均经功能性神经成像分析软件包AFNI进行后处理。对极重度感音聋儿组与对照组初级、次级听觉脑区激活出现率采用卡方检验比较,利用SPSS统计学软件进行聋儿组与对照组间听觉、语言相关脑区激活范围方差分析比较。选择第一部分三组实验组。磁共振扫描采用Marconi Eclipse 1.5 T全身超导型磁共振成像系统,标准正交头线圈。首先进行冠状面SE T1WI扫描,接着进行横断面SE T1WI扫描。EPI序列:TR/TE 2000 ms/40 ms,层厚5 mm,间隔0.5mm,层数20, FOV24cm×24cm,帧数180帧/层,共计3600层,扫描时间360s。最后利用射频扰相稳态快速采集(radio-frequency spoiling fast acquisition in steady state, RF-FAST)序列进行全脑三维扫描。采用北京师范大学认知神经科学与学习国家重点实验室开发的静息态功能磁共振数据分析处理软件包REST,然后基于设定的ROI,提取听觉、语言相关脑区的低频时间序列信号。采用SPSS13.0统计软件对三组受试者左右侧初级、次级听觉脑区与左右侧语言相关脑区功能连接系数R进行方差分析。结果:震动触觉刺激下,实验组与对照组激活听觉脑区包括初级听觉脑区BA41区、次级听觉脑区BA22、42区。实验组与对照组初级、次级听觉脑区激活出现率差异没有统计学意义(P>0.05)。实验组与对照组之间听觉脑区激活范围差异有统计学意义(P<0.05),实验组听觉脑区激活范围均大于对照组。实验组之间比较Ⅲ组大于Ⅰ、Ⅱ组。Ⅰ组、Ⅱ组之间差异没有统计学意义(P>0.05)。震动触觉刺激下,实验组初级听觉脑区BA41、次级听觉脑区BA42区激活范围三组之间差异没有统计学意义(P>0.05)。实验组次级听觉脑区BA22区激活范围比较差异有统计学意义(P<0.05.),Ⅲ组大于Ⅰ组和Ⅱ组。震动触觉刺激下,实验组与对照组激活语言相关脑区包括额中回、额下回、颞上回、颞中回、角回。实验组与对照组之间语言相关脑区激活范围比较差异有统计学意义(P<0.05),Ⅰ组、Ⅱ组、Ⅳ组小于Ⅲ组。Ⅰ组、Ⅱ组、Ⅳ组之间比较差异没有统计学意义(P>0.05)。随访12例耳蜗植入先天性极重度感音神经聋儿半年后社会生活能力,发现2岁以前做耳蜗植入,半年后社会生活能力达到正常水平,2岁以后(>24个月)植入耳蜗者半年后社会生活能力达到边缘水平。震动触觉刺激下先天性极重度感音聋儿组听觉及语言相关脑区功能重组情况与大脑发育关键期及随访结果相符。睡眠状态下,左侧次级与右侧次级听觉脑区之间功能连接系数R,三组之间差异有统计学意义,2岁后(>24个月)功能连接程度较2岁前降低。右侧次级听觉脑区与右侧额中回、左侧额下回后部44、45区之间功能连接系数R,三组之间差异有统计学意义(P<0.05),2岁后(>24个月)功能连接程度较2岁前降低。左侧初、次级听觉脑区与双侧语言相关脑区之间功能连接系数R,右侧初级听觉脑区与双侧语言相关脑区之间功能连接系数R三组差异没有统计学意义(P>0.05)。
     结论:震动触觉刺激fMRI可以用于4岁以下不同年龄段先天性极重度感音神经聋婴幼儿听觉及语言相关脑区的研究。先天性极重度感音神经聋婴幼儿2岁后(>24个月)双侧次级听觉脑区、右侧次级听觉脑区与右侧额中回、左侧额下回后部44、45区之间的功能连接发生降低,可能与2岁后(>24个月)聋儿听觉、语言相关脑区发生功能重组有关。
Objective:To investigate feasibility of vibra-tactile fMRI for auditory and language-related cortex in infants with profoundly congenital sensorineural hearing loss. To investigate changes of functional connectivity between auditory and language-related cortex in infants of different age younger than 4 years old with profoundly congenital sensorineural hearing loss in sleep state using MRI.
     Materials and Methods:38 infants with bilateral profoundly congenital sensorineural hearing loss were included in our study. The age was from 6-48 months. The result of ABR was more than 91dBnHL.15 infants with bilateral profoundly congenital sensorineural hearing loss had cochlear implantation,12 of them had been followed up,5 aged from 24-48 months. They were divided into 3 groups according to cerebral hyperplasia. GroupⅠaged from 0 to 12 months(12months included), including 10 subjects. GroupⅡaged from 12 to 24 months(24months included), including 14 subjects. GroupⅢaged from 24 to 48 months, including 14 subjects.3 subjects with normal hearing and 2 subjects with wild hearing loss, the result of ABR was 50dBnHL aged from 7-48months. None of subjects had mental disease and dysplasia of the central nervous system. All subjects were performed anatomical T1WI, EPI and high-resolution 3D GRE T1WI by Marconi Eclipse 1.5T MRI scanner. Parameters of EPI sequence were slice thickness 5 mm, Slice interspace 0mm, slice number 20, FOV 24cm×24cm, Flip angle 90°, TR 2000 ms, TE 40 ms.70 frames and 1400 images were scaned. Total scan time was 140 seconds. All subjects were given the vibra-tactile stimulation of block mode on the right ankle. AFNI software was used to process fMRI data. Activated frequency of primary and secondary auditory cortex were compared by chi square test. Activated voxels size of auditory and language-related cortex between deaf and control group were compared by SPSS13.0 software. Choose deaf infants profoundly congenital sensorineural hearing loss who belong to partⅠ. All subjects were performed anatomical T1WI, EPI sequence and high-resolution 3D GRE T1WI by Marconi Eclipse 1.5T MRI scanner. Parameters of EPI sequence: Slice thickness 5 mm, Slice interspace 0.5mm, slice number 20, FOV 240 mm×240 mm, Flip angle 90°,TR 2000 ms, TE 40 ms,180 frames 3600 images were scaned, total scan time was 360 seconds. Coefficient R of functional connectivity between auditory and language-related cortex were calculated by SPM5 and REST software.Coefficient R among three groups were compared by SPSS13.0 software. There were significant difference in coefficient R of functional connectivity among three deaf groups between right secondary auditory cortex and right middle frontal gyrus, between right secondary auditory cortex and left inferior frontal gyrus(P<0.05). Coefficient R of functional connectivity of groupⅢaged from 24 to 48 months were lower than groupⅠandⅡaged from 0 to 24 months(24months included). There was no significant difference in coefficient R of functional connectivity between left auditory cortex and bilateral language-related cortex, between right primary auditory cortex and bilateral language-related cortex among three groups (P>0.05).Results:Auditory and language-related cortex were activated in vibra-tactile fMRI. Auditory cortex included primary (BA41), secondary auditory cortex (BA42,22). There was no significant difference in activated frequency of primary and secondary auditory cortex between deaf groups and control group. There was significant difference between deaf groups and control group in activated voxels of auditory cortex, in which deaf groups were more than control group(P<0.05). There was significant difference among three deaf groups in activated voxels of auditory cortex(P<0.05), in which GroupⅠandⅡwere less than groupⅢand no significant difference between groupⅠandⅡ(P>0.05). The size of Activated voxels in primary (BA41), secondary auditory cortex (BA42,22) were compared among three deaf groups. There was no significant difference among three groups in size of activated voxels of BA41 and BA42(P>0.05), however there was significant difference in size of activated voxels of BA22 among three deaf groups, in which GroupⅠandⅡwas less than groupⅢ(P<0.05). In vibra-tactile fMRI study, language-related cortex were activated. Language-related cortex included angular gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, middle temporal gyrus. There was significant difference in the size of activated voxels of language-related cortex between deaf groups and control group, in which GroupⅠ、ⅡandⅣwere less than groupⅢ(P<0.05). There was no significant difference in the size of activated voxels of language-related cortex among groupⅠ、ⅡandⅣ(P>0.05).12 patients who had received cochlear implantation were followed up half a years later. The life ability recovered to normal level in infants aged younger than 2 years old(24months included), but the life ability recovered to edge level in the ones aged older than 2 years old. These results were accordance with critical period of cerebrum's development and results of follow-up.Conclusion:Vibra-tactile fMRI can be used for auditory and language-related cortex in infants of different ages younger than 4 years old with profoundly congenital sensorineural hearing loss. Functional connectivity were decreased in groupⅢaged older than 2 years old between the left and right secondary auditory cortex, between right secondary auditory cortex and right middle frontal gyrus, between right secondary auditory cortex and left inferior frontal gyrus in in the ones aged older than 2 years old with profoundly congenital sensorineural hearing loss, which may result from function reorganization of auditory and language-related cortex in infants aged older than 2 years old.
引文
[1]Nagapoornima, PA, RS, et al. Universal hearing screening[J].Indian J Pediatr, 2007,74(6):545-549.
    [2]McFadden B, Pittman A. Effect of minimal hearing loss on children's ability to multitask in quiet and in noise[J].Lang Speech Hear Serv Sch,2008,39(3):342-351.
    [3]Reeh M, Kiese-Himmel C. Lexical outcomes in auditory closure in children with sensorineural hearing loss[J].Folia Phoniatr Logop,2007,59(2):65-73.
    [4]Borg E, Edquist G, Reinholdson AC, et al. Speech and language development in a population of Swedish hearing-impaired pre-school children, a cross-sectional study[J].Int J Pediatr Otorhinolaryngol,2007,71(7):1061-1077.
    [5]Blamey PJ, Sarant JZ, Paatsch LE, et al. Relationships among speech perception, production, language, hearing loss, and age in children with impaired hearing[J].J Speech Lang Hear Res,2001,44(2):264-285.
    [6]Bubbico L, Di Castelbianco FB, Tangucci M, et al. Early hearing detection and intervention in children with prelingual deafness, effects on language development[J]. Minerva Pediatr,2007,59(4):307-313.
    [7]Nikolopoulos TP, O'Donoghue GM, Archbold S. Age at implantation:its importance in pediatric cochlear implantation[J].Laryngoscope,1999,109(4):595-599.
    [8]Govaerts PJ, De Beukelaer C, Daemers K, et al.Outcome of cochlear implantation at different ages from 0 to 6 years[J].Otol Neurotol,2002,23(6):885-890.
    [9]Auer Jr ET, Bernstein LE, Sungkarat W, et al. Vibrotactile activation of the auditory cortices in deaf versus hearing adults[J]. Neuroreport,2007,18(7):645-648.
    [10]Anand A, Li Y, Wang Y. Activity and connectivity of brain mood regulating circuit in depression:a functional magnetic resonance study[J].Biological Psychiatry, 2005,57(10):1079-1088.
    [11]Tian LX, Jiang TZ, Wang YF, et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder[J].Neuroscience Letters,2006,400 (122):39-43.
    [12]Wang L, Zang YF, He Y, et al. Changes in hippocampal connectivity in t he early stages of Alzheimer's disease:evidence from resting state fMRI[J].Neuroimage, 2006,31 (2):496-504.
    [13]Liu Y, Yu CS, Liang M, et al. Whole brain functional connectivity in the early blind[J].Brain,2007,130(8):2085-2096.
    [14]Zimmerman-Phillips S, Robbins AM, Osberger MJ. Assessing cochlear implant benefit in very young children. Ann Otol Rhinol Laryngol Suppl,2000,185:42-43.
    [15]Parry DA, Booth T, Roland PS. Advantages of magnetic resonance imaging over computed tomography in preoperative evaluation of pediatric cochlear implant candidates[J]. Otol Neurotol,2005,26(5):976-982.
    [16]Gleeson TG, Lacy PD, Bresnihan M, et al. High resolution computed tomography and magnetic resonance imaging in the pre-operative assessment of cochlear implant patients[J]. J Laryngol Otol,2003,117(9):692-695.
    [17]Wilke M, Holland SK, Myseros JS, et al. Functional magnetic resonance imaging in pediatrics[J].Neuropediatrics,2003,34(5):225-233.
    [18]Dehaene-Lambertz G, DehaeneS, Hertz-Pannier L. Functional neuroimaging of speech perception in infants[J].Science,2002,298(5600):2013-2015.
    [19]Altman NR, Bernal B. Brain activation in sedated children:auditory and visual functional MR imaging[J].Radiology,2001,221(1):56-63.
    [20]Martin E, Joeri P, Loenneker T, et al. Visual processing in infants and children,using functional magnetic resonance imaging[J].Pediatr Res,1999, 46:135-140.
    [21]Martin E, Thiel T, Joeri P, et al.Effect of pentobarbital on visual processing in man[J].Hum Brain Mapp,2000,10(3):132-139.
    [22]Gobbele R, Schurmann M, Forss N, et al. Activation of the human posterior parietal and temporoparietal cortices during audiotactile interaction[J].Neuroimage, 2003,20(1):503-511.
    [23]Lutkenhoner B, Lammertmann C, Simoes C, et al. Magnetoencephalographic correlates of audiotactile interaction[J].Neuroimage,2002,15(3):509-522.
    [24]Foxe JJ, Wylie GR, Martinez A, et al. Auditory-somatosensory multisensory processing in auditory association cortex:an fMRI study[J].J Neurophysiol, 2002,88(1):540-543.
    [25]Foxe JJ, Morocz IA, Murray MM, et al. Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping[J].Brain Res Cogn Brain Res,2000,10(1-2):77-83.
    [26]Murray MM, Molholm S, Michel CM, et al. Grabbing your ear:rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment[J].Cereb Cortex,2005,15(7):963-974.
    [27]Kayser C, Petkov CI, Augath M, et al. Integration of touch and sound in auditory cortex[J].Neuron,2005,48(2):373-384.
    [28]Fu KM, Johnston TA, Shah AS, et al. Auditory cortical neurons respond to somatosensory stimulation[J].J Neurosci,2003,23(20):7510-7515.
    [29]Porro CA, Lui F, Facchin P, et al. Percept-related activity in the human somatosensory system:functional magnetic resonance imaging studies[J]. Magn Reson Imaging,2004,22(10):1539-1548.
    [30]Hauser PC, Dye MW, Boutla M, et al. Deafness and visual enumeration:not all aspects of attention are modified by deafness[J].Brain Res,2007,11:178-187.
    [31]Neville HJ, Lawson D.Attention to central and peripheral visual space in a movement detection task:an event-related potential and behavioral study. Ⅱ. Congenitally deaf adults[J].Brain Res,1987,405(2):268-283.
    [32]Vidyasagar TR. Possible plasticity in the rat superior colliculus[J].Nature,1978, 275(5676):140-141.
    [33]Levanen, V. Jousmaki and R. Hari.Vibration-induced auditory-cortex activation in a congenitally deaf adult[J].Current Biology,1998,8(15):869-872.
    [34]Tan LH, Feng CM, Fox PT, et al. An fMRI study with written Chinese[J]. Neuroreport,2001,12(1):83-88.
    [35]Weng X, Ding YS, Volkow ND. Imaging the functioning human brain[J]. Proc Natl Acad Sci U S A,1999,96(20):11073-11074.
    [36]Courtney SM, Petit L, Maisog JM, et al. An area specialized for spatial working memory in human frontal cortex[J].Science,1998,279(5355):1347-1351.
    [37]D'Esposito M, Detre JA, Alsop DC, et al. The neural basis of the central executive system of working memory[J].Nature,1995,378(6554):279-281.
    [38]于进超.语言前耳聋病人中国手语功能脑区的fMRI研究[D].天津:天津医科大学,2007:45-46.
    [39]薛永刚.正常中国人及喉癌术后病人发声重建中语言功能脑区的fMRI研究[D].天津:天津医科大学,2006,45-48.
    [40]Szaflarski JP, Schmithorst VJ, Altaye M, et al. A longitudinal functional magnetic resonance imaging study of language development in children 5 to 11 years old[J]. Ann Neurol,2006,59(5):796-807.
    [41]Szaflarski JP, Holland SK, Schmithorst VJ, et al. fMRI study of language lateralization in children and adults[J].Hum Brain Mapp,2006,27(3):202-212.
    [42]Jennifer Vannest, Prasanna R. Karunanayaka, et al, Language networks in children:Evidence from functional MRI studies[J].AJR Am J Roentgenol, 2009,192(5):1190-1196.
    [43]Szaflarski JP, Holland SK, Jacola LM, Lindsell C, et al.Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy[J]. Epilepsy Behav,2008,12(1):74-83.
    [44]Saltzman-Benaiah J, Scott K, Smith ML. Factors associated with atypical speech representation in children with intractable epilepsy[J].Neuropsychologia,2003, 41:1967-1974.
    [45]范晓颖,儿童脑的MRS/I和DTI初步应用研究[J].北京大学博士论文,2003.
    [46]Lee DS, Lee J S, Oh SH, et al. Cross-modal plasticity and cochlear implants. Nature,2001,409(6817):149-150.
    [47]Rauschecker JP. Compensatory plasticity and sensory substitution in the cerebral cortex[J].Trends Neurosci,1995,18(1):36-43.
    [48]Kanold PO. Subplate neurons:crucial regulators of cortical development and plasticity. J Neurobiol[J].Front Neuroanat,2009,3:16.
    [49]Charles Leclerc, Dave Saint-Amour, Marc E, etal. Brain functional reorganization in early blind humans revealed by auditory eventrelated potentials[J].Neuroreport, 2000,11(3):545-550.
    [50]Mesulam MM. Large scale neurocognitive networks and distributed processing for attention, language and memory[J].Annals of Neurology,1990,28(5):597-613.
    [51]Kral A, Tillein J. Brain plasticity under cochlear implant stimulation[J].Adv Otorhinolaryngol,2006,64:89-108.
    [52]Stoeckel MC, Weder B, Binkofski F, et al. A fronto-parietal circuit for tactile object discrimination:an event-related fMRI study[J].Neuroimage,2003,19(3): 1103-1114.
    [53]Hyo-Jeong Lee, etal. Cortical Activity at Rest Predicts Cochlear Implantation Outcome[J].Cerebral Cortex,2007,17(4):909-917.
    [54]Waltzman SB, Roland JT. Cochlear implantation in children younger than 12 months[J].Pediatrics,2005,116(4):487-493.
    [55]McConkey Robbins A, Koch DBNHL, Osberger MJ, et al. Effect of age at cochlear implantation on auditory skill development in infants and toddlers[J].Arch Otolaryngol Head Neck Surg,2004,130(5):570-574.
    [56]S. S. Hehar, FRCS, Thomas P. Nikolopoulos.Surgery and Functional Outcomes in Deaf Children Receiving Cochlear Implants Before Age 2 Years[J].Arch Otolaryngol Head Neck Surg,2002,128(1):11-14.
    [57]Lang S, Leistner S, Sandrieser P, et al. An assessment tool for analysing the early vocal development of young children with cochlear implant[J].Laryngorhinootologie, 2009,88(5):309-314.
    [58]Schwartz WJ, Smith CB, Davidsen L, et al. Metabolic mapping of functional activity in the hypothalamo-neurohyophysial system of the rat[J].Science,1979, 205(4407):723-725.
    [59]Biswal B, Yet kin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J].Magn Reson Med,1995,34 (4):537-541.
    [60]Zang YF, Jiang TZ, Lu YL, et al. Regional homogeneity approach to fMRI data analysis[J].Neuroimage,2004,22(1):394-400.
    [61]Cordes D, Haughton VM, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging[J].Am J Neuroradiol,2000, 21(9):1636-1644.
    [62]Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations[J].Neuroimage,1998,7 (2):119-132.
    [63]Hampson M, Peterson BS, Skudlarski P, et al. Detection of functional connectivity using temporal correlations in MR images[J].Hum Brain Mapp,2002,15 (4):247-262.
    [64]De Luca M, Beckmann CF, De Stefano N, et al. fMRI resting state networks define distinct modes of long distance interactions int he human brain[J].Neuroimage, 2006,29(4):1359-1367.
    [65]Fox MD, Corbetta M, Snyder AZ, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems[J].Proc Natl Acad Sci USA, 2006,103 (26):10046-10051.
    [66]Stein T, Moritz C, Quigley M, et al. Functional connectivity in the thalamus and hippocampus studied wit h functional MR imaging[J].Am J Neuroradiol,2000,21 (8):1397-1401.
    [67]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain:a network analysis of t he default mode hypothesis[J].Proc Natl Acad Sci USA,2003,100 (1):253-258.
    [68]Friston KJ, Frith CD, Liddle PF, et al. Functional connectivity:the principal-component analysis of large (PET) data sets[J].J Cereb Blood Flow Metab,1993,13 (1):5-14.
    [69]Jinhu Xiong, Parsons LM, Jia-Hong Gao, Interregional connectivity to primary motor cortex revealed using MRI resting state images[J].Human Brain Mapping, 1999,8(2-3):151-156.
    [70]Uddin LQ, Kelly AM, Biswal BB, et al. Network homogeneity reveals decreased integrity of default-mode network in ADHD[J].J Neurosci Methods,2008, 169(1):249-254.
    [71]Greicius M. Resting-state functional connectivity in neuropsychiatric disorders [J].Curr Opin Neurol,2008,21(4):424-430.
    [72]陈俊,刘波,刘岘.功能磁共振成像评价帕金森患者静息状态下脑功能连接[J].中国医学影像技术,2009,25(6),989-992.
    [73]Grady CL, McIntosh AR, Beig S, et al.Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease[J].J Neurosci,2003,23(3): 986-993.
    [74]Liu WC, Flax JF, Guise KG, et al. Functional connectivity of the sensorimotor area in naturally sleeping infants[J].Brain Res,2008,1223:42-49.
    [75]Ment LR, Peterson BS, Meltzer JA, et al. A functional magnetic resonance imaging study of the long-term influences of early indomethacin exposure on language processing in the brains of prematurely born children[J].Pediatrics, 2006,118(3):961-970.
    [76]Fukunaga M, Horovitz SG, van Gelderen P, et al.Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages[J].Magn Reson Imaging,2006,24(8):979-992.
    [77]Thomason ME, Chang CE, Glover GH, et al.Default-mode function and task-induced deactivation have overlapping brain substrates in children[J]. Neuroimage,2008,41(4):1493-503.
    [78]Fair DA, Cohen AL, Dosenbach NU, et al.The maturing architecture of the brain's default network[J].Proc Natl Acad Sci U S A,2008,105(10):4028-4032.
    [79]Michael D, Greicius, Vesa Kiviniemi. Persistent Default-Mode Network Connectivity During Light Sedation[J].Hum Brain Mapp,2008,29(7):839-847.
    [1]McFadden B, Pittman A. Effect of minimal hearing loss on children's ability to multitask in quiet and in noise[J].Lang Speech Hear Serv Sch,2008,39(3):342-351.
    [2]Reeh M, Kiese-Himmel C. Lexical outcomes in auditory closure in children with sensorineural hearing loss[J].Folia Phoniatr Logop,2007,59(2):65-73.
    [3]Borg E, Edquist G, Reinholdson AC, et al. Speech and language development in a population of Swedish hearing-impaired pre-school children, a cross-sectional study[J].Int J Pediatr Otorhinolaryngol,2007,71(7):1061-1077.
    [4]Blamey PJ, Sarant JZ, Paatsch LE, et al. Relationships among speech perception, production, language, hearing loss, and age in children with impaired hearing[J].J Speech Lang Hear Res,2001,44(2):264-285.
    [5]Bubbico L, Di Castelbianco FB, Tangucci M, et al. Early hearing detection and intervention in children with prelingual deafness, effects on language development[J]. Minerva Pediatr,2007,59(4):307-313.
    [6]Parry DA, Booth T, Roland PS. Advantages of magnetic resonance imaging over computed tomography in preoperative evaluation of pediatric cochlear implant candidates[J].Otol Neurotol,2005,26(5):976-982.
    [7]Gleeson TG, Lacy PD, Bresnihan M, et al. High resolution computed tomography and magnetic resonance imaging in the pre-operative assessment of cochlear implant patients[J].J Laryngol Otol,2003,117(9):692-695.
    [8]Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on bloodoxygenation[J].Proc Natl Acad SciUSA,1990,87(24):9868-9872.
    [9]Auer Jr ET, Bernstein LE, Sungkarat W, et al. Vibrotactile activation of the auditory cortices in deaf versus hearing adults[J].Neuroreport,2007,18(7):645-648.
    [10]Dehaene-Lambertz G,DehaeneS, Hertz-Pannier L. Functional neuroimaging of speech perception in infants[J].Science,2002,298(5600):2013-2015.
    [11]Martin E, Joeri P, Loenneker T, et al. Visual processing in infants and children,using functional magnetic resonance imaging[J].Pediatr Res,1999, 46:135-140.
    [12]Martin E, Thiel T, Joeri P, et al.Effect of pentobarbital on visual processing in man[J].Hum Brain Mapp,2000,10(3):132-139.
    [13]Klinke R, Hartmann R, Heid S, et al.Plastic changes in the auditory cortex of congenitally deaf cats following cochlear implantation[J].Audiol Neurootol,2001, 6(4):203-206.
    [14]Charles Leclerc, Dave Saint Amour, Marc E,et al.Brain functional reorganization in early blind humans revealed by auditory eventrelated potentials[J].Neuroreport, 2000,11(3):545-550.
    [15]Kral A, Tillein J, Heid S, Klinke R, et al. Cochlear implants:cortical plasticity in congenital deprivation[J].Prog Brain Res,2006,157:283-313.
    [16]Gizewski ER, Gasser T, de Greiff A, et al. Cross-modal plasticity for sensory and motor activation patterns in blind subjects[J].Neuroimage,2003,19(3):968-975.
    [17]Pillai JJ, Araque JM, Allison JD, et al. Functional MRI study of semantic and phonological language processing in bilingual subjects:preliminary findings[J]. Neurolmage,2003,19(3):565-576.
    [18]Tan LH, Feng CM, Fox PT, et al. An fMRI study with written Chinese[J]. Neuroreport,2001,12(1):83-88.
    [19]Weng X, Ding YS, Volkow ND. Imaging the functioning human brain[J].Proc Natl Acad Sci USA,1999,96(20):11073-11074.
    [20]Courtney SM, Petit L, Maisog JM, et al. An area specialized for spatial working memory in human frontal cortex[J].Science,1998,279(5355):1347-1351.
    [21]D'Esposito M, Detre JA, Alsop DC, et al. The neural basis of the central executive system of working memory[J].Nature,1995,378(6554):279-281.
    [22]于进超.语言前耳聋病人中国手语功能脑区的fMRI研究[D].天津:天津医科 大学,2007:45-46.
    [23]Lee HJ, Kang E, Oh SH, et al. Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children[J].Hear Res, 2005,203(1-2):2-9.
    [24]薛永刚.正常中国人及喉癌术后病人发声重建中语言功能脑区的fMRI研究[D].天津医科大学,2006,45-48.
    [25]Burton MW, Small SL, Blumstein SE. The role of segmentation in phonological processing:an fMRI investigation[J].Journal of cognitive neuroscience,2000, 12(4):679-690.
    [26]李恩中,韩璎.语言与音乐刺激下脑功能活动的MR功能成像研究[J].中华放射学杂志,1999,33:311-315.
    [27]Szaflarski JP, Schmithorst VJ, Altaye M, et al. A longitudinal functional magnetic resonance imaging study of language development in children 5 to 11 years old[J]. Ann Neurol,2006,59(5):796-807.
    [28]Szaflarski JP, Holland SK, Schmithorst VJ, et al. fMRI study of language lateralization in children and adults[J].Hum Brain Mapp,2006,27(3):202-212.
    [29]Jennifer Vannest, Prasanna R. Karunanayaka, et al, Language networks in children:Evidence from functional MRI studies[J].AJR Am J Roentgenol,2009, 192(5):1190-1196.
    [30]Kral A, Tillein J. Brain plasticity under cochlear implant stimulation[J].Adv Otorhinolaryngol,2006,64:89-108.
    [31]Gordon K, Papsin B, Harrison R. Auditory brain stem and midBnHLrain development after cochlear implantation in children[J].Ann Otol Rhinol Laryngol Suppl,2002,189:32-37.
    [32]Hernandez, A, Li, P,& MacWhinney, B. The emergence of competing modules in bilingualism[J].Trends Cogn Sci,2005,9(5):220-225.
    [33]Schmithorst VJ, Holland SK, Ret J, et al. Cortical reorganization in children with unilateral sensorineural hearing loss[J].Neuroreport,2005,16(5):463-467.
    [34]Tan LH, Feng CM, Fox PT,et al. An fMRI study with written Chinese[J]. Neuroreport,2001,12(1):83-88.
    [35]Thai-Van H, Micheyl C, Norena A,et al.Local improvement in auditory frequency discrimination is associated with hearing-loss slope in subjects with cochlear damage[J].Brain,2002,125(3):524-537.
    [36]Thai-Van H, Micheyl C, Morre BC, et al. Enhanced frequency discrimination near hearing loss cut-off:a consequence of central auditory plasticity induced by cochlear damage[J].Brain,2003,126(10):2235-2245.
    [37]Lambertz N, Gizewski ER, de Greiff A, et al. Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss[J].Brain Res Cogn Brain Res,2005, 25(3):884-890.
    [38]Petitto LA, Marentette P F. Babbling in the manual mode:evidence for the ontogeny of language[J].Science,1991,251(5000):1493-1496.
    [39]Petitto L A, Katerelos M, Levy B G, et al. Bilingual signed and spoken language acquisition from birth:implications for the mechanisms underlying early bilingual language acquisition[J].J Child Lang,2001,28(2):453-496.
    [40]Lambertz N, Gizewski ER, de Greiff A, et al. Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss[J].Brain Res Cogn Brain Res,2005, 25(3):884-890.
    [41]Finney EM, Fine I, Dobkins KR. Visual stimuli activate auditory cortex in the deaf[J].Nat Neurosci,2001,4(12):1171-1173.
    [42]Neville HJ, Bavelier D, Corina DP, et al. Cerebral organization for language in deaf and hearing subjects:Biological constraints and effects of experience[J]. Proceeding of National Academic Science,1998,95(3):922-929.
    [43]Petitto LA, Zatorre RJ, Gauna K, et al. Speech-like cerebral activity in profoundly deaf people processing signed languages:implications for the neural basis of human language[J].Proc Natl Acad Sci U S A,2000,97(25):13961-13966.
    [44]Levanen, V. Jousmaki and R. Hari.Vibration-induced auditory-cortex activation in a congenitally deaf adult[J].Current Biology,1998,8(15):869-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700