用户名: 密码: 验证码:
非爆破开挖再造采矿环境综合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在新疆喀拉通克铜镍矿开展“开采环境再造深孔诱导崩矿充填采矿法”工业试验的基础上,针对采用下向进路胶结充填技术构筑其人工条柱生产效率低、回采工艺复杂和充填接项困难等问题,以致制约到采场内高效率的大量落矿的实施时间,提出利用反井钻机开挖在矿体内形成开采环境群柱替代人工条柱在回采矿段周围完成一个封闭的人工结构,其创新点是它打破了反井钻机一般用于施工矿山地下暗井、溜井、矿仓等导井工程的固有观念,有利于促进采矿技术的进步和发展。由于改变了传统的凿岩爆破工艺,实现了机械化掘进,因而大大减轻了工人的劳动强度,使构筑的效率提高,并且安全事故少,对爆破作业的粉尘污染问题也可以得到控制。这其中,矿段周围人工结构所选择的再造方式直接影响着生产安全和开采成本,并且考虑到地下岩体的特性、地质构造环境和施工过程的复杂性以及不确定性,必须对人工再造群柱在随矿体开采过程中的稳定性进行分析。本论文就此开展了深入的研究,主要完成了以下工作:
     (1)针对岩体的可掘进性上,本文采用了在进行群柱围岩稳定性分级的基础上,对每个围岩等级的反井钻机工作条件予以划定,并得出:在特富矿体中,反井钻机工作条件等级为Ⅱ。级,工作条件-般;在富矿体中,反井钻机工作条件等级为Ⅲc级,工作条件差。
     (2)基于试验采场的情况,提出了非爆破开采环境再造技术的具体实施方案,并根据实施方案对其中开展的各项关键技术的应用进行了详细地阐述。
     (3)运用MIDAS/GTS和FLAC3D两种数值软件的耦合完成了开采环境群柱的稳定性研究,并通过方案优选得出群柱沿矿体倾向布置,每排单根或两根依次交替排列至矿体与围岩的交界处,数量为10根(每根直径2m)的情况下,群柱既能维持整体的稳定又能够高效率的构筑。
Based on the industrial test of the reconstruction of mined-out environment and continuous caving method with subsequent backfilling which has been carried out at Xinjiang Kalatongke copper-nickel mine,and aiming at addressing several difficulties(e.g. low productivity and complex mining process)when using underhand route cemented backfilling technology to build artificial strip columns in roof-contacted filling which will cause restriction to the implement time of efficient large drop mine in mining pit. A method has been put forward that we can utilise raise boring machine excavating in the ore body to construct mining environmental group columns to replace artifical strip columns,and eventually complete a closed artificial structure around the mining section. The innovation of this method is that it breaks conventional concepts that raise boring machine is generally used for the construction of underground mine shaft, chute, ore bin,etc.,thereby promoting the progression and advancement of mining technology. Because of the changes from traditional drilling and blasting techniques to mechanical tunneling techniques, the problems of dust pollution casued by blasting can be successfully controlled.And meanwhile,the labor intensity is highly alleviated, the efficiency of building is greatly improved and accidents are dramatically reduced.In the process of this method,the mode of artificial structure reconstruction selected will directly influences the safety of production and mining costs. Taking into Consideration the complexity and uncertainty of underground rock properties, geological environment and the construction process,the stability of artifical reconstruction group columns must be analysed along the process of mining.In this paper,further researches have been generally carrid out as follows:
     (1) Aiming at the digging property of rock, this paper delimited the working condition of raise boring in each rock grade based on the classification of surrounding rock stability of group pillars. Result demonstrates that in extroadinary bonanza,the working condition is average,which the grade of raise boring machine working condition is levelⅡB; in bonanza, the working condition is poor,which the grade of raise boring machine working condition is levelⅢC.
     (2)Based on the situation of testing topes,the concrete implementation plan of non-blasting re-constitutional mining environment technology was proposed.And according to the implementation,the application of each key technology has been described in detail.
     (3)The research of stability of mining environment group columns was completed though the numerical software MIDAS/GTS coupling with FLAC3D and obtained that group columns arranged along the orebody tendency through scheme optimization:in the condition of 10 group pillars(per root diameter of 2m)arranged in one or two rows in turn, can the stope structure maintain the stability of the whole.
引文
[1]中南大学资源与安全工程学院.松软破碎矿床安全高效开采综合技术研究2008年中期报告[R].长沙:2008
    [2]ZHU He-ling, ZHOU Ke-ping, XIAO xiong. Control and simulation of the ground pressure evolutional process based on the reconstruction of mined-out environment& continuous mining method. The 3rd International Symposium on Modern Mining& Safety Technology Proceedings, Beijing:Coal Industry Publishing House,2008:117-122
    [3]古德生,李夕兵等著.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
    [4]周科平,高峰,古德生.采矿环境再造与矿业发展新思路[J].中国矿业,2007,16(4):34-36.
    [5]周科平,朱和玲,肖雄,陈庆发.采矿环境再造连续开采地压演化过程控制与仿真[J].中南大学学报(自然科学版).2008,39(3):417-422
    [6]胡建华,周科平,陈庆发,古德生.充填体下连续开采诱导顶板失稳演化时变分析[J].广西大学学报(自然科学版),2008.33(1):96-99
    [7]胡建华,苏家红,周科平,张世超,古德生.诱导顶板崩落时变力学模型的建立与应用[J].中南大学学报(自然科学版),2007,38(6):1211-1218
    [8]胡建华,周科平,李夕兵.顶板诱导崩落及应用的数值分析[J].矿山压力与顶板管理,2005,22(3):68-70
    [9]朱和玲.基于开采环境再造人工结构的稳定性与可靠度研究[硕士学位论文].长沙:中南大学,2008
    [10]夏明.软破矿体开采环境再造空间力学响应模型试验与数值模拟研究[硕士学位论文].长沙:中南大学,2009
    [11]何满朝,李春华,王树仁.大断面软岩硐室开挖非线性力学特性数值模拟研究[J].岩土工程学报,2002,24(4):483-486.
    [12]LIU J, FENG X T, DING X L, et al. Stability assessment of the Three-Dorges Dam foundation, China, using physical and numerical modeling-Part II numerical modeling[J]. International Journal of Rock Mechanics and Ming Sciences,2003,40(5):633-652
    [13]孙红月,尚岳全,张春生.大型地下洞室围岩稳定性数值模拟分析[J].浙江大学学报(工学版),2004,38(1):70-73.
    [14]Keping Zhou, Ming Xia. Numerical modelling for designing tunnel support in heavily jointed rock[C].2009 International Conference on Electronic Computer Technology. USA:IEEE,2009:471-474
    [15]Keping Zhou, Zezhou Liu, Xiong Xiao. Numerical analysis of stope stability based on couping of MIDAS/GTS and FLAC3D[C]. The 2nd International Conference on Computer Engineering and Technology, Chengdu:IEEE,2010: 182-186
    [16]吴立,张时忠,林峰.现代破岩方法综述[J].探矿工程,2002,(2):49~51.
    [17]王泗代.非爆破破岩工艺在国外的应用[J].有色金属设计,2000,27(4):40-44.
    [18]龙正兴.深圳地铁隧道施工的膨胀剂非爆破开挖方案[J].中国市政工程,2009,4.
    [19]燕太祥.日本的一种非爆破施工新方法[J].地下空间,1989,2.
    [20]陈宝心,刘海卫,刘伟.钻孔劈裂器破岩技术及其应用[J].采矿技术,2006,6(4):85-87.
    [21]陈宝心,白瑛.钻孔劈裂器在隧道掘进中的应用[J].施工技术,2006,6:87-90.
    [22]尹俊涛,尚彦军,傅冰骏.TBM掘进技术发展及有关工程地质问题分析和对策[J].工程地质学报,2005,13(3):389-396.
    [23]刘冀山,肖晓春,杨洪杰.超长隧洞TBM施工关键技术研究[J].现代隧道技术,2005,42(4):37-43.
    [24]杜士斌.开敞式TBM在大伙房输水隧洞工程中的应用,2010,41(1):48-53.
    [25]许旭.天井钻机在大孔径竖井施工中的应用[J].隧道/地下工程,1989,2.
    [26]刘俊祥.TYZ-1000mm天井钻机在银山矿的应用[J].矿业快报,2005,428(2):43-44.
    [27]张镜剑,傅冰骏.隧道掘进机在我国应用的进展[J].岩石力学与工程学报,2007,26(2).
    [28]姚宝魁,刘竹山,李春元等.矿山地下开采稳定性研究[M].北京:中国科学技术出版社,1994.
    [29]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [30]郭兰波.边界元法及其岩体力学中的应力[M].徐州:中国矿业大学出版社,1991.
    [31]嵇醒,臧跃明.边界元法进展及通用程序[M].上海:同济大学出版社,1997
    [32]Itasa Consulting Group, Ins. UDEC Version 1.8,1992.
    [33]漆太岳.大变形巷道锚杆与围岩的相互作用及数值模拟[博士学位论文].徐州:中国矿业大学,2001
    [34]李景龙.大型地下洞室群工程稳定性风险评估系统及其应用研究[博士学位论文].济南:山东大学,2008
    [35]腾海文,王涛,霍豫慧等.基于FLAC3D的沈阳地铁隧道开挖三维稳定性分析[J].北京工业大学学报,2009,35(8):1074-1079.
    [36]赵桢.应用FLAC3D分析预应力高强度混凝土管桩的承载特性研究[硕士学位论文].南昌:南昌大学,2009
    [37]Hebib Alehossein, Brett A. Poulsen. Stress analysis of longwall top coal caving[J]. International Journal of Rock Mechanics and Ming Sciences,2009, 37:doi:10.1016/j.ijrmms.2009.07.004
    [38]Yao-She Xie, Yang-Sheng Zhao. Numerical simulation of the top caving process using the discrete element method[J]. International Journal of Rock Mechanics and Ming Sciences,2009,46(6):983-991
    [39]于学馥,张玉卓,葛世高.采矿岩石力学新论[M].上海:上海知识出版社,1992.
    [40]于学馥,于加,徐俊.岩石记忆与开挖理论[M].北京:冶金工业出版社,1993.
    [41]于学馥,于加,徐俊.岩石力学新概念与开挖结构优化设计[M].北京:科学出版社,1995.
    [42]X.F. Yu, S.G. Ge, J. Yu, et al. Rock memory and intelligent computing of the excavation process in rock [J]. International Journal of Rock Mechanics and Ming Sciences,2009,37(3):549-554.
    [43]钱雪忠,刘金国.不稳定地层条件反井导孔钻进主要技术问题及解决方法[J].建井技术,2000,21(1):33-34.
    [44]苑忠国.采掘机械[M].北京:冶金工业出版社,2009.
    [45]张铸.TBM工作原理及设备选型[J].科技情报开发与经济,2003,17(9):264-265.
    [46]李士斌,艾池,孙茂凤.牙轮钻头可钻性级值的确定方法[J].大庆石油学院学报,1 999,23(3):89-90.
    [47]李春明,彭耀荣.TBM施工隧洞围岩分类方法的探讨[J].中外公路,2006,26(3):235-237.
    [48]吴煜宇,吴湘滨,尹俊涛.关于TBM施工隧洞围岩分类方法的研究[J].水文地质工程地质,2006,(5):120-122.
    [49]何发亮,谷明成,王石春.TBM施工隧道围岩分级方法研究[J].岩石力学与工程学报,2002,21(9):1350-1354.
    [50]任洋.高地应力公路隧道施工阶段围岩分级方法研究及应用[硕士学位论文].成都:成都理工大学,2009
    [51]Barton, N. Some new Q-value correlations to assist in site characterization and tunnel design.International Journal of rock Mechanics&Mining Sciences 39, 2002. p.185-216.
    [52]康小兵,许模,陈旭.岩体质量Q系统分类法及其应用[J].中国地质灾害与 防治学报,2008,19(4):91-95.
    [53]Barton, N. Rencent experiences with the Q-system of tunnel support design.Proc.Symposium on Exploration for Rock Engineering, Johannesburg, Volume 1,1976, pages 107-117.
    [54]武士杰.反井钻机镐形镶齿滚刀破岩效果的研究[硕士学位论文].北京:煤炭科学研究总院,2007
    [55]段德虎.83RM-HE反井钻机的应用[J].建井技术,1988(2):15-16
    [56]S. Kramadibrata, M. A. Rai, S. Darmawan, and Ⅰ.Arif.Assessment of the performance ofraise boring 73 RM-DC[J]. Department of Mining Engineering, Institut Teknologi Bandung, Indonesia,2000
    [57]N.KLEUTERS, WIRTH GmbH, Erkelenz, Germany. Mechanized Construction of shafts inthe mining and construction industry[J]. South African Institute of Mining and Metallurgy,2000:605-610
    [58]Sadviken. Raise Boring Heads[M]. Sandvik Mining and Construction ToolsAB, Sweden,2003
    [59]Atlas Copco. Mexico's Longest Raise at fresnillo mine[J]. Project report 1998
    [60]刘志强.反井钻机技术装备及发展[J].煤炭科学技术,2001(4):10-12
    [61]尹复辰.国内外天井钻机现状与展望[J].矿山机械,1995,12.
    [62]北京建井研究所.LM-120反井钻机鉴定文件汇集[M].煤炭科学研究总院建井所,江苏省苏南煤矿机械厂,开滦矿务局,1987.3
    [63]刘志强,王强.强力反井钻机的研制及应用[J].煤炭科学技术,2005(4)51-54
    [64]刘志强,甘文鸿.反井钻机技术与地下工程开发[J].地下空间,1999,19(5):425-428
    [65]刘福生,王红霞,方俊.反井钻机施工斜井、竖井技术介绍[J].水电站设计,2010,26(2):88-90
    [66]肖礼忠,仵涛.反井钻机在终南山公路隧道竖井中的应用[J].筑路机械与施工机械化,2008(5):20-24
    [67]李格,谭祁阳.AT2000型天井钻机[J].长沙矿山院季刊,1986,6(3):12-20
    [68]齐小勇.秦岭终南山公路隧道通风竖井的施工技术与数值模拟[硕士学位论文].西安:长安大学,2008
    [69]魏强.混凝土灌注桩抗拔承载特性研究[硕士学位论文].北京:中国地质大学北京,2006
    [70]廖秋林,曾钱帮,刘彤.基于ANSYS平台复杂地质体FLAC3D模型的自动生成[J].岩石力学与工程学报,2005,24(6):1010-1013.
    [71]胡斌,张倬元,黄润秋.FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391.
    [72]侯恩科,吴立新,李建民.三维地学模拟与数值模拟的耦合方法研究[J].煤炭学报,2002,27(4):388-392.
    [73]罗周全,吴亚斌,刘晓明,等.基于SURPAC的复杂地质体FLAC3D模型生成技术[J].岩土力学,2008,29(5):1334-1338.
    [74]林杭,曹平,李江腾,等.基于SURPAC的FLAC3D三维模型自动构建[J].中国矿业大学学报,2008,37(3):339-342.
    [75]丁祖德.连供隧道动态施工力学效应分析及优化[硕士学位论文].长沙:长沙理工大学,2008
    [76]王树仁,张海清,慎乃齐.下伏采空区桥隧工程变形及受力响应特征分析[J].岩石力学与工程学报,2009,28(6):1144-1151
    [77]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [78]黄福祥.跨海隧道自立式通风竖井整体稳定分析与施工问题探讨[硕士学位论文].上海:同济大学,2007
    [79]牛海成,李壮文,孙青岭.钢筋混凝土整体式有限元分析SIGY参数的研究[C].第16届全国结构工程学术会议论文集,2007:114-118
    [80]王连捷.地应力测量在采矿工程中的应用[M].北京:地震出版社,1994
    [81]周科平,朱和玲,肖雄,刘朝辉,董国庆.基于开采环境再造深孔诱导崩矿方案优化研究.湖南科技大学学报(自然科学版).2008,23(3):3-9
    [82]陈育明,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700