用户名: 密码: 验证码:
直线往复磁力驱动器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线往复运动的应用范围非常广泛。在化工、制药、生物制品、食品加工等相关领域,直线往复运动的密封是十分重要的问题,研究具有可靠密封性能的往复运动传动理论与技术是十分必要的。
     为此,本文研究一种直线往复运动磁力驱动器,以实现具有屏蔽密封性能的直线往复运动。
     在大量查阅国内外相关文献的基础上,本文根据等效磁荷理论,利用磁场力可以跨越一定的空间距离发生作用的特点,研究建立了磁力传动直线往复运动的数学模型,设计、制造了一种同轴式直线往复运动磁力驱动器及其试验台。利用试验台测量了磁力驱动器传递的轴向力,验证了磁力传动直线往复运动的数学模型的正确性,分析了驱动器磁路几何参数和永磁材料性能指标对传递轴向力的影响。
     在此基础上,根据拉格朗日方程的原理,建立了磁力传动直线往复运动系统的动力学模型,通过实验测量,分析了磁力驱动器的动态工作特性,并进行了相应的敏度分析。
     本文的理论和实验工作表明,研究的同轴式磁力驱动器可以实现具有屏蔽密封性能的直线往复运动,对解决直线往复运动的密封问题和提高直线往复运动的工作性能具有重要意义。
The linear-reciprocating motion have already been widely used in various fields for industry, high performance sealing is required between the reciprocating moments and the shell in the chemical industry, biological products, pharmaceutical, food processing, with less friction loss caused by seal. Seal performance will directly affect the performance of the machine, such as the potential for leakage implies that the measurement precision of metering pumps will be reduced, and the accuracy of the transportation of chemical reagents, analysis of fluid and additives will be affected. Leakage can impact on the quality of products and chemical analysis. In addition, the leakage may also cause pollution on the production and the environment, and the loss of friction will reduce the efficiency of refrigeration compressor, affect the dynamic performance of the hydraulic system further.
     The form of sealed in linear-reciprocating including hydraulic seals, piston rings, pneumatic Seals, and flexible packing seals, and so on.
     A new sealing system, the pressure balanced shaft seal, with substantial extended limits of capacity is presented. The sealing system has been developed because of the close cooperation between the Institut fuer Maschinenelemente of the University of Stuttgart, Germany and the Merkel Freudenberg Fluidtechnic, Hamburg, Germany.
     In 1960’s, ferrofluid sealing technique is used widely. It has many advantages because there is only sealing between magnetizer and liquid contact in sealed parts.
     Based on sealing parts of reciprocating motion, the research has been concentrated on two aspects in domestic and overseas. One is to design diversified sealing components of section shape in order to increase grads of oil film pressure between sliding surface and sealing part to control leak and friction using polyurethane or polytetrafluroethylene based on the theory of elastohydrodynamic lubrication. The other is to research ferrofluid sealing.
     However, we can be faced with some problems in two jobs. Firstly, un-slick surface touch, dynamic lubricate instability and oil boxed up produced by air bubble brought in reciprocating can result in oil film between sealing part and sliding surface became static press oil film so as to leak and large friction. Secondly, reciprocating of parts can arise sealed press film of magnetic fluid distortion and to be taken to edge so as to invalidation of sealing. Otherwise, reciprocating sealing of fluid dynamic press can result in stretch sealing cell crushed, daggle pressure and leak of cold boot and other problems.
     The sudden invalidation of sealing component and sequent high cost can result in dead disaster. It is critical to deal with poisonous or flow pump of radioactive fluid instead of repair of chemical plant, petrochemical plant and nuclear power plant and high fee of temporary stopped machine. Under the occasions of poisonous element emitted, the invalidation of sealing directly scared human’s healthy and life.
     So research on reciprocating theory and technique of reliable seal capability is very necessary.
     Magnetic drive is the theory based on modern magnetism and a new technique of realizing force and torsion or power transformation without touch using permanent magnetic material or magnetic force produced by electromagnetism. The equipment of realizing the technique is called magnetic drive.
     The essential difference of magnetic drive and mechanical drive lies in work clearance using magnetic field through magnetic circle, transferred force by thin wall of isolated set and torsion. For example, magnetic driver pump and stirred bed reactor cancelled off traditional mechanical driver pump after adapting magnetic drive sealing. Dynamic seal touched equipment Axial adapted of bed became static so as to eliminate leak produced by sealing place of transferring axis radically and settle run, emit, drop, leak lying in pump and bed and mechanical heat and friction and other problems. It provided good conditions for diversity costly medium in order to safe and reliable transformation and avoid toxicity produced by stirred reaction, flammability, explosion and corruption.
     Magnetic drive use torsional moment more than axial force. The paper uses magnetic drive to produce axial force and transfer linear-reciprocating such as soft link in order to realize screen seal of linear-reciprocating.
     We research and manufacture tow mechanical structures with magnetic field using the characteristic of which magnetic force can span spatial distance working based on the theory of equivalent magnetic nucleus and adapt high capability rare earth permanent material for reciprocating transfer. We use paramagnetism material to separate the two mechanical structures. Because paramagnetism material doesn’t impact on magnetic field, magnetic line can cross magnetic field of paramagnetism material and the other mechanical structure to work out and produce magnetic force moving and tracking and realize to transfer reciprocating force between two parts without touch when one mechanical structure is reciprocating. So we can use paramagnetism material between two floating mechanical structure to build structure such as pump shell or jar and seal driven machine completely in order to realize screen sealing of driven machine.
     There are two methods for analysis and calculating magnetic force which are the view of molecule current and equivalent magnetic charge. Now the theory of equivalent magnetic charge to calculate magnetic is usually used. The paper used it to research and build mathematical model.
     We design and manufacture magnetic drive and realize the core of linear-reciprocating which is to build the relationship of axial force transferred, intension of magnetic field and parameters.
     The paper research the contents as following on the basis of reading a lot of related references in domestic and overseas according to the development of magnetic drive and application condition:
     1. We research and build mathematical model of linear-reciprocating system of transferring magnetic using the characteristic of which magnetic force can span spatial distance working based on the theory of equivalent magnetic nucleus and define the relationship of geometry parameters of magnetic circuitry, magnetic material capability and axial force transferred by magnetic field.
     2. We build dynamic model of linear-reciprocating system of transferring magnetic based on the theory of Lagrange equation.
     3. We design and manufacture a magnetic drive of axial linear-reciprocating and experiment flat using rare earth material.
     4. We measured axial force transferred by magnetic drive on experiment flat and tested correctness of mathematics model of linear-reciprocating. We analysis geometry parameters of magnetic drive and capability target of permanent magnetic material impacting on axial force transferred.
     5. Based on experiment measurement, we analysis dynamic work capability of magnetic drive and according sensitivity. It can supply theory for choosing parameters of magnetic loop in practice.
     The theory and experiment shows in the paper that coaxial magnetic drive researched can realize sealing screen linear-reciprocating. It is the most important to settle the problem of sealing linear-reciprocating and improve work capability of linear-reciprocating.
引文
[1] Kaneta M, Todoroki H, Nishikawa H, Kanzaki Y, Kawahara Y. Tribology of flexible seals for reciprocating motion[J],JOURNAL OF TRIBOLOGYTRANS ACTIONS OF THE ASME,2000,122 (4):787-795.
    [2] Bowden F P,Tabor D,陈绍澄.固体的摩擦与润滑[M].北京:机械工业出版社,1982.
    [3]马科斯·澳尔波雷希,维纳·哈斯,雷克玲,格德·维斯特哈根.高效径向密封元件的开发[J].机械工程学报,1999,1:69-72.
    [4]裴宁,梁志华.磁流体密封原理与应用[M].真空,2001,2(1):46-48.
    [5]邹继斌,陆永平.磁性流体密封原理与设计[M].北京:国防工业出版社,2000.
    [6] (德)海因茨K.米勒,(英)伯纳德S.纳乌著,程传庆译.流体密封技术-原理与应用[M],北京:机械工业出版社,2002.
    [7] Mow V C, Kuei S C, Lai W M , et al. Biphasic creep and stress relaxation of particular cartilage in compression: theory and experiments[J]. Journal of Biomechanical Engineering 1980(102):73-84.
    [8]李德才,袁祖贻,蒋永莉,刘丁雷.磁性液体往复运动密封耐压公式的理论研究[J].机械工程学报,1998,2:15-20.
    [9]李希宁,李国坤,赵克中等.全国流体密封学术会议论文集[C].北京,1986.
    [10]郭鸿震等.真空系统设计与计算[M].北京:冶金工业出版社,1986.
    [11]李国坤,赵克中,张兴全等.稀土钴磁力传动的静磁能理论及其应用[C]//第八届国际稀土钴磁铁及其应用会议论文集.1985.
    [12]谭庆昌,刘明洁,孟慧琴,修世超.永磁向心轴承承载能力与刚度的计算[J].摩擦学学报,1994,14(4): 337-344 .
    [13]王德喜.同轴屏蔽式永磁磁力传动器的研究[D].沈阳,2000.
    [14]谭庆昌,孟慧琴,辛镝等.永磁轴承磁化方向的研究[J].兵工学报,1993,5(2):59-63.
    [15]李国栋.当代磁学[M].中国科学技术大学出版社,1999.
    [16]戴道生,钱昆明.铁磁学[M],上册.科学出版社,1998.
    [17] Manaf A,Bucky RA,Davis HA.Microstructure Analysis of Nanocrystalline Fe-Nd-B Ribbons with Enhanced Hard Magnetic Properties[J].J. Magn.Mater,1993,128(3): 307-312.
    [18]张三慧.电磁学[M],第二版.清华大学出版社,1999
    [19]赵凯华,陈熙谋.电磁学[M],下册.北京:人民教育出版社,1978
    [20]李文彬等,磁力应用工程[M].兵器工业出版社. 1991.
    [21]赵国涛,谭庆昌,李为.直线往复运动磁力传动[J].机械工程学报,2007,43(1):100-104.
    [22]谭庆昌,李为,辛镝等.平面永磁联轴器传递力矩的研究[J].机械工程学报,1993,6: 86-90.
    [23] Zhrgang Wang, Kuniaki Dohda, Yoshio Haruyama. Effects of entraining velocity of lubricant and sliding velocity on friction behavior in stainless steel sheet rolling[J]. Wear,2006, 260(3): 249-257.
    [24]张锁龙.釜用磁力传动装置的结构改进[J].石油化工设备技术,1999,20(5):27-28.
    [25]李宋晶,聂伯勋,徐本洲.新型磁流体密封圈的仿真及实验研究[J].机械工程学报,2003,39(8):61-64.
    [26]李国坤,赵克中.科技参考资料[M].甘肃:甘肃省科学院情报所,1983.4.
    [27]杨建慧,周远等.新型节能制冷压缩机[EB/OL].//中国科学院低温技术实验中心,中国制冷与暖通空调信息网.http://www.chinaarhvac.com.
    [28]陈茂庆.磁力传动泵的设计原理及磁性能的试验验证[J].石油化工设备,1995,24(6): 26-29.
    [29]王会宗等.磁性材料及其应用[M].北京:国防工业出版社,1989.
    [30]辛镝,谭庆昌,李玉潭.端面密封的阻尼轴承动力特性分析[J].吉林工业大学学报,1996,26(3):87-90 .
    [31]宛德福,马兴隆.磁性物理学[M].北京:电子工业出版社,1999.
    [32]周寿增,董清飞.超强永磁体——稀土铁系永磁材料[M].北京:冶金工业出版社,1999.
    [33]高联辉.磁路和铁磁器件[M].北京:高等教育出版社,1983.
    [34]黑云仪表厂译,磁粉离合器与制动器(译文集)[M].北京:国防工业出版社,1978.
    [35]修世超,谭庆昌,孟慧琴.同轴环形磁铁磁作用力计算的等效磁荷法[J].黄金学报,1995,14(3):359-363.
    [36] Tan Qingchang,Xin Di,Li Wei.Study on transmitting torque and synchronism of magnet couplings[J].Proc Instn Mech Part C:Journal of Mechanical Engineering Science.1992, 206(10):381-384.
    [37]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社出版,1985.
    [38]唐伯筠,谭庆昌,常颖.铁谱仪高梯度磁场分离过程的研究[J].农业工程学报, 1998,1:60-64.
    [39]秦少军.磁力传动初探[J].宝鸡文理学院学报(自然科学版),1998,18(1):60-62.
    [40]赵家文.磁力传动联轴器及其应用[J].机械设计与制造工程,2002(02):74-75+77.
    [41]王玉良,王新昱.永磁联轴器传动力矩的一种新算法[J].机械传动,2004,28(3): 16-17+5.
    [42]王玉良,邓子龙,赵章荣.国外磁传动无密封泵技术发展概况[J].石油机械,2003,31(4): 52-54.
    [43]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1999.
    [44]戴光明,夏成明,张兴全,杨震春,李俊文,郑向平,付朝辉,董威.磁力传动技术的应用[J].真空与低温,1996,2(02):90-98.
    [45]谭庆昌,唐伯筠,辛镝等.上置磁场铁谱原理的研究[J].仪器仪表学报, 1992(8): 272-275.
    [46]李德才,袁祖贻,流体密封的研究[J].北方交通大学学报,1995,19(2)
    [47]谭庆昌,修世超等.永磁向心轴承承载力与刚度的计算[J].摩擦学学报, 1994(10):337-343.
    [48]仪群,王基民.组合式自吸离心泵的设计与研究[J].流体机械,1993,27(3):14-17.
    [49]陈俊峰.永磁电机[M],上册.北京:机械工业出版社,1982.
    [50]陈村东,薛宽荣,屠可可.磁力传动泵的涡流问题[J].石油化工设备技术,2003,24(2): 33-36+46.
    [51]姚黎明.磁传动泵—喷射泵抽油系统的应用[J].石油矿场机械,2004,33(S1):66-69.
    [52]陈村东,魏其顺,徐大为.磁力泵涡流损失比率的探讨[J].水泵技术,2000,5:27-29.
    [53]施卫东,魏东.磁力泵中磁力驱动装置的设计[J].四川工业学院学报,1999,18(4):5-9.
    [54]王传礼,丁凡,张凯军,永磁型无轴承电机的设计与控制研究[J].系统仿真学报,2003,15(3):379-381.
    [55]年珩,贺益康.感应型无轴承电机磁悬浮力解析模型及其反馈控制[J].中国电机工程学报,2003,23(11):139-144.
    [56]周媛,贺益康,年珩.永磁型无轴承电机的设计与控制研究[J].浙江大学学报(工学版), 2006,40(1):14-19.
    [57]戴政.磁悬浮技术综述[J].中小型电机.2000,27(2):24-26.
    [58]安宗文,黄建龙,吴旭东,王煜.一种用于真空系统磁力传动器的设计与应用[J].甘肃科技,2003,19(4):20-21.
    [59]李秀菊.同轴式磁力传动器结构参数的计算研究[J].辽阳石油化工高等专科学校学报2001,07(2): 38-41+54.
    [60]李志鹏.磁力传动泵的能量损失分析与优化设计数学模型[J].水泵技术,1997,6: 17-20.
    [61] D.Weiman,H.J.weimann. Application of rare earth magnets to coxial coupingness. At third international workshop on rare cobalt permanent magnets and their applications[C].California:1978.
    [62] K. Dohda, Z. Wang, Investigation into relationship between friction behavior and plastic deformation using a newly devised rolling-type tribometer[J],Trans. ASME J. Tribo.1995,117:529-533.
    [63]林子光,李修仁,刘维民,余来贵,夏延秋.往复运动机构的摩擦过渡[J].润滑与密封,2001(03):28-29.
    [64]赵克中,徐成海,窦淑萍,刘芳,安芝贤.磁力驱动器涡流损失的研究[J].化工机械, 2003,30(6):326-328+346.
    [65]曾励,黄民双,刘正埙,王晓菁.磁浮轴承的原理及现状[J].机械工艺师,1999,5:29-30.
    [66]沈洁,庞路,汤双清.永磁磁力轴承的悬浮力分析与计算[J].机械制造,2004,5:37-39.
    [67] Tan Qingchang,Li Wei and Liu Bo,Investigations on a permanent magnetic- hydrodynamic hybrid journal bearing[J], Tribology International, 2002,35(7): 443-448.
    [68]苏桂荣.《往复运动橡胶密封圈外观质量》标准简介[J].化工标准化与质量监督,1994,11: 9-11.
    [69]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社, 2004.
    [70]现代科学技术词典[M].上海:上海科学技术出版社,1980.
    [71]蒲俊,吉家峰. Matlab工程数学解题指导[M].上海:浦东电子出版社,2001.
    [72]胡之光.电机的电磁场[M].北京:机械工程出版社,1988.
    [73]哈尔滨工业大学理论力学教研室编.理论力学[M],下册.北京:高等教育出版社,1982.
    [74]王林鸿,杜润生,吴波,杨叔子.液压缸低速运动时的动态分析[J].中国机械工程,2006, 17(20):2098-2101.
    [75]金哲,柯坚,于兰英,刘恒龙.液压缸低速爬行动力学研究[J].机械设计,2006,23(2): 42-45.
    [76]赵克中.磁力驱动技术与设备[M].北京:化学工业出版社,2004.
    [77]赵凯华,陈熙谋.电磁学下册[M].北京:人民教育出版社,1978.
    [78] [日]松原清著,李明怀,庄志译,黄文治校.摩擦学[M].西安交通大学出版社,1988.
    [79]张鸣远,景思睿,李国君.高等工程流体力学[M].西安交通大学出版社,2006.
    [80]钟文定.铁磁学(中册)[M].北京:科学出版社,1987.
    [81]李为,李庆华,裴永臣,谭庆昌.直线往复磁力传动参数分析及其优化设计[J].实验技术与实验机, 2006(3).64-68.
    [82]姬奎生.机械设计手册[M],第四版,第四卷.北京:化学工业出版社,2005.
    [83]刘喜平,陈树海,段亚军.液压执行器爬行的机理、原因和排除措施.液压与气动,2001,9:26-27.
    [84]官忠范.液压传动系统(第一版) [M].北京:机械工业出版社,1981.
    [85]张榴晨,徐松.有限元法在电磁计算中的应用[M].北京:中国铁道出版社,1996.
    [86] Tan Qingchang, Li wei and Xia Xuejun. Investigation on a magnetic-hydrodynamic hybrid thrust bearing[J], Tribology Letter, 2001, 12(1): 61~66.
    [87]孙雨施,王素菊,曲民兴,沈世尧.直流磁系统的计算与分析(模型·算法·程序)[M].北京:国防工业出版社,1987.
    [88]宋后定,陈培林.永磁材料及其应用[M].北京:机械工业出版社,1984.
    [89]张百海,程海峰,马延峰,彭光正.气缸摩擦力特性实验研究[J].北京理工大学学报,2005,25(6):483-486.
    [90]王沫然.MATLAB6.0与科学计算[M].北京:电子工业出版社,2001.
    [91]夸克工作室.有限元分析基础篇ANSYS与Matlab[M].北京:清华大学出版社, 2002.
    [92]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].陕西:西北工业大学出版社,1999.
    [93]机械设计手册[M].北京:机械工业出版社,1988.
    [94]寇尊权,厉世,曹贵和,董桂田.机械设计课程设计[M].吉林:吉林科学技术出版社, 1999.
    [95]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000.
    [96]张瑞华,严陆光,徐善纲,武瑛.几种典型的高速磁悬浮列车方案比较[J].电工电能新技术, 2004,23(2):46-50.
    [97]小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004.
    [98]张志涌等.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003.
    [99] Jun Qu, Peter J.Blau, Thomas R.Watkins, Odis B.Cavin, Nagraj S.Kulkarni. Frictionand wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces[J]. Wear, 2005,258(9): 1348-1356.
    [100]郭兰升,郝向东.扬程18MPa、功率132kW泵用磁力传动器的设计与研制[J].水泵技术,1997,1:3-8+16.
    [101] Wassink DB, Lenss VG, Levitt JA, Ludema KC. Physically based modeling of reciprocating lip seal friction[J], JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME,2001,123(2): 404-412.
    [102]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [103]卢文祥,杜润生.机械工程测试信息信号分析[M].武汉:华中科技大学出版社,1999.
    [104]胡昌华,周涛,夏启兵,等.基于MATLAB的系统分析与设计——时频分析[M].西安:西安电子科技大学出版社,2002.
    [105]师汉民,谌刚,吴雅.机械振动系统[M].武汉:华中理工大学出版社,1992.
    [106] Aleksandrov V M, Shmatkova A A. Non2linear unsteady creep of an ice sheet on a hydraulic foundation[J]. J. Appl.Maths Mechs,1996 ,60(4):677-681.
    [107] Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999,24:237-252.
    [108] Fukuda T, Kawamoto A, Arai F, Matsuura H. Steering mechanism of underwater micro mobile robot[C]. Proceedings of the 1995 IEEE International Conference on Robotic and Automation, Nagoya, Japan, 1995: 363–368.
    [109] Safak K K, Adams G G. Modeling and simulation of an artificial muscle and its application to biomimetic robot posture control[J]. Robotics and Autonomous System, 2002, 41:225-243.
    [110] Chen H, Zhu C A, Yin X Z, Xing X Z, Cheng G. Hydrody-namic analysis and simulation of a swimming bionic robot tuna[J]. Journal of Hydrodynamics, 2007,19: 412-420.
    [111] Vaidyanathan R, Chiel H J, Quinn R D. A hydrostatic robot for marine applications[J].Robotics and Autonomous Systems, 2000,30:103-113.
    [112] Lemoff A V, Lee A P. An AC magnetohydrodynamic mi-cropump[J]. Sensors and Actuators B: Chemical, 2000,63:178-185.
    [113] Evans S A, Smith I R, Kettleborough J G. Permanent-magnet linear actuator for static and reciprocating short-stroke electromechanical systems[J]. IEEE/ASME Transactions on Mechatronics,2001,6:36–42.
    [114] Fukunaga K, Funakubo A, Fukui Y. Newly developed ven-tricular assist device with linear oscillatory actuator[J]. ASAIO Journal, 2003,49:333–339.
    [115] Wazed Miah M A. Fundamentals of Electromagnetics[M], Tata Mcgraw-Hill Publishing Company Limited, New Delhi,1982.
    [116] Zahn M. Electromagnetic Field Theory: A Problem Solving Approach, John Wiley & Sons Inc[M], New Delhi, 1979.
    [117]稀土永磁材料[EB/OL].[2008-5-7].http://www.rknerc.com/cp_yc.htm.
    [118] M.P.F. Sutcliffe, K.L. Johnson, Lubrication in cold strip rolling in the‘mixed’regime[J], Proc. Inst. Mech. Eng. 1990,204:249-261.
    [119] Z. Wang, K. Kondo, T. Mori, A consideration of optimum conditions for surface smoothing based on lubricating mechanisms in ironing process[J], Trans. ASME J. Eng. Ind. 1995,117:351-356.
    [120] T. Mizuno, K. Hasegawa, Effects of die surface roughness on lubricating conditions in the sheet metal compression-friction test, Trans[J].ASME J. Lub. Tech.1982, 104(1):23-28.
    [121]冯毅雄,谭建荣,伊国栋.零件结构的联动式进化设计方法[J].机械工程学报, 2006,42(1):44-50.
    [122]李洪杰,肖人彬.基于功能构造的复杂产品进化设计基因模型[J].机械工程学报,2003, 39(5): 45-52.
    [123]徐人平,杨维平,李纶,王庆五.支持创新设计的关键使能技术──快速原型技术[J].昆明理工大学学报(自然科学版) , 2001,26 (4):20-23.
    [124]张志伟,叶庆泰.设计系统的基因表达及应用研究[J].机械科学与技术,2000,19(1): 46-48.
    [125]常宗瑜,张策.含间隙机械系统的稳定性分析[J].机械科学与技术, 2000,19(01):4-5.
    [126]冯毅雄,谭建荣,郑兵.基于联结语义的概念结构建模方法研究[J].浙江大学学报(工学版) , 2006,40(2):221-225.
    [127]曹淑瑛,王博文,闫荣格,黄文美,翁玲.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003,23(11):145-149.
    [128]徐涛.数值计算方法[M].长春:吉林科学技术出版社,1998.
    [129]张曙光,陈塑寰,麻凯.区间参数结构分析的静力优化[J].吉林大学学报(工学版) 2007,37(05):1220-1224.
    [130]孙立军,张涛,赵兵.永磁磁轴承数学模型的研究[J].机械工程学报,2005,(4): 73-78.
    [131]邓超,李卓棠,吴佩芳.磁轴承中磁路设计问题的研究[J].上海大学学报(自然科学版), 2002, (06): 498-502.
    [132]黄伟,谭建平.微型轴流式血泵永磁体磁场有限元仿真分析[J].机械制造, 2006,44(506):30-32.
    [133]邹继斌,刘宝廷,崔淑梅,郑萍.磁路与磁场[M].哈尔滨:哈尔滨工业大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700