用户名: 密码: 验证码:
回转直动式电液伺服阀关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服控制系统以其功率—重量比大,系统响应快,负载刚性大,控制精度高的特点,广泛应用于冶金,矿山,船舶,工程机械,航空航天等工业控制领域。电液伺服阀作为电液伺服控制系统的核心元件,可将小功率的电信号输入精确快速的转换为大功率的液压能输出,其性能好坏直接影响伺服系统的特性及功能实现。回转直动式电液伺服阀因其具有结构简单紧凑、响应快、流量分辨率高、无加速度零飘、抗污染能力强及维护方便的性能特点,已成为流体传动及控制领域的一个重要发展方向和研究热点。提高电液伺服转阀的工作性能,能够提升电液伺服控制系统的控制特性,有助于满足日益增加的市场需求,进而推动流体传动及控制技术的进步。
     论文以回转直动式电液伺服阀的关键技术为研究对象,采用理论分析、解析计算、数值仿真和实验研究相结合的方法,对电液伺服转阀关键技术进行了系统、深入的分析和研究。提出了耐高压双向旋转比例电磁铁的新结构,电磁铁采用永磁励磁方式,具有环形工作气隙以及动磁式转子,偏置磁通与控制磁通相互作用,以差动方式工作;通过磁路分析和有限元仿真,阐述了电磁铁结构参数的作用机理及具体匹配关系,实验结果表明该电磁铁具有正磁弹簧刚度,最大输出转矩为±0.65 Nm,±5°时的转矩非线性和转角非线性分别小于1%和0.5%,转矩滞环和转角滞环分别小于4.5%和4%,工作带宽约为190 Hz。为提高电液伺服转阀的控制精度,论文提出了耐高压电涡流角度传感器的新结构和具体实现方案,传感器具有整体设计的导套和环形工作气隙,通过斜环状感应线圈配合半圆柱转子工作,使感应线圈阻抗和输出电压与转子角位移成比例;分析了传感器温漂的成因,提出了电涡流角度传感器无感线圈全桥回路温度补偿方法和新型差动电涡流式角度传感器结构,实现了传感器温漂的有效抑制;仿真和实验结果表明该传感器工作行程约为50°,线性段电感灵敏度为7.7×10~(-4) mH/degree,电压灵敏度为9.8mV/°,40°-70°时的非线性误差小于0.8%,30℃-90℃温度范围内的传感器输出温漂由20%降至1%。结合耐高压双向旋转比例电磁铁和耐高压电涡流角度传感器,提出了不带角度反馈和带角度反馈两种形式的回转直动式电液伺服阀的结构方案,对其静、动态特性进行了仿真研究,阐述了结构参数和角度反馈对转阀工作特性的影响。
     有关各章内容分述如下:
     第一章从电—机械转换器,角度传感器和功率级液压组件的角度出发,探讨了回转直动式电液伺服阀关键技术的研究进展,分析总结了回转式电液伺服阀关键元件及转阀整体的结构特点和发展趋势。
     第二章对双向回转式电—机械转换器进行了结构分类,基于磁路原理建立了不同种类力矩马达的磁路模型,得出了电磁铁静态特性的解析方程式,对比分析了力矩马达的工作特点,归纳总结了励磁类型,气隙形状,转子种类和极面类型等结构要素对马达工作特性的影响;在此基础上提出了新型耐高压双向旋转比例电磁铁的结构,分析了其工作原理;并就其关键技术如耐高压结构设计,永磁材料分析和选型,软磁材料的对比选择,以及励磁线圈设计和负载弹簧选择进行了详细探讨。
     第三章建立了耐高压双向旋转比例电磁铁的磁路分析模型,得出了电磁铁的静、动态解析方程,分析了结构参数对电磁铁静、动态特性的影响;建立了电磁铁的有限元数值分析模型,通过仿真详细阐述了电磁铁结构参数的作用机理,结合磁路分析结果明确了电磁铁的具体结构参数,指出了电磁铁的工作特点;搭建了测试平台,实测了电磁铁的静、动态工作特性,并与仿真结果作了对比;介绍了电磁铁的功率驱动电路,对设计的PWM式双路反接卸荷式功率放大器的工作原理和特点进行了重点阐述。
     第四章对不同种类耐高压角度传感器的结构及性能特点进行了比较分析,归纳了感应线圈励磁方式,耐压导套结构,工作气隙类型,转子形状等结构要素对传感器工作特性的影响;在此基础上提出了新型耐高压电涡流角度传感器的结构,分析了其结构特点和工作原理;并就其关键技术如耐压导套材料选择以及驱动电路设计进行了详细论述。
     第五章建立了耐高压电涡流角度传感器的等效电路模型和有限元分析模型,通过仿真详细阐述了传感器结构参数的作用机理,分析了参数变化对传感器工作特性的影响,在此基础上确定了电涡流角度传感器的具体结构参数;讨论了传感器产生温漂的原因,介绍了无感线圈全桥回路温度补偿方法和新型差动电涡流式角度传感器结构:搭建了测试平台,实测了传感器的电感特性,全桥输出特性和温漂。
     第六章结合耐高压双向旋转比例电磁铁和耐高压电涡流角度传感器,提出了不带角度反馈和带角度反馈两种结构形式的回转直动式电液伺服阀,对其工作原理和性能特点进行了分析;建立了转阀的传递函数式,采用MATLAB构建了数值仿真模型,对转阀的静、动态特性进行了仿真研究,阐述了结构参数和角度反馈对转阀工作特性的影响。
     第七章概括了全文的主要研究工作和成果,并展望了今后需进一步研究的工作和方向。
With large power/weigh ratio, fast response, high immunity to load variations and high level of control precision, the electrohydraulic servo control system has been widely used in many industrial applications such as metallurgy, mining, marine, construction machinery and aerospace. As key components of an electrohydraulic servo control system, the electrohydraulic servo valves can transfer low-power electrical signal to large-power hydraulic output quickly and precisely, and have a direct influence on performance and characteristics of the whole servo system. Rotary direct-drive servo valve, due to its compact structure, fast response, high flow resolution, zero acceleration drift and easy maintenance, has come to be an important trend in fluid power transmission and control. Improving the working performance of the rotary servo valve, will enhance the control performance of the electrohydraulic servo system, satisfying the market requirements and pushing advancement in techniques of fluid power transmission and control.
     Based on theory analysis, analytical computation, numerical simulation and experimental study, the rotary direct-drive servo valve is systematically, deep analyzed and researched in the thesis. A high-pressure bi-directional rotary proportional solenoid with permanent-magnet polarizing, ring type working air-gap and moving-magnet rotor, is put forward. It works in differential mode with the polarizing and control flux interactions. With magnetic circuit analysis and finite element simulation, the action mechanism and matching relations of the solenoid structural parameters are analyzed in detail. The experimental results indicate the solenoid has positive magnetic stiffness and output torques of±0.65 Nm with the torque non-linearity and angle non-linearity less than 1% and 0.5% respectively at±5°working range. Its torque hysteresis and angle hysteresis is less than 4.5% and 4% respectively and the frequency bandwidth is 190 Hz. For improving the control precision of the rotary servo valve, a high-pressure eddy current angle sensor is also presented. An oblique ring-shaped sensing coil and a symmetric semi-cylindrical rotor are utilized, making the coil impedance and the output voltage proportional to the angular displacements. Based on theoretical analyses of the sensor temperature drift, the differential eddy current angle sensor structure and temperature compensation method employing non-inductive coil and bridge circuit are also presented, achieving better temperature stability. The measured and simulation results show that the sensor has a linear working range of 50°with inductance sensitivity 7.7×10~(-4) mH/degree and voltage sensitivity 9.8 mV/°. Its non-linearity is less than 0.8% at working range 40°-70°, and the temperature less than 1% over 30℃-90℃. Together with the high-pressure bi-directional rotary proportional solenoid and the high-pressure eddy current angle sensor, two types of rotary direct-drive servo valve, one with and one without angular displacement feedback, are raised. Based on simulation, the static and dynamic characteristics of the rotary valve are analyzed, and the influence of the structural parameters and angle feedback is also presented.
     The main content of each chapter is summarized as following:
     In chapter 1, the research progress of electrical-mechanical converter, angle sensor and rotary valve, which constituting the whole rotary direct-drive valve, is introduced. The design feature and development trend of the whole rotary direct-drive valve and its key components are summarized.
     In chapter 2, the bi-directional rotary electrical-mechanical converters are classified by different structures. Based on magnetic circuit principal, the magnetic circuit models of different kinds of torque motors are established, and the analytical functions describing the static characteristics of the solenoid are also deduced. The working characteristics of torque motors are compared and the effects of magnetization type, air-gap shape, rotor style and polar-face form are summarized. Then a novel high-pressure bi-directional proportional solenoid is presented, and its working principals are analyzed. The key technologies of the solenoid, including high-pressure structure design, permanent magnet material, soft magnet material, excitation coil and loading spring, are also discussed.
     In chapter 3, the magnetic circuit model of the high-pressure bi-directional proportional solenoid is established, and the influences of structural parameters are analyzed based on the deduced static and dynamic analytical functions. The finite element model of the solenoid is also established and the action mechanism of the solenoid structural parameters is analyzed in detail. Together with the magnetic circuit analysis results, the specific structural parameters are determined. Then the static and dynamic characteristics of the solenoid are measured and compared with the simulation results. Furthermore the power amplifiers for solenoids are introduced, and the working principals of the PWM double-way inverse-relief power amplify are analyzed.
     In chapter 4, the structural features and working characteristics of different kinds of high-pressure angle sensor are compared, and the effects of coil magnetization type, sleeve structure, air-gap type and rotor style on sensor characteristics are summarized. Then a novel high-pressure eddy current angle sensor is presented, and its operation principals and structural features are analyzed. The key technologies of the sensor, including the sleeve material and sensor driving circuit, are also discussed.
     In chapter 5, the equivalent circuit model and finite element model of the high-pressure eddy current angle sensor are established, and the action mechanism of the sensor structural parameters is analyzed in detail based on simulation. The specific structural parameters of the sensor are determined according to the FEM simulation results. Based on theoretical analyses of the sensor temperature drift, the differential eddy current angle sensor structure and temperature compensation method employing non-inductive coil and bridge circuit are also presented. The inductance, bridge circuit output and temperature drift characteristics of the sensor are measured with an experiment platform.
     In chapter 6, based on the high-pressure bi-directional proportional solenoid and the high-pressure eddy current angle sensor, two types of rotary direct-drive servo valve, one with and one without angular displacement feedback, are put forward. Its working principals and performance features are discussed, and the transfer functions are also given. The static and dynamic characteristics of the rotary valve are analyzed based on MATLAB numerical simulation model, then the effects of the structural parameters and angle feedback on valve performance features are discussed in detail.
     In chapter 7, all achievements of the dissertation are summarized and the further research work is put forward.
引文
1 路甬祥.液压气动技术手册.北京:机械工出版社.2002
    2 路甬祥,胡大纮.电液比例控制技术.北京:机械工业出版社.1988
    3 H.E.梅里特,陈燕庆译.液压控制系统.北京:科学出版社.1976
    4 吴根茂,邱敏秀,王庆丰.实用电液比例技术.杭州:浙江大学出版社.1993
    5 林建亚,何存兴.液压元件.北京:机械工业出版社.1988
    6 王春行.液压伺服控制系统.北京:机械工业出版社.1981
    7 李洪人.液压控制系统.北京:国防工业出版社.1986
    8 卢长耿,李金良.液压控制系统的分析与设计.北京:煤炭工业出版社.1991
    9 路甬祥.流体传动与控制技术的历史进展与应用.机械工程学报.2001(10):1-9
    10 陈愈,沈关耿,黄人豪等.液压阀.北京:中国铁道工业出版社.1982
    11 袁希光.传感器技术手册.北京:国防工业出版社.1986
    12 严钟豪,谭祖根.非电量电测技术.北京:机械工业出版社.2003
    13 陈大军.电-气比例,伺服位置控制系统的研究.浙江大学博士学位论文.1995
    14 Marco D Amore,Gordon Pellegrinetti.Dissecting high-performance electrohydraulic valves.Machine Design.2001(4)
    15 黄向东.电液控制系统中电机械转换器的研究.浙江大学硕士学位论文.1994
    16 R H MaskeD,,W J Thayer.A brief history of electrohydraulic servomechanisms.ASME Journal of Dynamic Systems Measurement and Control,1978(6)
    17 M Leu,R Henke,and R Jackson.Application of optimization on theory to the design of torque motors.ASME Design Engineering Division Conferences.1985,Cincinnati,Paper.85-DET-98,48-55.
    18 S A Evans,I R Smith,J G Kettleborough.Permanent-Magnet Linear Actuator for Static and Reciprocating Short-Stroke Electromechanical Systems.IEEE/ASME Transactions on Mechatronics.2001(6):36-42.
    19 戴旭涵.磁致伸缩电-机械转换器的理论分析与实验研究.浙江大学硕士学位论文.1997
    20 #12
    21 John H.Buscher,East Amberst.Torque motor with magnet armature.US patent:4,992,217.1990
    22 John H.Buscher,East Amherst.Torque motors with enhanced reliability.US patent:5,679,989.1997
    23 Fumio Tajima,Nicolas Samman,Kunio Miyashita.Low ripple-torque permanent magnet brushless motor.US patent:4,918,346.1990
    24 Jiro Kondo,Obu.Torque motor having uniform torque output characteristic.US patent:6,005,319.1999
    25 #12
    26 #12
    27 #12
    28 Takaharu Idogaki,Hisasi Kawai,Kyo Hattori.Rotary solenoid actuator.US patent:4,496,134.1985
    29 Jean I.Montagu.Oscillation motors.US patent:3,959,673.1976
    30 Jean I.Muntagu.Limited rotation transducer having permanently magnetized rotor.US patent:3,434,082.1969
    31 Jean I.Montagu.Electric motor for limited rotation.US patent:3,177,385.1965
    32 张光琼.单级转轴式旋转电液伺服阀.机床与液压.1991(2):34-38
    33 张光琼,金维连.双向旋转比例电磁铁端部磁场的有限元分析.防爆电器.1991(3):22-27
    34 山田博著,胡仁芳译.小型精密电动机的基础和应用.北京:机械工业出版社.1988
    35 李洪坤,杜德宝.空心杯电枢永磁直流电动机的多目标函数优化设计.微特电机.1990(5):26-27,30
    36 SERVALCO公司伺服电机样本
    37 MAGNET-SCHULTZ公司电磁铁样本
    38 William F.Sommer.Rotary solenoid.US patent:3,753,180.1973
    39 Richard D.McClintock.Rotary solenoid.US patent:4,135,138.1979
    40 马青,史金飞.基于LVDT原理的精密角位移传感器的研制.中国制造业信息化.2003(12):124-126
    41 徐英,张涛,张嵘.分瓣式电容角位移传感器的优化设计.化工自动化及仪表.2003(4):51-54
    42 胡明.InSb精密角位移传感器的研究.仪表技术与传感器.1998(2):1-3
    43 胡又林等.光纤角位移传感器.武测译文.1990(2):31-33
    44 张琢,李鹏生.测角技术国内外发展概况.宇航计测技术.1994(4):4-11
    45 张裕俚,李继承.高精度差动变压器式位移传感器.仪表技术与传感器.1994(2):19-21
    46 方欣,吴仲达.回转角度传感器.国外传感技术.2003(4):136-138
    47 温任林等.半差动环形角度传感器的研究.仪器仪表学报.2000(5):531-532,550
    48 McCary.R.Optimization of eddy current transducers(surround coil).IEEE Transactrions on Magnetics.1979(6):1677-1679
    49 Bastawros.A.A simplified analysis for eddy-current speed transducer.IEEE Transactions on Magnetics.1987(3):1905-1908
    50 Jankauskas,LaCourse,Limbert.Optimization and analysis of a capacitive contactless angular transducer.IEEE Transactions on instrumentation and Measurement.1992(2):311-315
    51 Saxena,Seksena.A self-compensated smart LVDT transducer.IEEE Transactions on instrumentation and Measurement.1989(3):748-753
    52 Kano.Y,Hasebe.S,Huang.C.New type LVDT position detector.Precision Eletromagnetic Measurements.1988,CPEM 88 Digest,95-96
    53 Eero B,Kari P.Dynamic properties of moving magnet transducers.IEEE Transactions on Magnetics.1980(2):468-475
    54 K Diaz de L,A Garcia-Arribas,J M Barandiaran,J Gutierrez.Comparative study of alternative circuit configurations for inductive sensors.Sensors and Actuators A.2001,91:226-229
    55 SINN,Alexandra.Device for detecting rotary movements.PCT:WO 97/43602.1997
    56 Vladimir Pecheny,George H.Anderson.Device for determining the angular position of a rotating member utilizing a magnetic hall effect transducer.US patent:6,201,388 B1.2001
    57 Lawrence W.Tomczak,Anthony J.Osladil.Angular position transducer including permanent magnets and hall effect device.US patent:4,570,118.1986
    58 Hajime Takahashi.Rotational angle sensor having a magnetic member mounted on a rotatable shaft.US patent:5,455,508.1995
    59 上海天沐自动化仪表有限公司产品样本
    60 David M.Orlicki,Bruce E.Koppe,Thomas W.Palone.Transducer for determining the instantaneous relative angular positions between two members.US patent:4,914,390.1990
    61 Georg Brasseur,Thomas Eberharter.Capacitive angular displacement transducer.US patent:5,598,153.1997
    62 Georg Brasseur.A capacitive 4-turn angular-position sensor.IEEE Transactions on Instrumentation and Measurement.1998(1):275-279
    63 Michael M.Van Schoiack,Patrick H.Mawet.Angular displacement sensor.US patent:4,752,732.1988
    64 Kurt Hurst,Klans Brill,Hans Braun.Angle sensor with hermetic sealing and magnetic coupling.US patent:5,382,792.1995
    65 David Griffin,Ed Walls,Chris Williamson.A rotary disc valve.UK patent:GB 2,398,856 A.2004
    66 #12
    67 #12
    68 #12
    69 #12
    70 #12
    71 Nomura Takao,Inada Shigeyoshi,Katsumata Takuji.Rotary valve,method of manufacturing the same,and rotary valve device.PCT:WO2005100830.2005
    72 唱一丹.双向旋转比例电磁铁及旋转伺服阀的研究.浙江大学硕士学位论文.1997
    73 张光琼,唱一丹.双向极化式比例电磁铁及其静、动态特性研究.防爆电器.1989(4):28-32,36
    74 Marcus B.Leonard.Rotary servo valve.US patent:5,954,093.1999
    75 阮健,裴翔,李胜.2D电液数字换向阀.机械工程学报.2000(3):86-89.
    76 阮健,裴翔,姜伟.2D电液数字换向阀的实验研究.机床与液压.1999(5):12-13,9
    77 阮健,李胜,杨继隆.液压及气动阀直接数字控制的新途径.中国机械工程.2000(3):317-320
    78 阮健,李胜,裴翔,俞浙青.数字阀的分级控制及非线性.机械工程学报.2005(11):91-97
    79 Ralph L.Vick.Direct drive rotary servo valve.US patent:4,794,845.1989
    80 EMG公司产品样本
    81 田惠民,孙景昌.设计独特的SV1-10型单级旋转式伺服阀.液压与气动.1997(5):22-23
    82 曹秉刚,史维祥,中野和夫.内流式锥阀液动力及阀芯锥面压强分布的实验研究.西安交通大学学报.1995(7):7-13
    83 付永领,宋国彪等.新型直接驱动伺服阀的稳态液动力分析.机床与液压.1998(6):18-20
    84 王林翔,方志宏.阀内流道内布置对液动力的影响.机床与液压.2000(6):27-28
    85 冀宏,傅新,杨华勇.非全周开口滑阀稳态液动力研究.机械工程学报.2003(6):13-17
    86 Xiaoping Liu,Hirotsugu Kasuya,Yuusaku Nozawa etc.Flow analysis of hydraulic valve used in construction machinery.JSME,2001(6)
    87 M R Mokhtarzadeh-Dehghan,N Ladommatos,T J Brennan.Finite element analysis of flow in a hydraulic pressure valve.Applied Mathematical Modelling.1997(7):437-445
    88 #12
    89 肖凯鸣,虞勤俭,王渝等.MK电液伺服阀结构原理及性能.液压气动与密封.1998(4):33-36
    90 Ichiryu K,Watanabe H,Yamaguchi T.Direct-acting servo valve.US patent:4,544,129.1985
    91 张冠生,陆俭国.电磁铁与自动电磁元件.北京:机械工业出版社.1982
    92 张冠生.电器学.北京:机械工业出版社.1980
    93 AE Fitzgerald,Charles Kingsley,Stephen D.Umans.Electric Machinery.北京:清华大学出版社.2003
    94 唐任远.现代永磁电机-理论与设计.北京:机械工业出版社.1997
    95 大川光吉.永磁电机.东京:综合电子出版社.1975
    96 Takashi Kenjo.Stepping motors and their microprocessor controls.Oxford:Clarendon Press.1984
    97 高旭山.高性能NdFeB永磁材料.磁性材料及器件.2001(4):50-53
    98 刘英烈.饶晓雷.高性能烧结NdFeB永磁材料.2000(5):26-31
    99 孙爱芝等.各向异性粘结稀土永磁材料的研究和开发状况.磁性材料及器件.2005(6):7-12
    100 刘亚丕,何时金,包大新等.永磁材料的发展趋势.磁性材料及器件.2003(1):33-36,41
    101 周寿增,张茂才.金属永磁材料的前沿问题.磁性材料及器件.1997(1):43-46
    102 齐凤春.永磁材料的磁稳定性.永磁材料及器件.1998(6):27-30,26
    103 田民波.磁性材料.北京:清华大学出版社.2001
    104 周寿增等.稀土永磁材料及其应用.北京:冶金工业出版社.1990
    105 郑子樵,李红英.稀土功能材料.北京:化学工业出版社.2003
    106 陈付时译.纯铁系软磁材料.上海钢研.2003(3):19-23
    107 杉本榆.磁性材料的最近动向和未来.上海钢研.2002(3):1-3
    108 刘亚丕,何时金,包大新等.软磁材料的发展趋势.磁性材料及器件.2003(3):26-32
    109 周铭,赵文菊.软磁材料切削工艺探索.上海电器技术.1992(3):39-41
    110 孙玉魁.金属软磁材料及其应用.北京:冶金工业出版社.1986
    111 陈国钧,李茂昌,周元龙等.金属软磁材料及其热处理.北京:机械工业出版社.1986
    112 JA Stratton著,方能航译.电磁理论.北京:科学出版社.1992
    113 谢处方,饶克谨.电磁场与电磁波.北京:高等教育出版社.1999
    114 冯慈璋,马西奎.工程电磁场导论.北京:高度教育出版社.2000
    115 倪光正,杨仕友,钱秀英等.工程电磁场数值计算.北京:机械工业出版社.2006
    116 盛剑霓.工程电磁场数值分析.西安:西安交通大学出版社.1991
    117 K J Bathe,E I Wilson.Numerical methods in finite element analysis.New Jersey:Prentice-Hall.1976
    118 Bruno P Lequesne.Finite-element analysis of a constant-force solenoid for fluid flow control.IEEE Transactions on Industry Applications 1988(4):574-581
    119 Sang-Baeck Yoon,etc.Shape optimization of solenoid actuator using the finite element method and numerical optimization technique.IEEE Transactions on Magnetics.1997(5):4140-4142
    120 杨丽,刘闯,严加根.开关磁阻电机铁损的双频法有限元计算研究.中国电机工程学报.2006(12):117-121
    121 Gordon R Slemon,Xian Liu.Core losses in permanent magnet motors.IEEE Transactions on Magnetics.1990(5):1653-1655
    122 Hyuk Nam,etc.A study on iron loss analysis method considering the harmonics of the flux density waveform using iron loss curves tested on Epstein samples.IEEE Transactions on Magnetics 2003(3):1472-1475
    123 G Bertotti,etc.An improved estimation of iron losses in rotating electrical machines.IEEE Transactions on Magnetics.1991(6):5007-5009
    124 C Natale,F Velardi,C Visone.Identification and compensation of preisach hysteresis models for magnetostrictive actuators.Physica B.2001,306,161-165
    125 S Y R Hui,J Zhn.Magnetic Hysteresis Modeling and simulation using the preisach theory and TLM technique.IEEE Transactions on Magnetics.1999(4):123-127
    126 Lin D,Zhou P,Fu WN,Z Badics,etc.A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis.IEEE Transactions on Magnetics.2004(2):1318-1325
    127 邓汉馨.郑家龙.模拟集成电子技术教程.北京:高等教育出版社.1994
    128 Donald A Neamen.Electronic circuit analysis and design(second edition).北京:清华大学出版社.2005
    129 何希才.新型集成电路及其应用实例.北京:科学出版社.2003
    130 Bong H K.Design of a highly stable electromagnet power supply.IEEE Transactions on Industrial Electronics.1992(2):149-158
    131 Lin J S,Chen C L.Buck/boost servo amplifier for direct-drive-valve actuation.IEEE Transactions on Aerospace and Electronic Systems.1995(3):960-967
    132 贾耀卿等.常用金属材料手册.北京:中国标准出版社.2000
    133 王灿耀.郑玉婴.Kevlar纤维增强尼龙6复合材料的力学性能.应用化学.2006(12):1373-1376
    134 刘正军等.长玻璃纤维增强尼龙6的力学性能研究.工程塑料应用.2005(5):4-8
    135 肖德凯,张晓云等.热塑性符合材料的研究进展.山东化工.2007(2):15-21
    136 葛世荣,张德坤等.碳纤维增强尼龙1010的力学性能及其对摩擦磨损的影响.符合材料学报.2004(2):99-104
    137 陈立新等.功能塑料.北京:化学工业出版社.2004
    138 李道华等.传感器电路分析与设计.武汉:武汉大学出版社.2000
    139 赵负图等.现代传感器集成电路:图像及磁传感器电路.北京:人民邮电出版社.2000
    140 赵家贵等.新编传感器设计手册.北京:中国计量出版社.2002
    141 凌保明,诸葛向彬,凌云.电涡流传感器的温度稳定性研究.仪器仪表学报.1994(4):342-346
    142 方秋华,茅佩,田新启等.电涡流传感器温度漂移的自动补偿.仪器仪表学报.1997(2):198-201
    143 韩韬,施文康,张玉林.源于温度的电涡流传感器交叉敏感的补偿.仪表技术与传感器.2000(2):10-12
    144 丛华,张德魁,赵鸿宾.电涡流传感器温度稳定性研究.清华大学学报(自然科学版).1999(10):65-68
    145 P A Passeraub,P A Besse and R S Popovic.Temperature compensation of an integrated low power inductive proximity microsensor.Sensors and Actuators A.2000,82,62-68.
    146 K H Chen,C K Lin and J Chen.Circuit and method for temperature compensation.US patent:7,183,869.2007
    147 R L Stoll.The Analysis of Eddy Currents.Oxford:Oxford University Press.1974
    148 Qipeng Li,Fan Ding.Novel displacement eddy current sensor with temperature compensation for electrohydraulic valves.Sensors and Actuators A.2005,122,83-87
    149 Kagsuhiko Ogata著,卢伯英,于海勋等译.现代控制工程.北京:电子工业出版社.2003
    150 D Hanselman,B Littlefield著,张航 黄攀译.Mastering Matlab 6.北京:清华大学出版社.2002
    151 黄忠霖.控制系统MATLAB计算及仿真.北京:国防工业出版社.2001
    152 陈桂明.张明照,戚红雨等.应用MATLAB建模与仿真.北京:科学出版社.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700