用户名: 密码: 验证码:
微管式固体氧化物燃料电池的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微管式固体氧化物燃料电池(MT-SOFC)由于直径可以小到1毫米或百微米级,显现出多种优势,如机械性能增强,传质传热表面增大,体积功率密度提高,升降温速率加快等,在便携电源、交通运输动力电源和不间断电源(UPS)等领域具有广阔的应用前景。本文利用相转化-纺丝技术结合烧结工艺,制备了具有独特孔结构的中空纤维陶瓷微管,以此制备出微管式固体氧化物燃料电池,并对其性能进行了系统研究。
     首先,以Y2O3稳定的ZrO2 (YSZ)和Sm2O3掺杂的CeO2 (SDC)为电解质材料,通过相转化法纺丝并烧结到1200~1600℃后,分别制备出YSZ和SDC中空纤维陶瓷微管,并以此制备了电解质支撑型MT-SOFC。研究发现,以纳米YSZ粉体为原料制备的电解质中空纤维陶瓷微管经过1600℃烧结后可以致密,抗弯强度最大355 MPa。以Ni/YSZ为阳极,La0.8Sr0.2MnO3-x (LSM)为阴极,以纯H2和O2分别为燃料气和氧化剂,在600℃,650℃,700℃,750℃,800℃和850℃操作时,燃料电池最大功率密度分别为13,24,35,48,61和87 mW·cm-2。以纳米SDC为原料的电解质中空纤维微管,经过1450℃烧结可以达到致密,抗弯强度超过200 MPa。使用Ni/SDC阳极和Ba0.5Sr0.5Co0.8Fe0.2O3-x (BSCF)阴极,以纯H2和O2为燃料气和氧化剂,在550℃,600℃,650℃,700℃和750℃操作时,燃料电池最大功率密度分别为27,45,67,89和106 mW·cm-2。两种电解质微管的直径为1.1~1.4 mm,壁厚210~230μm,因管壁中存在大量的指状孔结构,制约了电解质支撑型MT-SOFC功率密度进一步提高。
     用改进的相转化纺丝-烧结工艺制备了多孔阳极中空纤维,经过1200~1400℃焙烧后获得NiO/YSZ阳极微管,并经H2还原得到Ni/YSZ金属陶瓷微管。在NiO/YSZ微管上,用浸渍-烧结法制备了一层致密YSZ电解质膜,然后在此阳极/电解质半电池上涂敷一层多孔La0.8Sr0.2MnO3-x (LSM)的阴极层,制备了阳极支撑型的MT-SOFC。研究表明,用改进的相转化纺丝-烧结工艺可以获得不对称孔结构的阳极微管,管壁内侧主要分布细长的指状孔层,而管壁的外侧主要分布着海绵状孔,微管表面则形成相对致密的表皮层。1400℃烧结的微管还原前后的孔隙率分别为21%和37%,还原前后抗弯强度分别为354MPa和178 MPa,常温至1400℃烧结直径收缩达到38%,1400℃烧结并还原的Ni/YSZ微管的电导率772S·cm-1。电解质浸渍液用EtOH/MEK溶剂体系,2%的PVB做粘结剂,5-6%的TEA做表面活性剂, YSZ含量为15%,在经过48h的球磨后,可以形成均匀稳定的悬浮浸渍液,经过2次浸渍可以制备成10μm的电解质膜。以LSM作为阴极材料,用EtOH/MEK溶剂体系配制的阴极浸渍液,浸渍一次并烧结至1200℃,形成20μm厚的阴极膜层。单电池的性能测试表明,对于该阳极支撑型MT-SOFC,以纯H2和O2做燃料气和氧化剂,工作温度为800℃时,最大功率密度为960 mW·cm-2,若以湿H2和空气作为燃料气和氧化剂,工作温度为800℃时,最大功率密度为820 mW·cm-2,以湿甲烷和空气为燃料气和氧化剂,工作温度为800℃时,最大功率密度为480 mW·cm-2,但容易积碳。
     用相转化纺丝法结合烧结工艺制备中空纤维陶瓷的技术,为微管式固体氧化物燃料电池提供了一种简易,廉价,结构理想的制备方法。其中,电解质中空纤维支撑的燃料电池强度高,但是功率密度低;以阳极中空纤维上浸渍烧结形成致密的电解质膜和多孔的阴极膜,制备成多孔阳极支撑的高功率密度的单电池,其机械强度有所损失。
Micro tubular solid oxide fuel cells (MT-SOFCs) have millimeter or sub-millimeter grade diameters. They have attracted increasing interests due to their high volumetric power density, good mechanical properties, good thermo-cycling behavior, and quick start-up and shut-down operations. They will be applied in a variety of regions such as power sources for portable devices, uninterruptible power supplies (UPS) and dynamical power sources for automobiles. In this study, a phase inversion-sintering process has been developed to prepare the hollow fibre ceramic micro tubes with a special pore structure, from which the micro tubular solid oxide fuel cells with ideal structures and good performances were subsequently fabricated. It provides a new route to form the micro tubular solid oxide fuel cells with simplified operation and fairly low cost.
     First of all, the YSZ (Y2O3 stabilized ZrO2) and SDC (Sm2O3 doped CeO2) electrolyte hollow fibers were prepared by the phase inversion-sintering process. The obtained YSZ and SDC hollow fibers have a diameter of 1.1~1.4mm and wall thickness of 210~230μm. Gas-tight YSZ hollow fibers may be obtained by sintering at temperatures higher than 1500℃, and their bending strength may attain up to 355MPa when sintered at 1600℃, while the SDC hollow fibers may be sintered into gas-tight micro tubes under temperatures higher than 1450℃with the bending strength of higher than 200MPa. The electrolyte-supported micro tubular SOFCs were fabricated by dip-coating Ni/YSZ anode and LSM (La0.8Sr0.2MnO3-x) cathode (for YSZ tube) or Ni/SDC anode and BSCF (Ba0.5Sr0.5Co0.8Fe0.2O3) cathode (for SDC tube) on the outer and inner surfaces of the YSZ or SDC electrolyte micro tubes. The YSZ and the SDC hollow fiber supported micro cells exhibit the highest output densities of 87 mW·cm-2 at 850℃and 106 mW·cm-2 at 750℃, respectively with H2/O2 as the fuel/oxidant. The low output power density is the result of the large thicknesses (210~230μm) of the electrolyte hollows and the finger-like pores conserved in the fiber walls. Therefore, the Ni containing anode-supported micro cells with an ultra thin electrolyte film may be a more favorable structure to give high output power densities.
     The NiO/YSZ anode micro tubes have been prepared through an improved phase inversion-sintering process. NiO/YSZ anode powders were dispersed under stirring in the PESf/NMP polymer solution with PVP as the dispersant and pore-maker to form a spinning solution. Following the same procedures as for the preparation of YSZ and SDC fibers, NiO/YSZ hollow fibers were obtained. These fibers were then reduced by H2 at 800℃to form the Ni/YSZ cermet anode micro tubes. The effects of sintering temperature on the properties of the anode fibers have been extensively investigated. The resultant anode micro tubes possess an asymmetric structure comprising of a micro porous outer layer integrated with a finger-like porous sub-layer. Furthermore, the outer surface of the micro tubes is very smooth and is favorable for coating electrolyte films. As the sintering temperature was increased from 1200°C to 1400°C, the mechanical strength and the electrical conductivity of the Ni/YSZ hollow fibers increased from 35 MPa to 178 MPa and from 30S·cm-1 to 772 S·cm-1, respectively but the porosity decreased from 64.2% to 37.0%. The optimum sintering temperature was found to be between 1350°C and 1400°C for Ni/YSZ hollow fibers applied as the anode support for micro tubular SOFCs.
     A dip-coating and co-sintering technique was applied to form the thin and dense YSZ electrolyte films on the outer surface of the NiO/YSZ micro tubes to form anode/electrolyte half cells. A suspension containing 15wt% of YSZ powder, 2wt% PVB binder, 5~6wt% TEA/YSZ surfactant and a small amount of DBP and lubricant PEG was firstly produced. The NiO/YSZ hollow fiber precursor was then dipped into the suspension for about 1 min so as to form a green YSZ film. Each dip-coating operation may finally produce a YSZ film of around 5μm thickness. In order to make a thin but dense enough electrolyte film, twice dip-coating operation resulting in a 10μm thickness film has proved to be the best. The one-coating resulted films (~5μm) may contain defects but three-coating resulted films (~15μm) are susceptible to crack in addition to the high electrical resistance. The coated NiO-YSZ hollow fibers were then co-sintered at 1400°C to form the dense electrolyte films that are integrated tightly with the porous anode micro tubes. On the outer surface of the anode/electrolyte half cell, a layer of porous LSM membrane was coated as the cathode so as to form a complete single micro tubular cell. The sintering temperature for the cathode integration is 1200°C, and the thickness of the final cathode is about 20μm.
     The resultant anode-supported micro tubular cells were finally tested at various conditions. When H2/O2, H2/Air or CH4/Air were used as the fuel/oxidant gases, the highest power density of the anode-supported cell attains up to 960, 820 or 480 mW·cm-2 at 800°C, respectively. However, carbon deposition has been observed in the use of methane as fuel, leading to the fast degradation of the cell output density.
引文
[1]衣宝廉.燃料电池—原理·技术·应用[M].北京:化学工业出版社, 2003, 8.
    [2]林维明主编.燃料电池系统[M].北京:化学工业出版社, 1996, 6.
    [3] Will Mitchell, Jr. (Ed.) Fuel Cells [M]. Academic Press Inc. Ltd. (New York and London), 1963.
    [4] Subhash, C. Singhal, Kevin Kendall著,韩敏芳,蒋先锋译.高温固体氧化物燃料电池—原理、设计和应用[M].北京:科学出版社, 2007.
    [5]韩敏芳,彭苏萍.固体氧化物燃料电池材料及其制备[M].北京:科学出版社, 2004, 2.
    [6]日本电气学会·燃料电池发电21世纪系统技术调查专门委员会编著,谢晓峰,范星河译.燃料电池技术[M].北京:化学工业出版社, 2004, 3.
    [7]马紫峰,林卓旸,张煜,林维明. CH4-O2型管状固体氧化物燃料电池性能的研究[J].电源技术, 1996, 20 (3): 99-103.
    [8]王绍荣.固体氧化物燃料电池简介[J].上海节能, 2007, 3: 32-34.
    [9] Shao Z P, Haile S M, A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells [J]. Nature, 2004, 431: 170-173.
    [10]王林山,李英.燃料电池(第二版) [M].北京:冶金工业出版社, 2000, 11.
    [11]江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展[J].化学进展, 1997, 9 (4): 387-396.
    [12]魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展[J].稀有金属, 2003, 27 (2): 286-298.
    [13] Gibson I R, Dransfield G P, Irvine J T S. Influence of Yttria Concentration upon Electrical Properties and Susceptibility to Ageing of Yttria Stabilized Zirconias [J]. Journal of the European Ceramic Society, 1998, 18: 661-667.
    [14] Badwal S P S, Ciacchi F T, Milosevic D. Scandia-Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation [J]. Solid State Ionics, 2000, 136: 91-99.
    [15] Chen K F, Tian Y T, LüZ, Ai N, Huang X Q, Su W H. Behavior of 3 mol% Yttria-Stabilized Tetragonal Zirconia Polycrystal Film Prepared by Slurry Spin Coating[J]. Journal of Power Sources, 2009, 186: 128-132.
    [16] Arai H, Kunisaki T, Shimizu Y, Seiyama T. Electrical Properties of Calcia-Doped Ceria with Oxygen Ion Conduction [J]. Solid State Ionics, 1986, 20: 241-248.
    [17] Guan X F, Zhou H P, Wang Y, et al. Preparation and Properties of Gd3+ and Y3+ Co-Doped Ceria-Based Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal ofAlloys and Compounds, 2008, 464 (1-2): 310-316.
    [18] Prasad D H, Son J W, Kim B K, et al. Synthesis of Nano-Crystalline Ce0.9Gd0.1O1.95 Electrolyte by Novel Sol-Gel Thermolysis Process for IT-SOFCs [J]. Journal of the European Ceramic Society, 2008, 28 (16): 3107-3112.
    [19] Muralidharan P, Jo S H, Kim D K. Electrical Conductivity of Submicrometer Gadolinia-Doped Ceria Sintered at 1000 degrees C Using Precipitation-Synthesized Nanocrystalline Powders [J]. Journal of the American Ceramic Society, 2008, 91 (10): 3267-3274.
    [20] Huang K Q, Feng M, Goodenough J B. Synthesis and Electrical Properties of Dense Ce0.9Cd0.1O1.95 Ceramics [J]. Journal of the American Ceramic Society, 1998, 81(2): 357-362.
    [21] Zhang X G, Decès-Petit C, Yick S, Robertson M, Kesler O, Maric R, Ghosh D. A Study on Sintering aids for Sm0.2Ce0.8O1.9 Electrolyte [J]. Journal of Power Sources, 2006,162 (1): 480-485.
    [22] Im J M, You H J, Yoon Y S, Shin D W. Synthesi Nano-crystalline Gd0.1Ce0.9O2-x for IT-SOFC by Aerosol Flame Deposition [J]. Ceramics International, 2008, 34 (4): 877-881.
    [23] Gerhard-Anderson R, Nowick A S. Ionic Conductivity of CeO2 with Trivalent Dopants of Different Ionic Radii [J]. Solid State Ionics, 1981, 5: 547-550.
    [24] Kilner J A. Fast Anion Transport in Solids [J]. Solid State Ionics, 1983, 8: 201-207.
    [25]于兴文,黄学杰,陈立泉.固体氧化物燃料电池研究进展[J].电池, 2002, 32 (2): 110-112.
    [26] Azad A M, Larose S, Akbar S A. Bismuth Oxide-Based Solid Electrolytes for Fuel Cells [J]. Journal of Materials Science, 1994, 29(16): 4135-4151.
    [27] Sammes N M, Tompsett G A, Nafe H, Aldinger F. Bismuth Based Oxide Electrolytes Structure and Ionic Conductivity [J]. Journal of the European Ceramic Society, 1999, 19(10): 1801-1826.
    [28] Jiang N X, Wachsman E D. Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides [J]. Journal of the American Ceramic Society, 1999, 82(11): 3057-3064.
    [29] Takahashi T, Iwahara H, Esaka T. High Oxide Ion Conduction in Sintered Oxide of Syetem Bi2O3-M2O5 [J]. Journal of the Electrochemical Society, 1977, 124 (10): 1563-1569.
    [30]刘江,陈广玉,何岚鹰,黄向东,苏文辉.带有YSZ保护膜的Bi2O3基固体电解质燃料电池的制备及其性能分析[J].电源技术, 1995, 19 (1): 9-12.
    [31]张峰,陈成,潘博,许睿,马桂林. La0.9Sr0.1Ga0.8Mg0.2O3-α在常压合成氨及燃料电池中的应用[J].苏州大学学报(自然科学版), 2007, 23 (2): 74-77.
    [32] Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 Perovskite Type Oxide as a New Ionic Conductor [J]. Journal of the American Chemical Society, 1994, 116: 3801-3803.
    [33] Zhong H, Matsumoto H, Toriyama A, et al. Honeycomb-Type Solid Oxide Fuel Cell Using La0.9Sr0.1Ga0.8Mg0.2O3 Electrolyte for High Volumetric Power Density [J]. Journal of theElectrochemical Society, 2009, 156 (1): B74-B79.
    [34] Huang K Q, Feng M, Goodenough J B, et al. Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr-and Mg-Doped LaGaO3 [J]. Journal of the Electrochemical Society, 1997, 144 (10): 3620-3624.
    [35] Feng M, Goodenough J B. Improved Oxide Ion Electrolytes[C]. Solid State Ionics IV, 1994 Nov 28-Dec 01, BOSTON M A., 1994, 369: 333-342.
    [36] Iwahara H, Esaka T, Uchida H, et al. Proton Conduction in Sintered Oxides and Its Application to Steam Electrolysis for Hydrogen Production [J]. Solid State Ionics, 1981, 3-4: 359-363.
    [37] Yajima T, Kazeoka H, Yogo T, et al. Proton Conduction in Sintered Oxides Based on CaZrO3 [J] . Solid State Ionics, 1991, 47 (3-4): 271-275.
    [38] Lee W K, Nowick A S, Boatner L A. Protonic Conduction in Acceptor doped KTaO3 Crystals [J]. Solid State Ionics, 1986, 18-19 (2): 989-993.
    [39] Liang K C, Nowick A S. Hightemperature Protonic Conduction in Mixed Perovskite Ceramics [J]. Solid State Ionics, 1993, 61 (1-2): 77-81.
    [40]李雪,赵海雷,张俊霞,张翠娟. SOFC用钙钛矿型质子传导固体电解质[J].电池, 2007, 37 (4): 303-305.
    [41] Shimura T, Komori M, Iwahara H. Ionic Conduction in Pyrochlore Type Oxides Containing Rare Earth Elements at High Temperature[J] . Solid State Ionics, 1996, 86-88 (1): 685-689.
    [42] Shimura T, Suzuki K, Iwahara H. Protonic-Oxide Ionic Conduction in Srm+1(Ti1-xInx)mO3m+1-x (m=1,2 and∞) at High Temperature [J]. Solid State Ionics, 1998, 113-115: 355-361.
    [43] Kreuer K D. On the Development of Proton Conducting Materials for Technological Applications [J]. Solid State Ionics, 1997, 97:1-15.
    [44] Cheng H, Wang H E, Li L, et al. Facile Synthesis of La2Mo2O9 Nanoparticles via an EDTA Complexing Approach [J]. Rare Metals, 2008, 27(4): 340-344.
    [45] Chen C W, Tsai D S, Jin T Y, et al. Electrochemical Performance of Lanthanum Calcium Cobalt Ferrite Cathode Interfaced to LAMOX Electrolyte [J]. Solid State Ionics, 2008, 179 (9-10): 330-337.
    [46] Georges S, Salaun M. Redox Cycling and Metastability of La2Mo2O9-Based Ceramics [J]. Solid State Ionics, 2008, 178 (37-38): 1898-1906.
    [47] Zhu B, Liu, X R, Zhu Z G, et al. Solid Oxide Fuel Cell (SOFC) Using Industrial Grade Mixed Rare-Earth Oxide Electrolytes [J]. International Journal of Hydrogen Energy 2008, 33 (13): 3385-3392.
    [48] Huang J B, Mao Z Q, Yang L Z, et al. SDC-Carbonate Composite Electrolytes for Low-Temperature SOFCs [J]. Electrochemical and Solid State Letters, 2005, 8 (9): A437-A440.
    [49]黄贤良,赵海雷,吴卫江,仇卫华.固体氧化物燃料电池阳极材料的研究进展[J].硅酸盐学报,2005, 33 (11): 1407-1413.
    [50] Minh N Q. Ceramic Fuel Cell [J]. Journal of the American Ceramic Society, 1993, 76 (3): 563-588.
    [51] Singhal S C. Advances in Solid Oxide Fuel Cell Technology [J]. Solid State Ionics, 2000, 135: 305-313.
    [52] Mogensen M, Jensen K V, J?rgensen M J, Primdahl S. Progress in Understanding SOFC Electrodes [J] . Solid State Ionics, 2002, 150: 123-129.
    [53] RinguedéA, Bronine D, Frade J R. Reaction Mechanism of Ni Pattern Anodes for Solid Oxide Fuel Cells [J]. Solid State Ionics, 2002, 146: 219-224.
    [54] Zhu W Z, Deevi S C. A Review on the Status of Anode Materials for Solid Oxide Fuel Cells [J]. Material Science and Engineering, 2003, A362: 228-239.
    [55] Leng Y J, Chan S H, Khor K A, Jiang S P. Performance Evaluation of Anode Supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte [J]. Intnational Journal of Hydrogen Energy, 2004, 29 (10): 1025-1033.
    [56] Murray E P, Tsai T, Barnett S A. A Direct Methane Fuel Cell with a Ceria Based Anode [J]. Nature, 1999, 400: 649-651.
    [57] Gunji A, Wen C, Otomo J, Kobayashi T, et al. Carbon Deposition Behaviour on Ni-ScSZ Anodes for Internal Reforming Solid Oxide Fuel Cells [J] . Journal of Power Sources, 2004, 131: 285-289.
    [58]阎景旺,董永来,于春英等.中温固体氧化物燃料电池阳极基底及负载型电解质薄膜的研制[J].无机材料学报, 2001, 16 (5): 804-814.
    [59] Zha S, Rauch W, Liu M. Ni-Ce0.9Gd0.1O1.95 Anode for GDC Electrolyte Based Low Temperature SOFCs [J]. Solid State Ionics, 2004, 166: 241-250.
    [60] Zhang X G, Ohara S, Okawa H, et al. Interactions of a La0.9Sr0.1Ga0.8Mg0.2O3 -δElectrolyte with Fe2O3, Co2O3, and NiO Anode Materials [J] . Solid State Ionics, 2001, 139: 145-152.
    [61] Craciun R, Park S, Gorte R J, et al. Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells [J] . Journal of the Electrochemical Society, 1999, 146: 4019-4022.
    [62] Park S, Vohs J M, Gorte R J. Direct Oxidation of Hydrocarbons in a Solid oxide Fuel Cell [J]. Nature, 2000, 404: 265-267.
    [63] Suzuki M, Sasaki H, Otoshi S. Development of Ru/ZrO2 SOFC Anode [A]. The Second International Symposium on Solid Oxide Fuel Cells [C], Athens, Greece, 1991: 585-591.
    [64] Sch?fer W, Koch A, Herold-Schmidt U, Stolten D. Materials, Interfaces and Production Techniques for Planar Solid Oxide Fuel Cells [J]. Solid State Ionics, 1996, 86-88: 1235-1239.
    [65] Stashans A, Sánchez P. A Theoretical Study of La-Doping in Strontium Titanate [J]. Materials Letters, 2000, 44: 153-157
    [66] Jeffrey W Fergus. Oxide Anode Materials for Solid Oxide Fuel Cells [J]. Solid State Ionics, 2006, 177: 1529-1541.
    [67]方红冬,由宏新,阿布里提·阿布都拉. SOFC单相氧化物MIEC阳极材料的研究进展[J].化工进展, 2007, 26 (11):1525-1528.
    [68] Jiang S P. Development of Lanthanum Strontium Manganite Perovskite Cathode Materials of Solid Oxide Fuel Cells: A Review [J]. Journal of Materials Science, 2008, 43 (21): 6799-6833.
    [69] Jiang Z Y, Zhang L, Feng K, et al. Nanoscale Bismuth Oxide Impregnated (La, Sr)MnO3 Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells [J]. Journal of Power Sources, 2008, 185 (1): 40-48.
    [70] Yamaguchi T, Shimizu S, Suzuki T, et al. Demonstration of the Rapid Start-Up Operation of Cathode-Supported SOFCs Using a Microtubular LSM Support [J]. Journal of the Electrochemical Society, 2008, 155(11): B1141-B1144.
    [71] Gu H X, Zheng Y, Ran R, et al. Synthesis and Assessment of La0.8Sr0.2ScyMn1-yO3-delta as Cathodes for Solid-Oxide Fuel Cells on Scandium-Stabilized Zirconia Electrolyte [J]. Journal of Power Sources, 2008, 183: 471-478.
    [72] Tsai T, Scott A Barnett. Effect of LSM-YSZ Cathode on Thin-Electrolyte Solid Oxide Fuel Cell Performance [J]. Solid State Ionics, 1997, 93: 207-217.
    [73] Wang Z W, Cheng M J, Dong Y L, Zhang M, Zhang H M. Investigation of LSM1.1-ScSZ Composite Cathodes for Anode-Supported Solid Oxide Fuel Cells [J]. Solid State Ionics, 176 (2005) 2555-2561.
    [74] Kharton V V, Naumovich E N, Kovalevsky A V, Viskup A P, Figueiredo F M, Bashmakov I A, Marques F M B. Mixed Electronic and Ionic Conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni): IV. Effect of Preparation Method on Oxygen Transport in LaCoO3?δ[J]. Solid state Ionics, 2000, 138: 135-148.
    [75] Bi Z, Cheng M, Dong Y, Wu H, She Y, Yi B, Electrochemical Evaluation of La0.6Sr0.4CoO3- La0.45Ce0.55O2 Composite Cathodes for Anode-Supported La0.45Ce0.55O2- La0.9Sr0.1Ga0.8Mg0.2O2.85 Bilayer Electrolyte Solid Oxide Fuel Cells [J]. Solid State Ionics, 2005, 176: 655-661.
    [76] Liu S M, Suo J P, Xiao J Z. Effects of Surface Over Potential at the La1-xSrxCo1-yFeyO3-Yttria Stabilized Zirconia Interface in a Model Solid Oxide Fuel Cell Cathode [J]. International Journal of Hydrogen Energy, 2008, 33 (21): 6322-6326.
    [77] Lee K T, Manthiram A. LaSr3Fe3-yCoyO10-δ(0<=y<=1.5) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells [J]. Chemistry of Materials, 2006, 18:1621-1626.
    [78] Leng Y J, Chan S H, Liu Q L. Development of LSCF-GDC Composite Cathodes for Low-Temperature Solid Oxide Fuel Cells with Thin Film GDC Electrolyte [J]. International Journal of Hydrogen Energy, 2008, 33(14): 3808-3817.
    [79] Sakito Y, Hirano A, Imanishi N, et al. Silver Infiltrated La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate Temperature Solid Oxide Fuel Cells Conference [J]. Journal of Power Sources, 2008, 182(2): 476-481.
    [80] Mai A, Haanappel V A C, Uhlenbruck S, et al. Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells Part I. Variation of Composition [J]. Solid State Ionics, 2005, 176 (15-16): 1341-1350.
    [81] Qiu L, Ichikawa T, Hirano A, et al. Ln(1-x)Sr(x)Co(1-y)Fe(y)O(3-Delta) (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the Electrodes of Solid Oxide Fuel Cells [J]. Solid State Ionics, 2003, 158 (1-2): 55-65.
    [82] Baumann F S, Fleig J, Habermeier H U, et al. Impedance Spectroscopic Study On Well-Defined (La,Sr)(Co,Fe)O3-δModel Electrodes [J]. Solid State Ionics, 2006, 177 (11-12): 1071-1081.
    [83] Zhang J D, Ji Y, Gao H B, et al. Composite Cathode La0.6Sr0.4Co0.2Fe0.8O3- Sm0.1Ce0.9O1.95- Ag for Intermediate-Temperature Solid Oxide Fuel Cells [J]. Journal of Alloys and Compounds, 2005, 395 (1-2): 322-325.
    [84] Simner S P, Bonnett J F, Canfield N L, Meinhardt K D, Shelton J P, Sprenkle V L, Stevenson J W. Development of Lanthanum Ferrite SOFC Cathodes [J]. Journal of Power Sources, 113 (2003) 1-10.
    [85] Simner S P, Bonnett J F, Canfield N L, Meinhardt K D, Sprenkle V L, Stevenson J W. Development of Lanthanum Ferrite SOFC Cathodes [J]. Electrochemistry and Solid State Letters, 2002, 5 (7): A173-A175.
    [86] Smith P M, Haughland S P, Jeffery ND. Thermochemical Compatibility Between Selected (La,Sr)(Co,Fe,Ni)O3 Cathodes and Rare Earth Doped Ceria Electrolytes [J]. Journal of Power Sources, 2007, 173: 675-680.
    [87] Larramendi R, Ortiz N, López R, Larramendi J I, Rojo T. Structure and Impedance Spectroscopy of La0.6Ca0.4Fe0.8Ni0.2O3?δThin Films Grown by Pulsed Laser Deposition [J]. Journal of Power Sources, 2007, 171: 747-753.
    [88] Yang L, Zuo C D, Wang S Z, et al. A Novel Composite Cathode for Low-Temperature SOFCs Based On Oxide Proton Conductors [J]. Advanced Materials, 2008, 20 (17): 3280-3283.
    [89] Zhao F, Wang Z Y, Liu M F, et al. Novel Nano-Network Cathodes for Solid Oxide Fuel Cells [J]. Journal of Power Sources, 2008, 185 (1): 13-18.
    [90] Chang C L, Hsu C S, Hwang B H. Unique Porous Thick Sm0.5Sr0.5CoO3 Solid Oxide Fuel Cell Cathode Films Prepared by Spray Pyrolysis [J]. Journal of Power Sources, 2008, 179 (2):734-738.
    [91] Yan A Y, Yang M, Hou Z F, et al. Investigation of Ba1-xSrxCo0.8Fe0.2O3-δas Cathodes for Low-Temperature Solid Oxide Fuel Cells Both in the Absence and Presence of CO2 [J]. Journal of Power Sources, 2008, 185(1): 76-84.
    [92] Zhou W, Ran R, Shao Z P, et al. Barium and Strontium Enriched (Ba0.5Sr0.5)(1+x)Co0.8Fe0.2O3-δOxides as High Performance Cathodes for Intermediate Temperature Solid Oxide Fuel Cells [J]. Acta Materialia, 2008, 56 (12): 2687-2698.
    [93]郭晓霞,郑文君,孟广耀.固体氧化物燃料电池连接材料的研究进展[J].功能材料, 2000, 31 (1): 23-25.
    [94] Horita T, Xiong Y P, Kishimoto H, et al. Characterization of Fe-Cr Alloys in CH4 Fuels for SOFC Interconnects[C]. 8th International Symposium on Solid Oxide Fuel Cells, APR 27-MAY 02, 2003 PARIS FRANCE, Solid Oxide Fuel Cells VIII (SOFC VIII), 2003, 7: 856-864.
    [95] Hua B, Pu J, Zhang J F, et al. Ni-Mo-Cr Alloy for Interconnect Applications in Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of the Electrochemical Society, 2009, 156 (1): B93-B98
    [96] Yen Y W, Lee C Y, Huang D P, et al. Interfacial Reactions Between Ni/430 Stainless Steel as the Interconnect Material and Ag-Cu Alloy Fillers in a Solid Oxide Fuel Cell System [J]. Journal of Alloys and Compounds, 2008, 466 (1-2): 383-386.
    [97] Yang Z G, Xia G G, Wang C M, et al. Investigation of Iron-Chromium-Niobium-Titanium Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect Applications [J]. Journal of Power Sources, 2008,183 (2): 660-667.
    [98] Sakai N, Yamaji K, Horita T, et al. Oxygen Transport Properties of La1-xCaxCrO3-δas an Interconnect Material of a Solid Oxide Fuel Cell [J]. Journal of the Electrochemical Society, 2000, 147(9): 3178-3182.
    [99] Horita T, Ishikawa M, Yamaji K, et al. Calcium Tracer Diffusion in (La,Ca)CrO3 by SIMS [J]. Solid State Ionics, 1999, 124 (3-4): 301-307.
    [100] Horita T, Ishikawa M, Yamaji K, et al. Cation Diffusion in (La,Ca)CrO3 Perovskite by SIMS [J]. Solid State Ionics, 1998, 108 (1-4): 383-390.
    [101] Horita T, Sakai N, Kawada T, et al. Grain-Boundary Diffusion of Strontium In (La,Ca)CrO3 Perovskite-Type Oxide by SIMS [J]. Journal of the American Ceramic Society, 1998, 81 (2): 315-320.
    [102]朴金花,孙克宁,张乃庆,周德瑞,华军.固体氧化物燃料电池密封材料的研究进展[J].人工晶体学报, 2004, 33 (6): 909-912.
    [103]朱庆山,彭练,黄文来,谢朝晖.固体氧化物燃料电池密封材料的研究现状与发展趋势[J].无机材料学报, 2006, 21 (2): 284-290.
    [104] Liu W N, Sun X, Khaleel M. A. Predicting Young's Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing [J]. Journal of Power Sources, 2008, 185 (2):1193-2000.
    [105] Chu C L, Lee J, Lee S Y. Evaluation of Glass Composites for Sealing Solid Oxide Fuel Cells [J]. Journal of Ceramic Processing Research, 2008, 9 (4): 338-342.
    [106] Lue Z, Wang R F, Huang X Q, et al. Oxygen Pump Method for Leak Rate Testing of SiO2-B2O3-Al2O3-BaO-PbO2-ZnO Glass Sealant for SOFC [J]. Solid State Ionics, 2008, 179 (27-32): 1286-1290.
    [107] Smeacetto F, Salvo M, Ferraris A, et al. Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supportbd-Electrolyte in Planar SOFCs [J]. Journal of the European Ceramic Society, 2008, 28 (13): 2521-2527.
    [108] Prica M, Copcutt R, Kilbride I. Contoured PEN Plates for Improved Thermomechanical Performance in SOFCs[C]. Proceedings of 2nd European Solid Oxide Fuel Cell Forum, Oslo Norway, 1996, Vol.1: 393-402.
    [109] Costamagna P, Arato E. Parameter Design Optimisation of a Planar SOFC[C]. Proceedings of 1st European Solid Oxide Fuel Cell Conference, Lucerne Switzerland, 1994, 287-96 Vol.1: 1054.
    [110] Yang Y Z, Wang G L, Zhang H, et al. Comparison of Heat and Mass Transfer Between Planar and MOLB-Type SOFCs [J]. Journal of Power Sources, 2008, 177 (2): 426-433.
    [111] Achenbach E, Bleise C H, Divisek J. Modelling of Planar SOFC[C]. Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), Yokohama Japan, 1995: 1095-1104.
    [112] Ni M, Leung M K H, Leung D Y C. Modeling of Electrochemistry and Heat/Mass Transfer in a Tubular Solid Oxide Steam Electrolyzer for Hydrogen Production [J]. Chemical Engineering & Technology, 2008, 31 (9): 1319-1327.
    [113] Suzuki M, Sasaki H, Otoshi S, et al. High-Power Density Solid Oxide Electrolyte Fuel-Cells Using Ru/Y2O3 Stabilized Zirconia Cermet Anodes [J]. Solid State Ionics, 1993, 62 (1-2): 125-130.
    [114] Li C X, Xie Y X, Li C J, et al. Characterization of Atmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte [J]. Journal of Power Sources, 2008, 184 (2): 370-374.
    [115] Li C J, Li C X, Long H G, et al. Performance of Tubular Solid Oxide Fuel Cell Assembled with Plasma-Sprayed Sc2O3-ZrO2 Electrolyte [J]. Solid State Ionics, 2008, 179 (27-32): 1575-1578.
    [116] Gruner H, Moens J. The Monolithic VPS-Fabricated SOFC[C]. Proceedings of 2nd European Solid Oxide Fuel Cell Forum, Oslo Norway, 1996 Vol.1: 261-267.
    [117] Eyraud C, Lenoir J, Gery M. Fuel Cells Utilizing the Electrochemical Properties of Absorbates [J]. Compt Rend, 1961, 252:1599-1603.
    [118] Gool W V. Possible Use of Surface Migration in Fuel Cells and Heterogeneous Catalysis [J]. Phillips Res Repts, 1965, 20:81-93.
    [119] Louis G A, Lee J M. Solid Electrolyte Electrochemical Cell [P]. US Patent: 4248941, 1981-02-03.
    [120] Dyer C K. A Novel Thin-Film Electrochemical Device for Energy Conversion [J]. Nature, 1990, 343:547-548.
    [121] Hibino A, Tsunekawa H. Improvement of a Single-Chamber Solid-Oxide Fuel Cell and Evaluation of New Cell Designs [J]. Journal of the Electrochemical Society, 2000, 147(4):1338-1343.
    [122] Hibino A, Wang S Q. One-Chamber Solid Oxide Fuel Cell Constructed From a YSZ Electrolyte With a Ni Anode and LSM Cathode [J]. Solid State Ionics, 2000, 127:89-98.
    [123] Hibino A, Hashimoto A. Single-Chamber Solid-Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures [J]. Journal of the Electrochemical Society, 2000, 147 (8): 2888-2892.
    [124] Hibino A, Hashimoto A. A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures [J]. Science, 2000, 288 (5473): 2031-2036.
    [125]陈胜洲,董新法,林维明.单室固体氧化物燃料电池的研究进展[J].电源技术, 2003, 27 (2): 134-136.
    [126] Tompsett G A , Brown M S, Finnerty C, et al. Design of a Tubular Micro-SOFC Demonstration System[C]. Fourth European Solid Oxide Fuel Cell Forum Proceedings, Lucern Switzerland, 2000, Vol.1: 13-18.
    [127] Sarkar P, Yamarte L, Rho H S, et al. Anode-Supported Tubular Micro-Solid Oxide Fuel Cell [J]. International Journal of Applied Ceramic Technology, 2007, 4(2): 103-108.
    [128] Yamaguchi T, Shimizu S, Suzuki T, et al. Fabrication and Characterization of High Performance Cathode Supported Small-Scale SOFC for Intermediate Temperature Operation [J]. Electrochemistry Communications, 2008, 10 (9): 1381-1383.
    [129] Hayashi K, Yamamoto O, Minoura, H. Portable Solid Oxide Fuel Cells Using Butane Gas as Fuel [J]. Solid State Ionics, 2000, 132 (3-4): 343-345.
    [130] Dokiya M. SOFC System and Technology [J]. Solid State Ionics, 2002, 152-153: 383-392.
    [131] Weber A, Ivers-Tiffée E. Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in stationary and mobile applications [J]. J. Power Sources, 2004, 127: 273-283.
    [132] Hibino T, Hashimoto A, Suzuki M, et al. A Solid Oxide Fuel Cell Using Y-doped BaCeO3 with Pd-loaded FeO Anode and Ba0.5Pr0.5CoO3 Cathode at Low Temperatures [J]. Journal of theElectrochemical Society, 2002, 149A: 1503-1508.
    [133] Suzuki T, Yamaguchi T, Fujishiro Y, et al. Fabrication and Characterization of Micro Tubular SOFCs for Operation in the Intermediate Temperature [J]. Journal of Power Sources, 2006, 160: 73-77.
    [134] Yamaguchi T, Suzuki T, Shimizu S, et al. Examination of Wet Coating and Co-sintering Technologies for Micro SOFCs Fabrication [J]. Journal of Membrane Science, 2007, 300: 45-50.
    [135] Mallon C, Kendall K. Sensitivity of Nickel Cermet Anodes to Reduction Conditions [J]. Journal of Power Sources, 2005, 145: 154-160.
    [136] Basch J. 2007 Fuel Cell Seminar & Exposition[C], Oct. 15-19, 2007, San Antonio, TX, 2007
    [137] Liu Y, Hashimoto S, Nishino H, et al. Fabrication and Characterization of Micro Tubular Cathode Supported SOFC for Intermediate Temperature Operation [J]. Journal of Power Sources, 2007, 174: 95-102.
    [138] Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M. Fabrication and Evaluation of Cathode Supported Small Scale SOFCs [J]. Materials Letters, 2008, 62 (10-11): 1518-1520.
    [139] Liu Y, Hashimoto S, Nishino H, et al. Fabrication and Characterization of a Co-fired La0.6Sr0.4Co0.2Fe0.8O3?δCathode Supported Ce0.9Gd0.1O1.95 Thin film for IT-SOFCs [J]. Journal of Power Sources, 2007: 164: 56-64.
    [140] Yamahara K, Jacobson C P, Visco S J, et al. High Performance Lanthanum-Ferrite Based Cathode for SOFC [J]. Solid State Ionics, 2005, 176: 451-456.
    [141] Ohrui H, Matsushima T, Hirai T. Performance of a Solid Oxide Fuel Cell Fabricated by Co-firing [J]. Journal of Power Sources, 1998, 71: 185-189.
    [142] Waldbillig D, Wood A, Ivey D G. Thermal Analysis of the Cyclic Reduction and Oxidation Behaviour of SOFC Anodes [J]. Solid State Ionics, 2005, 176: 847-859.
    [143] George R A. Status of Tubular SOFC Field Unit Demonstrations [J]. Journal of Power Sources, 2000, 86: 134-139.
    [144] Huang K. Gas-diffusion Process in a Tubular Cathode Substrate of an SOFC-I Theoretical Analysis of Gas-Diffusion Process under Cylindrical Coordinate System [J]. Journal of the Electrochemical Society, 2004, 151: A716-A719.
    [145] Saunders G J, Kendall K. Reactions of Hydrocarbons in Small Tubular SOFCs [J]. Journal of Power Sources, 2002, 106: 258–263.
    [146] Bujalski W, Dikwal C M, Kendall K. Cycling of Three Solid Oxide Fuel Cell Types [J]. Journal of Power Sources, 2007, 171: 96-100.
    [147] Liu S M, Li K. Preparation TiO2/Al2O3 Composite Hollow Fibre Membranes [J]. Journal of Membrane Science, 2003, 218 (1-2): 269-277.
    [148] Sammes N M, Du Y, Bove R. Design and Fabrication of a 100 W Anode SupportedMicro-Tubular SOFC Stack [J]. Meeting on Fuel Cells Science and Technology, OCT 06-07, 2004, Munich GERMANY, Journal of Power Sources, 2005, 145 (2): 428-434.
    [149] Suzuki T, Funahashi Y, Hasan Z, et al. Fabrication of Needle-Type Micro SOFCs for Micro Power Devices [J]. Electrochemistry Communications, 2008, 10 (10): 1563-1566.
    [150] Yamaguchi T, Shimizu S, Suzuki T, et al. Fabrication and Evaluation of Cathode Supported Small Scale SOFCs [J]. Materials Letters, 2008, 62 (10-11): 1518-1520.
    [151] Tan X Y, Wang Z G, Liu H, et al. Enhancement of Oxygen Permeation Through La0.6Sr0.4Co0.2Fe0.8O3-δHollow Fibre Membranes by Surface Modifications [J]. Journal of Membrane Science, 2008, 324 (1-2): 128-135.
    [152] Tan X Y, Tan S P, Teo W K, et al. Polyvinylidene Fluoride (PVDF) Hollow Fibre Membranes for Ammonia Removal From Water [J]. Journal of Membrane Science, 2006, 271 (1-2): 59-68.
    [153] Qin J J, Chung T S. Effect of Dope Flow Rate on the Morphology, Separation Performance, Thermal and Mechanical Properties of Ultrafiltration Hollow Fibre Membranes [J]. Journal of Membrane Science, 1999, 157 (1): 35-51.
    [154] Blanco J F, Sublet J, Nguyen Q T, Schaetze P. Formation and Morphology Studies of Different Polysulfones-Based Membranes Made by Wet Phase Inversion Process [J]. Journal of Membrane Science, 2006, 283: 27-37.
    [155] Tan X Y, Liu S M, Li K. Preparation and Characterization of Inorganic Hollow Fiber Membranes [J]. Journal of Membrane Science, 2001, 188 (1): 87-95.
    [156] Liu L H, Tan X Y, Liu S M. Yttria Stabilized Zirconia Hollow Fiber Membranes [J]. Journal of the American Ceramic Society, 2006, 89 (3): 1156-1159.
    [157] Liu Y T, Tan X Y, Li K. SrCe0.95Yb0.05O3-α(SCYb) Hollow Fibre Membrane: Preparation, Characterization and Performance [J]. Journal of Membrane Science, 2006, 283 (1-2): 380-385.
    [158] Tan X Y, Wang Z G, Liu H, Liu S M. Enhancement of Oxygen Permeation Through La0.6Sr0.4Co0.2Fe0.8O3?δHollow Fibre Membranes by Surface Modifications [J]. Journal of Membrane Science, 2008, 324 (1-2): 128-135
    [159]粱立明,简弃非.固体氧化物燃料电池技术进展及其在汽车上的应用[J].能源工程, 2005, 5: 9-12.
    [160] Aguiar P, Brett D J L, Brandon N P. Feasibility Study and Techno-economic Analysis of an SOFC/battery Hybrid System for Vehicle Applications [J]. Journal of Power Sources, 2007, 171: 186-197.
    [161] Li H B, Xia C R, Zhu M H, Zhou Z X, Meng G Y. Reactive Ce0.8Sm0.2O1.9 Powder Synthesized by Carbonate Coprecipitation: Sintering and Electrical Characteristics. Acta Materialia, 2006, 54: 721-727.
    [162] Chen M, Kim B H, Xu Q, Ahn B K, Kang W J , Huang D. Synthesis and Electrical Properties of Ce0.8Sm0.2O1.9 Ceramics for IT-SOFC Electrolytes by Urea-Combustion Technique [J]. Ceramics International, 2008, doi:10.1016/j.ceramint.2008.06.014.
    [163] Kuzjukevics A, Linderoth S. Interaction of NiO with Yttria Stabilized Zirconia [J]. Solid State Ionics, 1997, 93: 255-261.
    [164] Wang Z H, Sun K N, Shen S Y, Zhang N Q, Qiao J S, Xu P. Preparation of YSZ Thin Films for Intermediate Temperature Solid Oxide Fuel Cells by Dip-coating Method [J]. Journal of Membrane Science, 2008, 320: 500-504.
    [165] Suzuki T, Yamaguchi T, Fujishiro Y, Awano M. Improvement of SOFC Performance Using a Microtubular, Anode-Supported SOFC [J]. Journal of the Electrochemical Society, 2006, 153 (5): A925-A928.
    [166] Yang C, Li W, Zhang S, Bi L, Peng R, Chen C, Liu W. Fabrication and Characterization of an Anode-Supported Hollow Fiber SOFC[J]. Journal of Power Sources. 2008, doi: 10.1016/j.jpowsour. 2008. 10. 069
    [167] Wei C C, Li K. Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells [J]. Industry & Engineering Chemical Research, 2008, 47 (5): 1506-1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700