用户名: 密码: 验证码:
高密度二氧化碳介质中的聚乙二醇自由基化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来对环境问题的日益重视,发展环境友好的合成方法已越来越引起有机化学家的关注,超临界二氧化碳作为有机溶剂的代替品已经进行了广泛的研究,在氢化反应中已实现工业化。氧化反应是有机化学中最基本的也是最重要的反应之一,工业过程多以氧气作为氧化剂,但反应过程会受传质的限制。超临界二氧化碳在氧化反应中展现了诸多优点,如:本身不会被氧化、可提高氧气的操作压力、改善体系的传质等。本论文主要着眼于利用超临界二氧化碳的独特性质,发展环境友好的超临界二氧化碳中的氧化反应,超临界二氧化碳在反应中不仅可以代替有机溶剂,而且可以加速反应,控制反应的选择性等。此外,二氧化碳既是最主要的温室气体,同时也是地球上分布最广、储量最丰富的碳资源之一。无论从资源利用还是环境保护的角度考虑,二氧化碳的固定和化学转化的研究都具有重要意义。论文的另一部分主要着眼于发展新的催化方法实现二氧化碳转化利用。
     Wacker氧化是氧化反应中最重要的反应之一,无论在工业生产还是有机合成中都占有重要的地位。目前,Wacker氧化的发展主要受限于贵重钯金属催化剂的失活,催化剂钯难以回收再用。我们研究发现,Wacker反应可以在超临界二氧化碳和聚乙二醇两相体系中顺利进行,超临界二氧化碳不仅可以提供安全的氧气操作环境,而且可以促进氧化反应的进行,反应结束后还可以用来萃取产物。聚乙二醇不仅可以固定催化剂,而且还可以稳定钯催化剂,使催化剂有更长的使用寿命。另外,对苯乙烯类底物,通过调节助催化剂,可选择性的生成Wacker反应产物和C=C键断裂产物。
     聚乙二醇作为一种环境友好、生物可降解的高分子化合物,被广泛用作热能储存材料、反应溶剂、相转移催化剂等。聚乙二醇氧化降解此前已经有很多报导,主要经过了自由基过程,而聚乙二醇氧化降解过程一直没有在有机合成中得到应用。通过一系列实验发现,聚乙二醇降解产生的自由基可以引发自由基反应,包括苄位C=C双键的断裂反应、苄位sp~3 C-H键的氧化反应、苄醇的氧化反应和甲酰化反应。另外,加入少量的金属钴盐或者锰盐可以促进苄位sp~3C-H键的氧化反应。结合机理的研究,我们提出了聚乙二醇自由基引发的反应机理。另外,高密度的二氧化碳在聚乙二醇自由基引发的反应中发挥了重要作用,如加速反应,调节产物的选择性等。
     二氧化碳既是最主要的温室气体,同时也是地球上分布最广、储量最丰富的碳资源之一。无论从资源利用还是环境保护的角度考虑,二氧化碳的固定和化学转化的研究都具有重要意义。其中环氧化物和二氧化碳原子经济性地合成具有重要应用价值的如环状碳酸酯是化学固定二氧化碳有效方法之一。离子液体在催化二氧化碳与环氧化物的环加成反应方面有很多报导。离子液体和环状碳酸酯都是高沸点化合物,分离环状碳酸酯往往需要减压蒸馏,使得过程复杂而且需要消耗大量的能量。为更好地解决产物的分离问题,我们分别研究了二氧化硅负载季铵盐和二氧化硅负载的咪唑类离子液体催化二氧化碳和环氧化物的环加成反应,用二氧化硅负载离子液体不但有利于催化剂的回收,而且可以提高催化剂的催化活性。采用超临界二氧化碳作为反应介质,反应结束后,释放出二氧化碳,只需要过滤就可得到98%以上纯度的产物,不需要任何有机溶剂。此外,该工艺操作简单,可用于流动式(固定床)反应。
During the past decade, chemists and engineers have been developing industrial or commercial processes to do just that-use liquid CO_2 in place of or in combination with organic solvents to create more "green" operations. Great strides have been made in understanding CO_2's solvent properties. A reaction in almost any organic solvent using air or O_2 as the oxidant- the least expensive and most atom-efficient route- will form waste byproducts arising from oxidation of the solvent. Consequently, oxidation reactions in CO_2 have been investigated extensively over the past decade.
     Aerobic oxidation of styrene catalyzed by PdCl_2/CuCl can be smoothly performed in the supercritical carbon dioxide and poly (ethylene glycol) biphasic system. High conversion of styrene and yield of acetophenone were obtained in the presence of a relatively low catalyst loading. This environmentally benign biphasic catalytic system can be applied to the Wacker oxidation of various alkenes. Furthermore, the PdCl_2-mediated oxidation of styrene was preferentially converted into benzaldehyde using a biphasic scCO_2/PEG system. The PEG could effectively immobilize and stabilize the catalysts. The present biphasic system could facilitate products separation and catalyst recycling.
     The thermal/oxidative degradation of polyethylene glycol (PEG) is known to occur under oxygen atmosphere at elevated temperature. The utility of this concept of practically utilizable free-radical chemistry of PEG induced by molecule oxygen in dense carbon dioxide is demonstrated to be successfully applied to important and fundamental organic reactions with enormous synthetic potentials. Current applications include selective formylation of primary and secondary aliphatic alcohols, and oxidation of benzylic alcohols, and benzylic C=C cleavage reactions, and benzylic sp3 C-H oxidation. We find that both PEG and molecule oxygen are prerequisite to performing those reactions smoothly. Given that dense CO_2 is immune to free radical chemistry; it is an ideal solvent for such free radical reactions. As a result, dense CO_2 in this elegant study allows such reactions initiated by PEG radical able to be tuned by subtly adjusting reaction parameter like CO_2 pressure, thus leading to enhancing the product selectivity. Attaining high selectivity towards the desired product makes this methodology more practical in organic synthesis. These scrutinous findings inspired with a serendipity in the course of continuing effort devoted to developing efficient sustainable process for the oxidation of organic substrates like alcohols and olefins in PEG/dense CO_2 biphasic system lead to creating a novel concept of utilizable free-radical chemistry of PEG, and would whereby offer an environmentally friendly, metal-free, cost-efficient and viable access to a diverse set of synthetic useful transformations without any additional free radical initiator nor a catalyst.
     Silica-supported quaternary ammonium salt and ionic liquid proved to be an efficient heterogeneous catalyst for solventless synthesis of cyclic carbonates from epoxides and carbon dioxide under supercritical conditions, which requires no additional organic solvents either for the reaction or for the separation of product. Silica in these studies could promote the reaction. The effects of reaction time, temperature and other reaction parameters on the reaction are investigated. High yields with excellent selectivity were obtained. The purity of product separated directly by filtration from the reaction mixture, reached 99% without further purification process. Moreover, the catalyst can be easily recovered by filtration and reused over 4 times with slightly loss of its catalytic activity. The process represents a simple, ecologically safer, cost-effective route to cyclic carbonates with high product quality, as well as easy product recovery and catalyst recycling.
引文
[1]IPCC.Climate Change 1995:IPCC Second Assessment Report.December 1995
    [2]陈长虹,鲍先华.全球能源消费与CO_2排放量.上海环境科学,1999,18(2):62-64
    [3]曲格平.关于我国参加联合国环境与发展大会的情况报告,迈向21世纪.北京:中国环境科学出版社,1992
    [4]王绍武,龚道溢.对气候变暖问题争议的分析.地理研究,2001,20(2):153-160
    [5]梁斌.CO_2与环氧丙烷不对称环加成反应催化体系的设计与研究:[硕士学位论文].大连:大连理工大学,2004
    [6]周忠清.二氧化碳催化还原碳的发展.精细石油化工,1994,4:92-96
    [7]顾蕊瑛,李颖华,CO_2资源的综合利用.湖北化工,1993,2:33-35
    [8]李昆瑜.CO_2的应用及产品开发.天然气化工,1996,21(3):40-43
    [9]Arakawa H,Aresta M,Armor J N,et al.Catalysis research of relevance to carbon management:Progress,Challenges,and Opportunities.Chem Rev,2001,101(4):953-956
    [10]Sakakura T,Choi J,Yasuda H,Transformation of carbon dioxide.Chem Rev,2007,107(6):2365-2387
    [11]Leitner W.Supercritical carbon dioxide as a green reaction medium for catalysis.Ace Chem Res,2002,35(9):746-756
    [12]付月.超临界流体技术及其研究进展.河北农业科学,2007,11(6):112-115
    [13]杨基础,沈忠耀.超临界流体技术与超细颗粒的制备.化工进展,1995,(2):8-31,53
    [14]郑来久,刘志伟,季婷等.超临界CO_2染色技术.化学工程,2006,34(9):71-74
    [15]Burk M J,Feng S,Gross M F.Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide.J Am Chem Soc,1995,117(31):8277-8278
    [16]Xiao J L,Nefkens S C A,Jessop P G.Symmetric hydrogenation of a-unsaturated carboxylic acids in supercritical carbon dioxide.Tetrahedron Lett,1996,37(16):2813-2816
    [17]Kainz S,Brinkmann A.Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide.J Am Chem Soc,1999,121(27):6421-6429
    [18]Levi A,Modena G,Scorrano G.Asymmetric reaction of carbon-nitrogen,carbon-oxygen and carbon-carbon double bonds by homogeneous catalytic hydrogenation.J Chem Soc,Chem Commun,1975,(1):6-7
    [19]Solinas M,Pfaltz A,Cozzi P G,et al.Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media.J Am Chem Soc,2004,126(49):16142-16147
    [20]Jessop P G,Hsiao Y,Ikariya T,et al.Homogeneous catalysis in supercritical fluids:hydrogenation of supercritical carbon dioxide to formic acid,alkyl formates,and formamides.J Am Chem Soc,1996,118(2):344-345
    [21]Hitzler M G,Poliakoff M.Continuous hydrogenation of organic compounds in supercritical fluids.Chem Commun,1997,(17):1667-1668
    [22]Rathke J W,Klinger R J,Krause T R.Propylene hydroformylation in supercritical carbon dioxide.Organometallics,1991,10(5):1350-1355
    [23]Kainz S,Koch D,Baumann W,et al.Perfluoroalkyl substituted arylphosphanes as ligands for homogenous catalysis in supercritical carbon dioxide.Angew Chem Int Ed Engl,1997,36(15):1628-1630
    [24]Jia L,Jiang H,Li J.Selective carbonylation of norbornene in scCO_2.Green Chem,1999,1(12):91-93
    [25]李金恒,江焕峰,李国平.超临界二氧化碳介质中钯催化末端炔烃羰基化反应的影响因素.广州化学,2000,25(1):1-5
    [26]Tsuji J,Takahashi M,Takahashi T.Facile synt hesis of acetylenecarboxylates by the oxidative carbonylation of terminal acetylenes catalyzed by PdCl_2 under mild conditions.Tetrahedron Lett,1980,21(9):849-850
    [27]Li J H,Jiang H F,Feng A Q.Novel stereospecific synthesis of 3-chloro-acrylate esters via palladium catalyzed carbonylation of terminal acetylenes.J Org Chem,1999,64(16):5984-5987
    [28]Li J,Jiang H,Jia L.A Novel Stereoselective Synt hesis of Maleate Derivatives via Plladium-Catalyzed Dicarboalkoxylation of Terminal Alkynes.Synth Commun,1999,29(21):3733-3738
    [29]Li J,Jiang H,Chen M.Palladium-catalyzed carbonylation of terminal acetylenes:a new method for synthesis of acetylene ecarboxylates.Synth Commun,2001,31(2):199-202
    [30]Li J,Jiang H,Chen M.Palladium-catalyzed dicarbonylation of terminal acetylenes:a new method for selective synthesis of unsaturated diesters and maleic anhydrides.Synth Commun,2001,31(20):3131-3134
    [31]Li J H,Jiang H F,Chen M C.Palladium-catalyzed carbonylation of primary amines in supercritical carbon dioxide.Chin J Chem,2001,19(11):1153-1156
    [32]Alper H,Hart stock F W.An exceptionally mild,catalytic homogeneous method for the conversion of amines into carbamate esters.J Chem Soc,Chem Commun,1985,(16):1141-1142
    [33]李金恒,江焕峰,陈鸣才等.超临界二氧化碳介质中钯催化伯胺羰基化反应的研究.广州化学,2001,26(4):1-5
    [34]Darr J A,Poliakoff M.New directions in inorganic and metal-organic coordination chemistry in supercritical fluids.Chem Rev,1999,99(2):495-542
    [35]Leitner W.Supercritical carbon dioxide as a green reaction medium for catalysis.Acc Chem Res,2002,35(9):746-756
    [36]Srinivas P,Mukhopadhyay M.Oxidation of cyclohexane in supercritical carbon dioxide medium.Ind Eng Chem Res,1994,33(12):3118-3124
    [37]Wu X,Oshima Y,Koda S.Aerobic oxidation of cyclohexane catalyzed by Fe(Ⅲ)(5,10,15,20-tetrekis(penta-fluorophenyl)porphyrin)Cl in sub- and super-critical CO_2.Chem Lett,1997,(10):1045-1046
    [38]Jessop P G,Ikariya T,Noyori R.Homogeneous catalysis in supercritical fluids.Chem Rev,1999,99(2):475-493
    [39]Jessop P G.Homogeneously-catalyzed syntheses in supercritical fluids.Top Catal,1998,5:95-103
    [40]Kreher U,Schebesta S,Walther D.Organometallics of transition metals in supercritical carbon dioxide:solubilities,reactions,catalysis.Z Anorg Allg Chem,1998,624(4):602-612
    [41]Pesiri D R,Morita D K,Glaze W,et al.Selective epoxidation in dense phase carbon dioxide.Chem Commun,1998,(9):1015-1016
    [42]Katsuki T,Sharpless K B.The first practical method for asymmetric epoxidation.J Am Chem Soc,1980,102(18):5974-5976
    [43]Thompson R L,Graser R,Bush D et al.Rate variations of a hetero-Diels-Alder reaction in supercritical fluid CO_2.Ind Eng Chem Res,1999,38(11):4220-4225
    [44]Carroll M A,Holmes A B.Palladium-catalysed carbon-carbon bond formation in supercritical carbon dioxide.Chem Commun,1998,(13):1395-1396
    [45]Miyaura N,Yanagi T,Suzuki A.The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases.Synth Commun,1981,11(7):513-519
    [46]Morita D K,David S A,Tumas W,et al.Palladium-catalyzed cross-coupling reactions in supercritical carbon dioxide.Chem Commun,1998,(13):1397-1398
    [47]Hitzler M,Small F R,Ross S K,et al.Friedel-Crafts alkylation in supercritical fluids: continuous,selective and clean.Chem Commun,1998,(3):359-360
    [48]吕小兵.超临界条件下环状碳酸酯的催化合成:[博士学位论文].大连:大连理工大学,2002
    [49]Guan Z,Combes J R,DeSimone J M et al.Homogeneous free radical polymerizations in supercritical carbon dioxide:Thermal decomposition of 2,2'-azobis(isobutyronitrile)Macromolecules,1993,26(11):2663-2669
    [50]DeSimone J M,Maury E E,Menceloglu Y Z et al.Dispersion polymerizations in supercritical carbon dioxide.Science,1994,265(5170):356-359
    [51]Hsiao Y L,Maury E E,DeSimone J M et al.Dispersion polymerization of methyl methacrylate stabilized with poly(1,1-dihydroperfluorooctyl acrylate) in supercritical carbon dioxide.Macromolecules,1995,28(24):8159-8166
    [52]Canelas D A,Betts D E,DeSimone J M.Dispersion polymerization of styrene in supercritical carbon dioxide:importance of effective surfactants.Macromolecules,1996,29(8):2818-2821
    [53]Pasta P,Maggala T,Carrea T.Subtilisin-catalyzed transesterification in supercritical carbon dioxide.Biotechnol Lett,1989,11(9):643-648
    [54]Mori T,Kolayashi A,Okahata Y.Biocatalytic esterification in supercritical carbon dioxide by using a lipid-coated lipase.Chem Lett,1998,(9):921-922
    [55]Pesiri R D,Morita D K,Glaze W,et al.Selective epoxidation in dense phase carbon dioxide.Chem Commun,1998,(9):1015-1016
    [56]Chen W P,Xu L J,Xiao J L.Fluorous soluble polymer catalysts for the fluorous biphase hydroformylation of olefins.Chem Commun,2000,839-840
    [57]Hu Y L,Chen W P,Osuna A M B,et al.Fast and unprecedented chemoselective hydroformylation of acrylates with a fluroropolymer ligand in superciritial CO_2.Chem Commun,2002,(7):788-789
    [58]Lopez-Castillo ZK,Kani I,Fackler JP,et al.Fluoroacrylate copolymer-supported rhodium catalysts for the hydrogenation reaction in supercritical carbon dioxide,had Eng Chem Res,2002,41(13):3075-3080
    [59]Kani I,Omary MA,Rawashdeh-Omary MA,et al.Homogeneous catalysts in supercritical carbon dioxide with rhodium catalysts tethering fluoroacrylate polymer ligands.Tetrahedron 2002,58(20):3923-3928
    [60]Flores R,Lopez-Castillo ZK,Kani I,et al.Kinetics of the homogeneous catalytic hydrogenation of olefins in supercritical carbon dioxide using a fluoroacrylate coplolymer grafted rhodium catalyst,had Eng Chem Res,2003,42(26),6720-6729
    [61]Kani I,Flores R,Fackler J P,et al.Hydroformylation of styrene in supercritical carbon dioxide with fluoroacrylate polymer supported rhodium catalysts.J Supercrit Fluids,2004,31(3):287-294
    [62]Haas G R,Kolis J W.Oxidation of alkenes in supercritical carbon dioxide catalyzed by molybdenum hexacarbonyl.Organometallics,1998,17(20):4454-4460
    [63] Jessop P G. Homogeneously-catalyzed synthesis in supercritical fluids. Top Catal, 1998, 5: 95-103
    [64] Kreher U, Schebesta S, Walter D. Ubergangsmetall-Organoverbindungen in superkritischem Kohlendioxid: Loslichkeiten, Reaktionem, Katalysen. Z Anorg Allg Chem, 1998, 624, 602-612
    [65] Montilla F, Rosa V, Prevett C, et al. Trimethylsilyl-substituted ligands as solubilizers of metal complexes in supercritical carbon dioxide. Dalton Trans, 2003, 2170-2176
     [66] Pesiri D R, Morita D K, Walter T, et al. Vanadium-catalyzed epoxidations of olefinic alcohols in liquid carbon dioxide. Organometallics 1999, 18(24): 4916-4924
    [67] Haas, G R, Kolis J W. Allylic alcohols are epoxidized with t-butyl hydroperoxide in the prensence of a vanadyl salen oxo-tranfer catalyst in supercritical CO_2. Tetrahedron Lett, 1998, 39(33): 5923-5926
    [68] Muse G, Wei M, Subramaniam B, et al. Catalytic oxidations in carbon dioxide-based reaction media, including novel CO_2-expanded phases. Coord Chem Rev, 2001, 219-221: 789-820
    [69] Bhanage B M, Ikushima Y, Shirai, M, et al. Mutiphase catalysis using water-soluable metal complexes in supercritical carbon dioxide. Chem Commun, 1999, (14): 1277-1278
    
    [70] Jacobson G B, Jr Lee T, Johnston K P, et al. Enhanced catalyst reactivity and separations using water/carbon dioxide emulsions. J Am Chem Soc, 1999, 121(50): 11902-11903
    [71] Blanchard L A, Hanoi D, Beckman E J, et al. Green processing using ionic liquid and CO_2. Nature 1999, 399: 28-29
    
    [72] Wu W Z, Zhang J M, Han B X, et al. Solubility of room-temperature ionic liquid in supercritical CO_2 with and without organic compounds. Chem Commun, 2003, (12): 1412-1413
    [73] Kazarian S G, Briscoe B J, Welton T. Combining ionic liquid and supercritical fluids: in situ ATR-IR study of CO_2 dissolved in two ionic liquids at high pressure. Chem Commun, 2000, (20): 2047-2048
    [74] Scurto A M, Aki SNVK, Brennecke J F. CO_2 as a separation switch for ionic liquid/organic mixtures. J Am Chem Soc, 2002, 124(35): 10276-10277
    
    [75] Blanchard L A, Brennecke J F. Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind Eng Chem Res, 2001, 40(1): 287-292
    [76] Solinas M, Pfaltz A, Cozzi P G, et al. Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J Am Chem Soc, 2004, 126(49): 16142-16147
    [77] Brown R A, Pollett P, McKoon E, et al. Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical cabon dioxide. J Am Chem Soc, 2001, 123, 1254-1255
    [78] Liu F, Abrams M B, Baker R T, et al. Phase-separable catalysis using room temperature ionic liquids and supercritical carbon dioxide. Chem Commun, 2001, (5): 433-434
    [79] Sellin M F, Webb P B, Cole-Hamilton D J. Continuous flow homogeneous catalysis: hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic mixtrures. Chem Commun,2001,(8):781-782
    [80]Lozano P,de Diego T,Carrie D,et al.Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide.Chem Commun,2002,(7):692-693
    [81]Webb P B,Sellin M F,Kunene T E,et al.Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems.J Am Chem Soc,2003,125(50):15577-15588
    [82]Chen J,Spear S K,Huddleston J G,et al.Polyethylene glycol and solutions of polyethylene as green reaction medium.Green Chem,2005,7(2):64-82
    [83]岳晓东,何良年.超临界二氧化碳参与的两相体系及其在有机合成反应中的应用.有机化学,2006,26(5):610-617
    [84]冯博,胡玉,李欢等.超临界二氧化碳/聚乙二醇两相体系的性质及其在催化反应中的应用.2008,28(3):381-389
    [85]Heldebrant D J,Jessop P G.Liquid poly(ethylene glycol) and supercritical carbon dioxide:a benign biphasic solvent system for the use and recycling of homogeneous catalysts.J Am Chem Soc,2003,125(19):5600-5601
    [86]Hou Z-S,Theyssen N,Brinkmann A,et al.Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide.Angew Chem Int Ed,2005,44(9):1346-1349
    [1] Muse G, Wei M, Subramaniam B, et al. Catalytic oxidations in carbon dioxide-based reaction media, including novel CO_2-expanded phases. Coord Chem Rev, 2001,219-221: 789-820
    
    [2] Srinivas P, Mukhopadhyay M. Oxidaition of cycolhexane in supercritical carbon dioxide medium. Ind Eng Chem Res, 1994, 33(12): 3118-3124
    
    [3] Srinivas P, Mukhopadhyay M. Multicomponent solubilities of reactants and products of cyclohexane oxidation in supercritical carbon dioxide. Ind Eng Chem Res, 1996, 35(12): 4713-4717
    [4] Srinivas P, Mukhopadhyay M. Influence of the thermodynamic state on cyclohexane oxidation kinetics in carbon dioxide medium. Ind Eng Chem Res, 1997, 36(6): 2066-2070
    [5] Wu X-W, Oshima Y, Koda S. Aerobic oxidation of cyclohexane catalyzed by Fe(III)(5,10,15,20-tetrakis(pentafluorophenyl)porphyrin)Cl in sub- and super-critical CO_2, Chem Lett, 1997,(26): 1045-1046
    [6] Hou Z S, Han B X, Gao L, et al. Selective oxidation of cyclohexane in compressed CO_2 and liquid solvents over MnAPO-5 molecular sieve. Green Chem, 2002,4(5): 426-430
    [7] Olsen M H N, Salomao G C, Drago V, et al. Oxidation of cyclohexane in supercritical carbon dioxide catalyzed by iron tetraphenylporphyrin. J Supercrit Fluids 2005, 34(1-3): 119-124
    [8] Zhu J, Robertson A, Tsang S C. Aquesous emulsion containing flurous cobalt species in supercritical CO_2 for catalytic air oxidation of toluene. Chem Commun, 2002, (18): 2044-2045
    [9] Zhu J, Tsang S C. Micellar catalysis for partial oxidation of toluene to benzoic acid in supercritical CO_2: effects of fiuorinated surfactants. Catal Today 2003, 81(4): 673-679
    [10] Xue E, Ross J R H, Mallada R, Menendez M, et al. Catalytic oxidation of butane to maleic anhydride enhanced yields in the presence of CO_2 in the reactor feed. Appl Catal A, 2001, 210(1-2): 271-274
    
    [11] Theyssen N, Hou Z-S, Leitner W. Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium. Chem Eur J,2006, 12, 3401-3409
    [12] Beckman E J. Production of H_2O_2 in CO_2 and its use in the direct synthesis of propylene oxide. Green Chem, 2003, 5(3): 332-336
    [13] Danciu T, Beckman E J, Dan H C, et al. Direct synthesis of propylene oxide with CO_2 as the Solvent. Angew Chem Int Ed, 2003, 42(10): 1140-1142
    [14] Jiang H-F, Jia L-Q, Li J-H. Wacker reaction in supercritical carbon dioxide. Green Chem, 2000, 2(4): 161-164.
    [15] Jia L-Q, Jiang H-F, Li J-H. Palladium(II)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem Commun, 1999, (11): 985-986
    [16] Wang Z-Y, Jiang H-F, Qi C-R, et al. PS-BQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide. Green Chem, 2005, 7(8): 582-585
    [17] Hou Z-S, Han B-X, Gao L, et al. Wacker oxidation of 1-hexene in 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF_6]), supercritical (SC) CO_2, and SC CO_2/[bmim][PF6] mixed solvent. New J Chem, 2002,26(9): 1246-1248
    [18] Haas G R, Kolis G W. The diastereoselective epoxidation of olefins in supercritical carbon dioxide. Tetrahedron Lett, 1998, 39(33): 5923-5926
    [19] Haas G R, Kolis G W. Oxidation of alkenes in supercritical carbon dioxide catalyzed by molybdenum hexacarbonyl. Organometallics 1998, 17(20): 4454—4460
     [20] Pesiri D R, Morita D K, Glaze W, et al. Selective epoxidation in dense phase carbon dioxide. Chem Commun, 1998, (9): 1015-1016
    [21] Campestrini S, Tonellato U. Catalytic olefin epoxidation with H_2O_2 in supercritical CO_2. synergic effect by hexafluoroacetone and manganese-porphyrins. Adv Synth Catal, 2001, 343(8): 819-825
    [22] Loeker F, Leiner W. Steel-promoted oxidation of olefins in supercritical carbon dioxide using dioxygen in the presence of aldehydes. Chem Eur J, 2000, 6(11): 2011-2015
    
    [23] Montilla F, Rosa V, Prevett C, et al. Trimethylsilyl-substituted ligands as solubilizers of metal complexes in supercritical carbon dioxide. Dalton Trans, 2003, (11): 2170-2176
    [24] Kokubo Y, Wu X-W, Oshima Y, et al. Aerobic oxidation of cyclohexene catalyzed by Fe(III)(5,10,15,20-tetrakis(pentafluorophenyl)porphyrin)Cl in supercritical CO_2. J Supercrit Fluids 2004, 30(2): 225-235
    [25] Nolen S A, Lu J, Browm J S, et al. Olefin epoxidations using supercritical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy acids. Ind Eng Chem Res, 2002, 41(3): 316-323
    [26] Zhou B-L, Akgerman A. Catalytic oxidation of ethanol and acetaldehyde in supercritical carbon dioxide. Ind. Eng Chem Res, 1995, 34(5): 1588-1595
    
    [27] Jenzer G, Sueur D, Mallat T, et al. Partial oxidation of alcohols in supercritical carbon dioxide. Chem Commun, 2000, (22): 2247-2248
    [28] Elena M, Nunez G, Mello R, et al. Oxidation of alcohols to carbonyl compounds with CrO_3·SiO_2 in supercritical carbon dioxide. J Org Chem, 2006, 71(3): 1039-1042
    
    [29] Oakes R S, Clifford A A, Bartle K D, et al. Sulfur oxidation in supercritical carbon dioxide: dramatic pressure dependant enhancement of diastereoselectivity for sulfoxidation of cysteine derivatives. Chem Commun, 1999, (3): 247-248
    [30] Wei M, Musie G T, Busch D H, et al. CO_2-expanded solvents: unique and versatile media for performing homogeneous catalytic oxidations. J Am Chem Soc, 2002, 124(11): 2513-2517
    [31] Caravati M, Grunwaldt G-D, Baiker A. Solvent-modified supercritical CO_2: A beneficial medium for heterogeneously catalyzed oxidation reactions. Appl Catal A, 2006, 298, (1):50-56
    [32] Rajagopalan B, Wei M, Musie GT, et al. Homogeneous catalytic epoxidation of organic substrates in CO_2-expanded solvents in the presence of water-soluble oxidants and catalysts. Ind Eng Chem Res, 2003,42(25): 6505-6510
    [33] Hou Z-S, Theyssen N, Brinkmann A, et al. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew Chem Int Ed, 2005,44(9): 1346-1349
    [34] Han S, Kim C, Kwon D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 1997, 38(2): 317-323
    [35] Riecke A. Uber Peroxyde der Ather, der Carbonyl-Verbindungen und die Ozonide. Angew Chem, 1958, 70,251-266
    [36] Glastrup, J. Degradation of polyethylene glycol. A study of the reaction mechanism in a model molecule: Tetraethylene glycol. Polym Degrad Stab, 1996, 52,217-222
    [37] Conder J R, Fruitwala N A, Shingari M K.J Chromatogr, 1983, 269, 171-178
    
    [38] Altwicker E A. The chemistry of stable phenoxy radicals. Chem Rev, 1967, 67(5): 475-531
    [39] Mang H, Gross J, Lara M, et al. Biocatalytic Single-Step Alkene Cleavage from Aryl Alkenes: An enzymatic equivalent to reductive ozonization. Angew Chem Int Ed, 2006, 45(31): 5201-5203
    [40] Deng X, Friend C M. Selective oxidation of styrene on an oxygen-covered Au(111). J Am Chem Soc, 2005,127(49): 17178-17179
    [41] Baucherel X, Uziel J, Jugé S. Unexpected catalyzed C=C bond cleavage by molecular oxygen promoted by a thiyl radical. J Org Chem, 2001, 66(13): 4504-4510
    [42] Xing D, Guan B T, Cai G X, et al. Gold(I)-catalyzed oxidative cleavage of a C-C double bond in water. Org Lett, 2006, 8(4): 693-696
    [43] Dhakshinamoorthy A, Pitchumani K. Clay-anchored non-heme iron-salen complex catalyzed cleavage of C=C bond in aqueous medium. Tetrahedron 2006, 62(42): 9911-9918
    [44] Jacobson E N. Oxidation Catalysis: Bringing together the interests of academic and industrial researchers. Adv Synth Catal, 2004, 346(2-3): 109-109
    [45] Ishii Y, Sakaguchi S, Iwahama T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv Synth Catal, 2001, 343(5): 393-427
    [46] Punniyamurthy T, Velusumy S, Iqbal J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev, 2005, 105(6): 2329-2364
    [47] Schreiner P R, Fokin A A. Selective alkane C-H bond functionlizations utilizing oxidative single-electron transfer and organocatalysis. Chem Rec, 2004, 3,247-257
    [48] Adam W, Saha-Moller C R, Ganeshpure P A. Synthetic applications of nonmetal catalysts for homogeneous oxidations. Chem Rev, 2001, 101(11): 3499-3548
    [49] Shi Y. Organocatalytic asymmetric epoxidation of olefins by chiral ketones. Acc Chem Res, 2004, 37(8): 488-496
    [50] Yang D. Ketone-catalyzed asymmetric epoxidation reactions. Acc Chem Res, 2004, 37(8): 497-505
    [51] Ishii Y, Nakayama K, Takeno M, et al. Novel catalysis by N-hydroxyphthalimide in the oxidation of organic substrates by molecular oxygen. J Org Chem, 1995, 60(13): 3934-3935
    [52] Bjφrsvik H R, Liguori L, Merinero J A V, et al. A highly selective aerobic oxidation Process catalyzed by electron-deficient nitroarenes via single electron transfer processes. J Org Chem, 2002,67(21): 7493-7500
    [53] Cordova A, Sundén H, Engqvist M, et al. The direct amino acid-catalyzed asymmetric incorporation of molecular oxygen to organic compounds. J Am Chem Soc, 2004, 126(29): 8914-8915
    [54] Ohkubo K, Fukuzumi S. Selective oxygenation of p-xylene to p-tolualdehyde via photoinduced electron transfer. Org Lett, 2000,2(23): 3647-3650
    [55] Yang G Y, Ma Y F, Xu J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. J Am Chem Soc, 2004,126, 10542-10542
    [56] Yang G Y, Zhang Q H, Miao H, et al. Selective Organocatalytic oxygenation of hydrocarbons by dioxygen using anthraquinones and N-hydroxyphthalimide. Org Lett, 2005, 7(2): 263-266
    
    [57] Tong X L, Xu J, Miao H. Highly efficient and metal-free aerobic hydrocarbons oxidation process by an o-phenanthroline-mediated organocatalytic system. Adv Synth Catal, 2005, 347(15): 1953-1957
     [58] Schuchardt U, Cardoso D, Sercheli R, et al. Cyclohexane oxidation continues to be a challenge. Appl Catal A, 2001, 211(1): 1-17
    
    [59] Larock R C, Comprehensive organic transformation, VCH: New York, 1999, 1234-1250
    [60] Trost B M, Fleming I, Ley S V. Comprehensive organic synthesis, Pergamom: Oxford, 1991, Vol. 7.
    [61] Lenoir D. Selective oxidation of organic compounds - sustainable catalytic reactions with oxygen and without transition metals. Angew Chem Int Ed, 2006,45(20): 3206-3210
     [62] Sheldon R A, Arends I W C E, Brink G-J T, et al. Green, catalytic oxidation of alcohols. Acc Chem Res, 2002,35(9): 774-781
    [63] Zhan B Z, Thompson A. Recent developments in the aerobic oxidation of alcohols. Tetrahedron, 2004, 60(13): 2917-2935
    [64] Greene T W, Wutz P G M, Protective groups in organic synthesis, 2nd ed. Wiley, New York. 1991.
    [65] Trost B M, Pissot-soldermann C, Chen I, et al. An asymmetric synthesis of Hamigeran B via a Pd ssymmetric allylic alkylation for enantiodiscrimination. J Am Chem Soc, 2004, 126(14): 4480-4481
    [66] Gomez M, Paneque M, Manuel L, et al. Transition metal migration upon attempting the Wolff Rearrangement of an Ir(III) five-membered metallacycle. J Am Chem Soc, 2007, 129(19): 6092-6093
    [67] Stubbert B D, Marks T J. Constrained geometry organoactinides as versatile catalysts for the intramolecular hydroamination/cyclization of primary and secondary amines having diverse tethered C-C unsaturation. J Am Chem Soc, 2007, 129(14): 4253-4271
    [68] Takemiya A, Hartwig J F. Rhodium-catalyzed intramolecular, anti-markovnikov hydroaminaton. Synthesis of 3-arylpiperidines. J Am Chem Soc, 2006,128(18): 6042~6043
    [69] Marti C, Carreira E M. Total synthesis of (-)-Spirotryprostatin B: synthesis and related studies. J Am Chem Soc, 2005,127(32): 11505-11515
    [70] Lee Y G, Morales G M, Yu L P, et al. Self-assembled monolayers of isocyanides on nickel electrodes. Angew Chem Int Ed, 2005,44(27): 4228-4231
    [71] Wessjohann L A, Voigt B, Rivera D G. Diversity oriented one-pot synthesis of complex macrocycles: very large steroid-peptoid hybrids from multiple multicomponent reactions including bifunctional building blocks. Angew Chem Int Ed, 2005,44(30): 4785-4790
    [71] Mascitti V, Corey E J. Total Synthesis of (±)-Pentacycloanammoxic Acid. J Am Chem Soc, 2004, 126(48):15664-15665
    [72] Arefolov A, Panek J S. Crotylsilane reagents in the synthesis of complex polyketide nature products: total synthesis of (+)-Discondernolide. J Am Chem Soc, 2005, 127(15): 5596-5603
    [73] Iranpoor N, Firouzabadi H, Jamalian A. Silphos [PCl_(3-n)(SiO_2)_n]: a heterogeneous phosphine reagent for formylation and acetylation of alcohols and amines with ethyl formate and acetate. Tetrahedron Lett, 2005,46(46): 7963-7966
    
    [74] Habibi M H, Tangestaninejad S, Mirkhani V, et al. Novel catalytic acetylation and formylation of alcohols with potassium dodecatungstocobaltate trihydrate (K_5CoWi_2O_(40)·3H_2O). Tetrahedron, 2001, 57(39): 8333-8337
    [75] Hill D R, Hsiao C N, Kurulasuriya R, et al. 2,2,2-Trifluoroethyl Formate: a versatile and selective reagent for the formylation of alcohols, amines, and N-hydroxylamines. Org Lett, 2002,4(1): 111-113
    [76] Ram R N, Meher N K. Selective formylation of alcohols in the presence of phenols with chloral. Tetrahedron 2002, 58(15): 2997-3001
    [77] Ishihara K, Kubota M, Kurihara H, et al. Scandium trifiuoromethanesulfonate as an extremely active acylation catalyst. J Am Chem Soc, 1995, 117(15): 4413-4414
    [78] Koeller S, Lellouche J P. Preparation of formate esters from O-TBDMS/O-TES protected alcohols. A one-step conversion using the Vilsmeier-Haack complex POCl_3/DMF. Tetrahedron Lett, 1999,40(38): 7043-7046
    [79] Firouzabadi H, Iranpoor N, Nowrouzi F, et al. Aluminium dodecatungstophosphate (AlPW_(12)O_(40)) as a highly efficient catalyst for the selective acetylation of -OH, -SH and -NH_2 functional groups in the absence of solvent at room temperature. Chem Common, 2003, (6):764~765
    [80] Iqbal J, Srivastava R R. Cobalt(II) chloride catalyzed acylation of alcohols with acetic anhydride: scope and mechanism. J Org Chem, 1992, 57(7): 2001-2007
    [81] Okano T, Miyamoto K, Kiji J. Transesterification catalyzed by lanthanoid tri-2-propoxides. Chem Lett, 1995, (3): 246-246
    [82] Iranpoor N, Firouzabadi H, Zolfigol M A. Selective acetylation of primary alcohols: acetyl and formyl transfer reactions with copper(II) salts. Synth Commum, 1998, 28(11): 1923-1934
    [83] Valiollah M, Shahram T, Majid M, et al. Cerium polyoxometalate as a reusable catalyst for acetylation and formylation of alcohols. Monatshefte fur Chemie, 2004, 135(10): 1257-1263
    [1]Shaikh A A G.Organic carbonates.Chem Rev,1996,96(3):951-976
    [2]Kawanami H,Ikushima Y.Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts.Chem Commun,2000,(21):2089-2090
    [3]Shen Y M,Duan W L,Shi M.Chemical fixation of carbon dioxide Co-catalyzed by a combination of schiff bases or phenols and organic bases.Eur J Org Chem,2004,(14):3080-3089
    [4]Darensbourg D J,Holtcamp M W.Catalysts for the reactions of epoxides and carbon dioxide.Coord Chem Rev,1996,153:155-174
    [5]Calo V,Nacci A,Monopoli A,et al.Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts.Org Lett,2002,4(15):2561-2563
    [6]He L N,Yasuda H,Sakakura T.New procedure for recycling homogeneous catalyst:propylene carbonate synthesis under supercritical CO_2 conditions.Green Chem,2003,5(1):92-94
    [7]Sit W N,Ng S M,Kwong K Y,et al.Coupling reactions of CO_2 with neat epoxides catalyzed by PPN salts to yield cyclic carbonates.J Org Chem,2005,70(21):8583-8586
    [8]Rokicki A,Kuran W,Marcinick B P.Cyclic carbonates from carbon dioxide and oxiranes.Monatsch Chem,1984,115(2):205-214
    [9]江琦,黄仲涛.CO_2与环氧丙烷环加成的催化剂及反应工艺研究.天然气化工(C1化学与化工),1996,21(6):2-24
    [10]Kihara N,Hara N,,Endo T.Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure.J Org Chem,1993,58(23):6198-6202
    [11]Kim H S,Kim J J,Lee B G,et al.Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO_2 and epoxides.Angew Chem Int Ed,2000,39(22):4096-4098
    [12]Li F W,Xia C G,Xu L W,et al.A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides.Chem Commun,2003,(16):2042-2043
    [13]Jiang J L,Gao F,Hua R M,et al.Re(CO)_5Br-catalyzed coupling of epoxides with CO_2affording cyclic carbonates under solvent-free conditions.J Org Chem,2005,70(1):381-383
    [14]Paddock R L,Nguyen S T.Chemical CO_2 fixation:Cr(Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO_2 and epoxides.J Am Chem Soc,2001,123(46):11498-11499
    [15]Lu X B,Feng X J,He R.Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalysts. Appl Catal A: Gen, 2002,234(1-2): 25-33
    [16] Lu X B, Zhang Y J, Jin K, et al. Highly active electrophile nucleophile catalyst system for the cycloaddition of CO_2 to epoxides at ambient temperature. J Catal, 2004,227(2): 537-541
    [17] Lu X B, He R, Bai C X. Synthesis of ethylene carbonate from supercritical carbon dioxide /ethylene oxide mixture in the presence of bifunctional catalyst. J Mol Cat A: Chem, 2002, 186(1-2): 1-11
    [18] Lu X B, Liang B, Zhang Y J, et al. Asymmetric catalysis with CO_2: Direct synthesis of optically active propylene carbonate from racemic epoxides. J Am Chem Soc, 2004, 126(12): 3732-3733
    [19] Paddock R L, Nguyen S T. Chiral (salen)CoIII catalyst for the synthesis of cyclic carbonates. Chem Commun, 2004, (14): 1622-1623
    [20] Shen Y M, Duan W L and Shi M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. J Org Chem, 2003, 68(4): 1559-1562
    [21] Paddock R L, Nguyen S T. Chemical CO_2 fixation: Cr(III) Salen complexes as highly efficient catalysts for the coupling of CO_2 and epoxides. J Am Chem Soc, 2001, 123(46): 11498-11499
    [22] Yasuda H, He L N, Sakakura T, et al. Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: the remarkable effects of metal substitution. J Catal, 2005,233(1): 119-122
    [23] Yang H, Gu Y, Deng Y, et al. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem Commun, 2002, (3): 274-275
    [24] Yamaguchi K, Ebitani K, Yoshida T, et al. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc, 1999, 121(18): 4526-4527
    [25] Yasuda H, He L N, Sakakura T. Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride. J Catal, 2002,209(2): 547-550
    
    [26] Sankar M, Tarte N H, Manikandan P. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO_2 to epoxides. Appl Catal A: Gen, 2004, 276(1-2): 217-222
     [27] He J L, Wu T B, Zhang Z F. Cycloaddition of CO_2 to epoxides catalyzed by polyaniline salts. Chem Eur J, 2007,13(24): 6992-6997
    [28] Tu M, Davis R J. Cycloaddition of CO_2 to epoxides over solid base catalysts. J Catal, 2001, 199(1): 85-91
    [29] Lu X B, Xiu J H, R He, et al. Chemical fixation of CO_2 to ethylene carbonate under supercritical conditions: continuous and selective. Appl Catal, A: Gen. 2004, 275(1-2): 73-78
    [30] Alvaro M, Baleizao C, Das D, et al. CO_2 fixation using recoverable chromium salen catalysts: use of ionic liquids as cosolvent or high surface-area silicates as supports. J Catal, 2004, 228(1): 254-258
    [31] Lu X B, Wang H, He R. Aluminum phthalocyanine complex covalently bonded to MCM-41 silica as heterogeneous catalyst for the synthesis of cyclic carbonates. J Mol Cat A: Chem, 2002, 186(1-2): 33-42
    [32] Shi F, Zhang Q, Ma Y, et al. From CO oxidation to CO_2 activation: an unexpected catalytic activity of polymer- supported nanogold. J Am Chem Soc, 2005, 127(12): 4182-4183
    [33] Kim H S, Kim J J, Kwon H N, et al. Well-defined highly active heterogeneous catalyst system for the coupling reactions of carbon dioxide and epoxides. J Catal, 2002, 205(1): 226-229
    [34] Xiao L F, Li F W, Xia C G. An easily recoverable and efficient natural biopolymer -supported zinc chloride catalyst system for the chemical fixation of carbon dioxide to cyclic carbonate. Appl Catal, A: Gen, 2005,279(1-2): 125-129
    [35] Srivastava R, Srinivas D, Ratnasamy P. CO_2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine modified Ti-SBA-15 solid catalysts. J Catal, 2005, 233(1): 1-15
    [36] Zhu A L, Jiang T, Han B X, et al. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem, 2007, 9(2): 169-172
    [37] Zhang S J, Chen Y H, Li F W, et al. Fixation and conversion of CO_2 using Ionic Liquid. Catal Today, 2006, 115(1-4): 61-69
    [38] Peng J-J, Deng Y-Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by Ionic Liquids. New J Chem, 2001,25(4): 639-641
    
    [39] Kawanami H, Sasaki A, Matsui K, et al. A rapid and effective synthesis of propylene carbonate using a supercritical CO_2-Ionic Liquid system. Chem Commun, 2003, (7): 896-897
    [40] Sun J M, Fujita S I, Zhao F Y, et al. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and Ionic Liquid under mild condition. Green Chem, 2004, 6(12): 613-616
    [41] Kim J K, Varma R S. Tetrahaloindate(III)-Based Ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-Bonding and mechanistic studies. J Org Chem, 2005, 70(20): 7882-7891
    [42] Xie Y, Zhang Z-F, Jiang T, et al. CO_2 cycloaddition reactions catalyzed by an Ionic Liquid grafted onto a highly cross-linked polymer matrix. Angew Chem Int Ed, 2007, 46(38): 7255-7258
    [43] Xie H-B, Duan H-F, Li S-H, et al. The effective snthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New J Chem, 2005, 29(9): 1199-1203
    [44] Du Y, Wang J Q, Chen J Y, et al. A poly (ethylene glycol)-supported quanterary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO_2 with epoxides under supercritical conditions. Tetrahedron Lett, 2006,47(8): 1271-1275
    [45] Tian J S, Miao C X, Wang J Q, et al. Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO_2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chem, 2007, 9(6): 566~571
    [46] Dou X Y, Wang J Q, Du Y, et al. Guanidium salt functionalized PEG: an effective and recyclable homogeneous catalyst for the synthesis of cyclic carbonates from CO_2 and epoxides under solvent-free conditions. Synlett, 2007, (19): 3058-3062
    [47] Zhao Y, Tian J S, Qi X H, et al. Quaternary ammonium salt-functionalized chitosan: an easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J Mol Catal A: Chem, 2007, 271(1-2): 284-289
    [48] Du Y, Cai F, Kong D-L, et al. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem, 2005, 7(7): 518-523
    [49] Tundo P, Selva M. Continuous-flow, gas phase synthesis of 1-chlorobutane (1-bromobutane) from 1-butanol and aqueous HC1 (HBr) over silica-supported quaternary phosphonium salt. Green Chem, 2005, 7(6): 464-467
    [50] Kruper W J, Dellar D V. Catalytic formation of cyclic carbonates from epoxides and CO_2 with chromium metalloporphyrinates. J Org Chem, 1995, 60(3), 725-727
    
    [51] Clark J R, Pugliese M. Rearrangement of substituted 1,2-glycol monocarbarnates and related reactions. J Org Chem, 1959,24(8), 1088-1091

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700